
Analysis and Design of Complex Systems
with Multivariate Heavy Tail Phenomena

Ness B. Shroff
Depts. ECE & CSE, The Ohio State University

E-mail: shroff@ece.osu.edu

MURI Meeting
October 7, 2014

Collaborators Yoora Kim, Irem Koprulu, R. Srikant, and Y. Zheng

 2

Four Research Directions

Direction I Analyzing statistical metrics of different mobility models
(Lévy, Explore return model, etc.): first exit time, contact time…

Direction II Exploiting opportunities (node mobility, channel
variation, predictibility) for resource allocation in wireless nets.

Direction IV Developing scheduling algorithms for data center/
cloud computing systems

Direction III Modeling and Analyzing Influence Propagation on
Evolving Social Networks

 3

Progress Overview
Direction I Analyzing statistical metrics of different mobility
models (Lévy, Explore return model, etc.): first exit time, contact
time, intercontact time…

•  First exit time analysis for Lévy flight model in RN

[Advances in Applied Probability, 2015]
•  Due to the heavy-tailed jump-length, the sample path

consists of many short jumps and occasional long
jumps --- N-variate heavy tailed distribution in RN

•  Extension to Explore/Return model for more detailed
human mobility modeling (ongoing work)

•  Extension to directional drift model (ongoing work)
•  Extension to Contact Time Analysis (ongoing work)

 4

Progress Overview

Direction II Exploiting various opportunities (node mobility, channel
variation, user predictibility) for resource allocation in wireless networks

•  Optimal scheduler design for content sharing [INFOCOM’13]

•  Developed schedulers that maximized the system utility for
sharing content, subject to hard deadline constraints

•  Design of wireless data off-loading schemes [Mobihoc 2014]
•  A coupled queueing problem with bi-variate heavy tailed on/

off service time distribution
•  Analysis of the reneging probability (probability that primary

network is not chosen)
•  Expected waiting time analysis
•  Asymptotic study (ongoing work)

 5

Progress Overview
Direction III Modeling and Analyzing Influence Propagation on Evolving
Social Networks

•  Modeled and analyzed the spread of multiple competing opinions
(influences) in an evolving social network

•  An opinion/movement starts with an initial number of followers
•  Newcomers are added according to a hybrid of the Preferential

Attachment (PA) model (nodes with higher degrees attract more
connections than nodes with lower degrees) and the Random
Attachment model (new nodes connect to the existing nodes uniformly).

•  Derived the time evolution of the expected number of people
adopting different opinions as a function of (i) the initial number
and connectivity of the propagators of each opinion and (ii) the
persuasion power or strength of each opinion

•  Ongoing work:
•  Personalized attachment and influence dynamics that consider

newcomers preexisting affinities.
•  Studying the multivariate degree distributions of opinion sub-networks.

 6

Progress Overview (cont’d)
Direction IV Developing scheduling algorithms for data center/cloud
computing systems

 •  Analysis and design of MaP/Reduce type scheduling algorithms with
multi-variate heavy tailed dependency for minimizing the total flow
time in the system

•  Prove that the flow time minimization problem is strongly NP-hard
and does not yield a finite competitive ratio [IEEE INFOCOM’13]

•  Developed 2-approximation probabilistic competitive ratio pre-
emptive scheduler that is independent of the nature of job size
distributions [IEEE INFOCOM’13]

•  Low-latency algorithms in the large-system limit for both pre-
emptive and non-pre-emptive schedulers [submitted]

•  Coding & Queueing: Optimal-Latency Data Retrieving in Storage
Clouds [IEEE INFOCOM’13, & more recent work submitted]

 7

Direction IV Developing scheduling algorithms for
data center/cloud computing systems

8

Data Centers/Cloud Systems
�  Data Centers
�  Facility containing a large numbers of

machines
�  Has roots in huge computer rooms of the early

ages!
�  Services: IaaS, PaaS, SaaS

 �  They process very large datasets
�  Use a (variation of) programming model called

Map Reduce
o  Developed (popularized) by Google
o  Easy to use/program/make scalable (without extensive training)
o  Nearly ubiquitous (Google, IBM, Facebook, Microsoft, Yahoo,

Amazon, eBay, twitter…)
o  Used in a variety of different applications (distributed grep, sort, AI,

scientific computation, image processing, …)

9

MapReduce
�  Consists of two elemental processes

�  Each arriving job undergoes a Map and a Reduce Phase
�  Map phase:

�  Takes an input and divides into many small sub-problems (tasks)
�  Operations can run in parallel on potentially different machines

�  Reduce phase(s)
�  Combines the output of Map
�  Usually occurs after the Map

phase is completed
�  Phase precedence constraint
�  Multiple reduce phases

�  Operations can run on parallel machines…

Goal: Schedule these Map and Reduce tasks in order to
minimize the total flow time in the system

10

Flow Time
�  Amount of time a job spends in the system

�  Includes both waiting and processing time of all the
phases of a job

�  Important metric of performance

�  Key challenge: To minimize the flow time,
scheduling decisions need to maintain phase
precedence constraints.

11

�  Number of Map tasks in a job is heavy tailed (or truncated
heavy tailed)

�  Size of each reduce task is heavy tailed (or truncated heavy
tailed)

�  Multiple phases within a job are dependent (e.g., MAP,
Reduce1, Reduce 2, Reduce 3…).
�  Random vector of task workload ~ Multivariate heavy tail

Relationship to Project

Sample References:
�  Jian Tan, Xiaoqiao Meng ; Li Zhang, “Coupling Task Progress for MapReduce

Resource-Aware Scheduling”, IEEE INFOCOM 2013.
�  G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker, and

I. Stoica. PACMan: coordinated memory caching for parallel jobs. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation, NSDI’12,
San Jose, CA, 2012. USENIX Association.

�  S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces from a
production MapReduce cluster. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pages
94– 103, Washington, DC, USA, 2010.

12

�  Time is slotted
�  N “Machines”: Each machine runs 1 unit of workload per slot

�  Scheduling Constraint: For each job, Reduce

Tasks start only after all MAP tasks are completed

Ri =
X

k

R(k)
iReduce

…
Data Center with N machines

…

n jobs over T slots

Each job i consists of
Map tasks and Reduce
tasks

Model

Each Map task has 1 unit
of workload (modeling
assumption)

Total Mi tasks for
Map job i

Each Reduce task
can have multiple
units of workload

Ri
(k)

 units of
workload for task
k for job i

 units of
workload for Reduce job i

Ri =
X

k

R(k)
i

1
Map Mi

Ri
(k)

job i 	

13

�  Preemptive (also parallelizable)
�  Reduce tasks can be interrupted

 at the end of a slot
�  Remaining workload in the task can be

 executed on any machine(s)
�  Reasonable if overhead

 of data-migration is small
�  Non-preemptive

Types of Schedulers:
Treatment of Reduce Tasks

R1 R1

R2

Machines

Time

Machine C

Machine A

Machine B

0 1 2 3 4 5 6 7

14

�  Preemptive/parallelizable
�  Reduce tasks can be interrupted

 at the end of a slot
�  Remaining workload in the task can be

 executed on any machine(s)
�  Reasonable if overhead

 of data-migration is small
�  Non-preemptive/non-parallelizable

�  Once a Reduce task is started, it can’t
 be interrupted till the end of the task

�  An individual Reduce task cannot be completed on different machines
�  But different tasks from same job can be assigned to different

machines
�  Note: Since Map tasks have unit workload, they cannot be

interrupted.
�  In practice Map tasks may be > 1 unit, but small

Types of Schedulers:
Treatment of Reduce Tasks

R1 R1

R2

Machines

Time

Machine C

Machine A

Machine B

R2

0 1 2 3 4 5 6 7

15

MapReduce: FCFS scheduler

R1
M2

M1
R2

1

2

3

4

1 2 3 4

N
um

be
r o

f m
ac

hi
ne

s

Time

Flow-time of a job: time spent by job
 in the system

 FT of Job 1: 3 time slots
 FT of Job 2: 3 time slots
 Total FT : 6 time slots

FCFS scheduler with
4 machines, 2 jobs

Map must finish before
Reduce can start

R1

M1

R1

M2 R2
1	

2	

5	

16

MapReduce: Smarter Scheduler

R1

M2
M1

R2

1

2

3

4

1 2 3 4

N
um

be
r o

f m
ac

hi
ne

s

Time

M1

R1

M2 R2

Flow-time: time in the system

FT of Job 1: 3 time slots
FT of Job 2: 2 time slots
Total FT: 5 time slots

Goal: Minimize total flow-time

R1

“Smarter Scheduler”

17

Flow-Time Minimization Problem:
Preemptive and Parallelizable Scenario

Total # machines is N

Total map workload is
Mi for job i

Total reduce workload is
Ri for job i

Minimize flow-time

Scheduling Constraint

18

Flow-Time Minimization Problem
Non-Preemptive & Non-Parallelizable Scenario

Total # machines is N

Total map workload is
Mi for job i

Total reduce workload
is R(k)

i for task k in job i

Non-preemptive/Non-
parallelizable

Minimize flow-time

Both Problems are NP-hard in the strong sense
[Zheng, Sinha, Shroff, INFOCOM 2013]

19

Competitive Ratio

Theorem
For any constant c0 and any online scheduler S, there are
sequences of arrivals and workloads in the non-preemptive
case, such that the competitive ratio c is greater than c0
è No causal policy gives a bounded competitive ratio

�  : set of all possible schedulers (including non-causal)
�  : Total Flow time of scheduler (sum of FT of all jobs)
�  Define

�  Competitive ratio: A given online policy S is said to have a
competitive ratio of c if for any arrival pattern

⇥

F ⇤ = min
⇣2⇥

F ⇣
F ⇣ ⇣

20

Efficiency Ratio Analysis
�  Efficiency ratio: A given online policy S is said to have

an efficiency ratio of γ if (over some probability space of
arrivals)

Theorem
For a Markov job arrival process, and bounded first and
second moments of job workload:

All work-conserving schedulers have a bounded
efficiency ratio, for both preemptive and non-
preemptive scenarios.

lim sup

T!1

FS

F ⇤ � with probability 1

21

Thus Far
�  There exist no schedulers that have a bounded

competitive ratio in non-preemptive scenarios
�  All work conserving schedulers have a bounded

efficiency ratio (γ) for both preemptive & non-
preemptive scenarios

�  But the performance of these schedulers could
still be quite poor (γ could be very large)

�  Key Question: Can we design provably efficient
schedulers in the Map-Reduce paradigm (i.e.,
small γ)?

22

ASRPT: Available Shortest Remaining
Processing Time [Quick Summary]

�  Basic Approach:
�  An infeasible scheduler (SRPT)

�  Priority given to jobs with smallest remaining workload
�  In SRPT, Map and Reduce for a given job can be scheduled

in same time-slot (infeasible in reality)
�  SRPT results in a lower flow time than any feasible (including

non-causal) scheduler
�  ASRPT

�  Map tasks are scheduled according to SRPT (or sooner)
o  By running SRPT in a virtual manner

�  Reduce tasks greedily fill up the remaining machines
o  In the order determined by the shortest remaining processing

time
�  Compare performance of ASRPT to SRPT to find γ	

23

ASRPT: Available Shortest Remaining
 Processing Time

R1

M2
M1

R2
1

2

3

4

1 2 3 4

N
um

be
r o

f m
ac

hi
ne

s,
 N

Time
: Total Flow-time 4 units

R1
R1

M2
M1

R2
1

2

3

4

1 2 3 4

N
um

be
r o

f m
ac

hi
ne

s,
 N

Time

R1

: Total Flow-time 5 units SRPT ASRPT

R1

Theorem:
If the job arrivals and workload are i.i.d., then
ASRPT has an efficiency ratio of 2 in the
preemptive scenario.	

24

Simulation
•  N = 100 machines, total time slots T = 800
•  # Reduce tasks in each job is 10
•  Job arrival process: Poisson; λ = 2 jobs per time slot.
•  Preemptive Scenario
•  Schedulers

•  ASRPT
•  Fair
•  FIFO

•  ASRPT has smaller
efficiency ratio than
Fair and FIFO

•  Similar results for dependent heavy tailed MAP/Reduce workloads
and non-pre-emptive scenarios.

25

Simpler Schedulers

�  ASRPT is simple but needs sorting (Complexity
increases with the size of the system.)

�  ASRPT requires prior knowledge of the amount of
time needed to complete a job
�  Information may not be available in practice

�  Question: Can we design even simpler
schedulers?

�  Yes
�  Approach: Exploit the fact that most data centers have a

large number of machines to process jobs

26

A Large Number of Machines

�  In a data center, there are many machines:
�  Design asymptotically optimal schedulers to

minimize the flow time under both fixed and
heavy traffic regimes

�  A schedule S is asymptotically optimal if

 where T is the total time slots, is the total flow

time of scheduler S (sum of FT of all jobs), and is
the minimum total flow time (in total time T) over all
schedulers, including non-causal schedulers.

N ! 1

⇢ ! 1

F ⇤

lim

N!1

FS
(N,T)

F ⇤
(N,T)

= 1 w.p.1 for any given 0 < T 1

27

�  Main result: All work-conserving schedulers are
asymptotically optimal in the following scenarios:

�  Asymptotic optimality results allow multiple phases

scenario (Not limited to Map and Reduce).
�  Asymptotic optimality results also allow dependency

among multiple phases (includes multivariate heavy tail
workload).

Preemptive and
Parallelizable

Non-Preemptive and Non-
Parallelizable

Fixed
Traffic
Heavy
Traffic

Asymptotic Optimality

First	 moments	 are	 finite	
	

First	 moments	 are	 finite	
	

Second	 moments	 are	 finite	
	

Second	 moments	 are	 finite	
	

as fast as	 slower than	

28

Numerical Setup

�  Job arrival process: Poisson process
�  Number of Map tasks and workload of Reduce jobs:
 Pareto Distribution

�  Traffic Intensity:
�  Shape parameter:

29

Preemptive and
Parallelizable

Non-Preemptive and Non-
Parallelizable

Fixed
Traffic

Heavy
Traffic

Simulation

101 102 103 1041

2

3

4

5

6

Number of Machines

R
at

io
 to

 th
e

Lo
w

er
 B

ou
nd

Non-Preemptive Scenario

ASRPT
FAIR
FIFO
LRPT

101 102 103 1041

5

10

15

Number of Machines

R
at

io
 to

 th
e

Lo
w

er
 B

ou
nd

Preemptive Scenario

ASRPT
FAIR
FIFO
LRPT

101 102 103 1041
2

4

6

8

Number of Machines

R
at

io
 to

 th
e

Lo
w

er
 B

ou
nd

Non-Preemptive Scenario

ASRPT
FAIR
FIFO
LRPT

101 102 103 1041

5

10

15

Number of Machines

R
at

io
 to

 th
e

Lo
w

er
 B

ou
nd

Preemptive Scenario

ASRPT
FAIR
FIFO
LRPT

30

Simple but efficient

�  Not all work conserving schedulers will work work well for
moderate number of machines N
�  Important scenario because distributed data centers are becoming

quite popular
�  Question: Can we develop a simple scheduler that requires no

information about the workload (statistical or real-time) and
works well for a large range of N?

�  Dynamic Queue-Length Based Scheduler
�  A dynamic threshold is determined at each time slot to determine

the pool of machines to serve Map and Reduce jobs
�  Threshold is based on the ratio of the queue lengths (# of jobs)

between Map and Reduce
�  Intuition: Tries to approximate the threshold based on the workload

ratio between Map and Reduce without knowledge of the workload
statistics

31

�  Define QM(t) to be the number of Map jobs and QR(t) to be the number
of Reduce jobs (new and remaining) in the system at time-slot t.

�  Then at time t, let the pool of MAP machines be NM(t) and the pool of
Reduce machines be NR(t), given as:

�  Map jobs have higher priority in the pool

of Map machines
�  Reduce jobs have higher priority in the pool

of Reduce machines
�  Preemptive and parallelizable: If there is idle

space in either phases, then cross the
threshold. (Work-conserving)

�  Non-preemptive and non-parallelizable: Map can cross the threshold,
Reduce cannot. (Not work-conserving)

Dynamic Queue-Length based Scheduler

NR(t)

NM(t)

32

0

2

4

6

8

10

12

FairFIFO ASRPT Dynamic
 Queue

Av
er

ag
e

Fl
ow

 T
im

e

0 50 100 150 200 250 300 350 40010-3

10-2

10-1

100

Flow Time

C
C

D
F

Fair
FIFO
ASRPT
Dynamic Queue

Numerical Comparion
•  Schedulers

•  ASRPT
•  Fair
•  FIFO
•  Dynamic Queue

•  Flow time:
 ASRPT<Dynamic Queue<Fair, FIFO
•  Complexity (in terms of # of jobs n):
 ASRPT ()>Dynamic Queue()=Fair, FIFO ()
•  CCDF tail:
 ASRPT<Dynamic Queue<Fair<FIFO

N = 100

33

Robustness to Dependency

�  Dynamic Queue Length Based Scheduler
�  Pareto distribution:
�  Correlation Coefficient:

-1 -0.5 0 0.5 10

0.5

1

1.5

2

2.5

Correlation Coefficient

Av
er

ag
e

Fl
ow

 T
im

e

Preemptive and Parallelizable

-1 -0.5 0 0.5 10

1

2

3

4

5

Correlation Coefficient

Av
er

ag
e

Fl
ow

 T
im

e

Non-preemptive and Non-parallelizable

Scheduler performance appears to be invariant to the
level of dependency (dynamic scheduler is robust)	

34

Robustness to Heaviness of the Tail

�  Dynamic Queue Length Based Scheduler
�  Pareto distribution:

�  While the delay increases with a heavier tail
(workload), the relative performance (e.g., efficiency
ratio) stays relatively flat.

0

0.5

1

1.5

2

2.5

α=2 α=3 α=4 α=5
R

at
io

 to
 L

ow
er

 B
ou

nd

Preemptive and Parallelizable

0 20 40 60 80 100 12010-3

10-2

10-1

100

Flow Time

C
C

D
F

Preemptive and Parallelizable

35

Robustness to Heaviness of the Tail

�  Dynamic Queue Length Based Scheduler
�  Pareto distribution:

�  While the delay increases with a heavier tail
(workload), the relative performance (e.g., efficiency
ratio) stays relatively flat.

0

1

2

3

4

α=2 α=3 α=4 α=5
R

at
io

 to
 L

ow
er

 B
ou

nd

Non-preemptive and Non-parallelizable

0 50 100 150 20010-3

10-2

10-1

100

Flow Time

C
C

D
F

Non-preemptive and Non-parallelizable

36

Summary
•  Flow-time minimization problem is strongly NP-hard

•  No online policy has a bounded competitive ratio (non-pre-emptive)

•  All work-conserving schedulers have a constant efficiency ratio in both
preemptive and non-preemptive scenarios.
•  Efficiency Ratio based analysis provides worse case (w.p.1) guarantees, but

gives more design flexibility than competitive ratio

•  A specific algorithm (ASRPT) can guarantee an efficiency ratio of 2 in
the preemptive scenario & works well for all tested cases.

•  Under the large-system limit:
•  Showed that work conserving schedulers are optimal for both fixed traffic

intensity and heavy traffic scenarios

•  Developed a simple dynamic threshold based policy that works well for
moderate sized data centers

•  Our developed algorithms appear to be robust to:
•  Varying degrees of heavy tails (varying shape parameter)
•  Varying levels of dependencies (varying the correlation coefficient)

37

�  Consider cost of data migration
�  Combine preemptive and non-preemptive scenarios

�  Find schedulers that can maximize the CCDF decay slope…
�  Design delay based workload agnostic schedulers

�  Without detailed knowledge of Map or Reduce workload
�  Consider networks of data centers

�  Scheduling also includes delays to fetch data from different
servers

Ongoing/Future Work

�  Consider Shuffle Phase
�  Introduce more information (e.g.,

dependency Graph) to the scheduler
�  So that all reduce tasks don’t wait

until Map tasks are completed
�  Find schedulers with highest rate of

convergence to optimal

 38

Collaborations/Synergistic Activities
n  R. Srikant (UIUC)

Ø  Jointly supervise OSU PhD student Yousi Zheng via weekly (Thu. 11AM Eastern)
Skype meetings on data center scheduling problems

Ø  UIUC PhD student Siva Theja Maguluri visited OSU to collaborate on
autocorrelation characterization in cloud computing.

Ø  Visit to OSU, kickoff, and Columbia meetings, plus phone conferences to discuss
mobility modeling and coupled queuing problems

Ø  One submitted paper, and others in progress.

n  Yoora Kim (Math dept., University of Ulsan)
Ø  Weekly Skype meetings with OSU PhD student Irem Koprulu via weekly (Tue.

10AM Eastern) on Lévy flight analysis and explore/return model
Ø  Joint investigation of data-off loading problem

n  Zhi-Li Zhang (University of Minnesota)
Ø  Kickoff and Columbia meetings + phone/email conferences to discuss human

mobility modeling
Ø  Provided important new references on human mobility

39

1.  Y. Kim, I. Koprulu and N. B. Shroff, "First Exit Time of a Levy Flight from a Bounded
Region," accepted to Advances in Applied Probability, 2014.

2.  Y. Zheng, P. Sinha, and N. B. Shroff, “A New Analytical Technique for Designing
Provably Efficient MapReduce Schedulers," IEEE INFOCOM'13, April 2013, Turin,
Italy.

3.  H. Cai, I. Koprulu, and N. B. Shroff “Exploiting Double Opportunities for Deadline
Based Content Propagation in Wireless Networks,” IEEE INFOCOM’13, April 2013,
Turin, Italy (extended version submitted for journal publication).

4.  Y. Kim, K. Lee, and N. B. Shroff, “An Analytical Framework to Characterize the
Efficiency and Delay in a Mobile Data Offloading System,” ACM Mobihoc'14,
Philadelphia, PA, August 2014.

5.  S. Buccapatnam, A. Eryilmaz, N. B. Shroff, "Stochastic Bandits with Side
Observations on Networks," ACM SIGMETRICS'14, June 2014, Austin, Texas.

6.  Y. Sun, Z. Zhang, E. Koksal, K-H. Lee, N. B. Shroff “Provably Delay Efficient Data
Retrieving in Storage Clouds,” submitted for publication, July 2014.

7.  Y. Zheng, N. B. Shroff, R. Srikant, and P. Sinha, “Exploiting Large System Dynamics
for Designing Simple Data Center Schedulers,” submitted for publication, July
2014.

Publications

40

