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Four Research Directions 

Direction I Analyzing statistical metrics of different mobility models 
(Lévy, Explore return model, etc.): first exit time, contact time… 

Direction II  Exploiting opportunities (node mobility,  channel 
variation, predictibility) for resource allocation in wireless nets.  
 

Direction IV Developing scheduling algorithms for data center/
cloud computing systems  
 
 

 

Direction III Modeling and Analyzing Influence Propagation on 
Evolving Social Networks 
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Progress Overview 
Direction I  Analyzing statistical metrics of different mobility 
models (Lévy, Explore return model, etc.): first exit time, contact 
time, intercontact time… 

 
 
•  First exit time analysis for Lévy flight model in RN  

[Advances in Applied Probability, 2015]  
•  Due to the heavy-tailed jump-length, the sample path 

consists of many short jumps and occasional long 
jumps --- N-variate heavy tailed distribution in RN 

•  Extension to Explore/Return model for more detailed 
human mobility modeling (ongoing work) 

•  Extension to directional drift model (ongoing work) 
•  Extension to Contact Time Analysis (ongoing work)    
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Progress Overview 

Direction II  Exploiting various opportunities (node mobility,  channel 
variation, user predictibility) for resource allocation in wireless networks 

 
•  Optimal scheduler design for content sharing [INFOCOM’13] 

•  Developed schedulers that maximized the system utility for 
sharing content, subject to hard deadline constraints 

•  Design of wireless data off-loading schemes [Mobihoc 2014]  
•  A coupled queueing problem with bi-variate heavy tailed on/

off service time distribution  
•  Analysis of the reneging probability (probability that primary 

network is not chosen) 
•  Expected waiting time analysis  
•  Asymptotic study (ongoing work)  



                                          5 

Progress Overview 
Direction III Modeling and Analyzing Influence Propagation on Evolving 
Social Networks 

•  Modeled and analyzed the spread of multiple competing opinions 
(influences) in an evolving social network 

•  An opinion/movement starts with an initial number of followers 
•  Newcomers are added according to a hybrid of the  Preferential 

Attachment (PA) model (nodes with higher degrees attract more 
connections than nodes with lower degrees) and the Random 
Attachment model (new nodes connect to the existing nodes uniformly).  

•  Derived the time evolution of the expected number of people 
adopting different opinions as a function of  (i) the initial number 
and connectivity of the propagators of each opinion and (ii) the 
persuasion power or strength of each opinion  

•  Ongoing work:  
•  Personalized attachment and influence dynamics that consider 

newcomers preexisting affinities.  
•  Studying the multivariate degree distributions of opinion sub-networks.  
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Progress Overview (cont’d) 
Direction IV  Developing scheduling algorithms for data center/cloud 
computing systems   
 

 •  Analysis and design of MaP/Reduce type scheduling algorithms with 
multi-variate heavy tailed dependency for minimizing the total flow 
time in the system  

•  Prove that the flow time minimization problem is strongly NP-hard 
and does not yield a finite competitive ratio [IEEE INFOCOM’13] 

•  Developed 2-approximation probabilistic competitive ratio pre-
emptive scheduler that is independent of the nature of job size 
distributions [IEEE INFOCOM’13] 

•  Low-latency algorithms in the large-system limit for both pre-
emptive and non-pre-emptive schedulers [submitted] 

•  Coding & Queueing: Optimal-Latency Data Retrieving in Storage 
Clouds [IEEE INFOCOM’13, & more recent work submitted] 
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Direction IV  Developing scheduling algorithms for 
data center/cloud computing systems   
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Data Centers/Cloud Systems 
�  Data Centers 
�  Facility containing a large numbers of 

machines 
�  Has roots in huge computer rooms of the early 

ages! 
�  Services: IaaS, PaaS, SaaS 

 �  They process very large datasets 
�  Use a (variation of) programming model called             

Map Reduce  
o  Developed (popularized) by Google 
o  Easy to use/program/make scalable (without extensive training) 
o  Nearly ubiquitous (Google, IBM, Facebook, Microsoft, Yahoo, 

Amazon, eBay, twitter…) 
o  Used in a variety of different applications (distributed grep, sort, AI, 

scientific computation, image processing, …) 
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MapReduce 
�  Consists of two elemental processes 

�  Each arriving job undergoes a Map and a Reduce Phase 
�  Map phase:  

�  Takes an input and divides into many small sub-problems (tasks) 
�  Operations can run in parallel on potentially different machines 

�  Reduce phase(s) 
�  Combines the output of Map 
�  Usually occurs after the Map                  

phase is completed 
�  Phase precedence constraint 
�  Multiple reduce phases  

�  Operations can run on parallel machines… 

Goal: Schedule these Map and Reduce tasks  in order to 
minimize the total flow time in the system 
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Flow Time 
�  Amount of time a job spends in the system 

�  Includes both waiting and processing time of all the 
phases of a job 

�  Important metric of performance 

�  Key challenge: To minimize the flow time, 
scheduling decisions need to maintain phase 
precedence constraints.  
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�  Number of Map tasks in a job is heavy tailed (or truncated 
heavy tailed) 

�  Size of each reduce task is heavy tailed (or truncated heavy 
tailed) 

�  Multiple phases within a job are dependent (e.g., MAP, 
Reduce1, Reduce 2, Reduce 3…).  
�  Random vector of task workload ~  Multivariate heavy tail 

Relationship to Project 

Sample References:  
�  Jian Tan, Xiaoqiao Meng ; Li Zhang, “Coupling Task Progress for MapReduce 

Resource-Aware Scheduling”, IEEE INFOCOM 2013. 
�  G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker, and 

I. Stoica. PACMan: coordinated memory caching for parallel jobs. In Proceedings of the 
9th USENIX conference on Networked Systems Design and Implementation, NSDI’12, 
San Jose, CA, 2012. USENIX Association. 

�  S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces from a 
production MapReduce cluster. In Proceedings of the 2010 10th IEEE/ACM 
International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 
94– 103, Washington, DC, USA, 2010. 
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�  Time is slotted 
�  N “Machines”: Each machine runs 1 unit of workload per slot 

 
�  Scheduling Constraint: For each job, Reduce              

Tasks start only after all MAP tasks are completed 

Ri =
X

k

R(k)
iReduce 

… 
Data Center with N machines 

… 

n jobs over T slots 

Each job i consists of 
Map tasks and Reduce 
tasks 

Model 

Each Map task has 1 unit 
of workload (modeling 
assumption) 

Total Mi tasks for 
Map job i 

Each Reduce task 
can have multiple 
units of workload 

Ri 
(k)

 units of 
workload for task 
k for job i 

          units of 
workload for Reduce job i 

Ri =
X

k

R(k)
i

1 
Map Mi 

Ri 
(k) 

job i 	
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�  Preemptive (also parallelizable) 
�  Reduce tasks can be interrupted  

 at the end of a slot 
�  Remaining workload in the task can be  

 executed on any machine(s) 
�  Reasonable if overhead  

 of data-migration is small 
�  Non-preemptive 

Types of Schedulers:  
Treatment of Reduce Tasks 

R1 R1 

R2 

Machines 

Time 

Machine C 

Machine A 

Machine B 

0   1   2   3   4   5   6   7 
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�  Preemptive/parallelizable 
�  Reduce tasks can be interrupted  

 at the end of a slot 
�  Remaining workload in the task can be  

 executed on any machine(s) 
�  Reasonable if overhead  

 of data-migration is small 
�  Non-preemptive/non-parallelizable  

�  Once a Reduce task is started, it can’t  
 be interrupted till the end of the task 

�  An individual Reduce task cannot be completed on different machines 
�  But different tasks from same job can be assigned to different 

machines 
�  Note: Since Map tasks have unit workload, they cannot be 

interrupted. 
�  In practice Map tasks may be > 1 unit, but small 

Types of Schedulers:  
Treatment of Reduce Tasks 

R1 R1 

R2 

Machines 

Time 

Machine C 

Machine A 

Machine B 

R2 

0   1   2   3   4   5   6   7 
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MapReduce: FCFS scheduler 
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Flow-time of a job: time spent by job
       in the system 

 
   FT of Job 1: 3 time slots 
   FT of Job 2: 3 time slots 
   Total FT    : 6 time slots 

FCFS scheduler with  
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MapReduce: Smarter Scheduler 
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FT of   Job 1: 3 time slots 
FT of   Job 2: 2 time slots 
Total FT:     5 time slots 

Goal: Minimize total flow-time 
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“Smarter Scheduler” 
 



17 

Flow-Time Minimization Problem:  
Preemptive and Parallelizable Scenario 

Total # machines is N 

Total map workload is 
Mi for job i 

Total reduce workload is 
Ri for job i 

Minimize flow-time 

Scheduling Constraint 
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Flow-Time Minimization Problem 
Non-Preemptive &  Non-Parallelizable Scenario 

Total # machines is N 

Total map workload is 
Mi for job i 

Total reduce workload 
is R(k)

i for task k in job i 

Non-preemptive/Non-
parallelizable 

Minimize flow-time 

Both Problems are NP-hard in the strong sense  
[Zheng, Sinha, Shroff, INFOCOM 2013] 
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Competitive Ratio 

Theorem  
For any constant c0 and any online scheduler S, there are 
sequences of arrivals and workloads in the non-preemptive 
case, such that the competitive ratio c is greater than c0 
è No causal policy gives a bounded competitive ratio 

�      : set of all possible schedulers (including non-causal)  
�      : Total Flow time of scheduler     (sum of FT of all jobs) 
�  Define 

�  Competitive ratio: A given online policy S is said to have a 
competitive ratio of c if for any arrival pattern 

⇥

F ⇤ = min
⇣2⇥

F ⇣
F ⇣ ⇣
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Efficiency Ratio Analysis   
�  Efficiency ratio: A given online policy S is said to have 

an efficiency ratio of γ  if (over some probability space of 
arrivals) 

Theorem 
For a Markov job arrival process, and bounded first and 
second moments of job workload: 

All work-conserving schedulers have a bounded 
efficiency ratio, for both preemptive and non-
preemptive scenarios. 

lim sup

T!1

FS

F ⇤  � with probability 1
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Thus Far 
�  There exist no schedulers that have a bounded 

competitive ratio in non-preemptive scenarios 
�  All work conserving schedulers have a bounded 

efficiency ratio (γ) for both preemptive & non-
preemptive scenarios 

�  But the performance of these schedulers could 
still be quite poor (γ could be very large) 

�  Key Question: Can we design provably efficient 
schedulers in the Map-Reduce paradigm (i.e., 
small γ)? 
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ASRPT:  Available Shortest Remaining 
Processing Time  [Quick Summary] 

�  Basic Approach:  
�  An infeasible scheduler (SRPT) 

�  Priority given to jobs with smallest remaining workload 
�  In SRPT, Map and Reduce for a given job can be scheduled 

in same time-slot (infeasible in reality) 
�  SRPT results in a lower flow time than any feasible (including 

non-causal) scheduler 
�  ASRPT 

�  Map tasks are scheduled according to SRPT (or sooner) 
o  By running SRPT in a virtual manner 

�  Reduce tasks greedily fill up the remaining machines  
o  In the order determined by the shortest remaining processing 

time 
�  Compare performance of ASRPT to SRPT to find γ	
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ASRPT: Available Shortest Remaining     
      Processing Time  
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Theorem: 
If the job arrivals and workload are i.i.d., then 
ASRPT has an efficiency ratio of 2 in the 
preemptive scenario.	
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Simulation 
•  N = 100 machines, total time slots T = 800  
•  # Reduce tasks in each job is 10 
•  Job arrival process: Poisson; λ = 2 jobs per time slot. 
•  Preemptive  Scenario 
•  Schedulers 

•  ASRPT 
•  Fair 
•  FIFO 

•  ASRPT has smaller                                                          
efficiency ratio than                                                                  
Fair and FIFO 

•  Similar results for dependent heavy tailed MAP/Reduce workloads 
and non-pre-emptive scenarios.  
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Simpler Schedulers 

�  ASRPT is simple but needs sorting (Complexity 
increases with the size of the system.) 

�  ASRPT requires prior knowledge of the amount of 
time needed to complete a job 
�  Information may not be available in practice  

�  Question: Can we design even simpler 
schedulers? 

�  Yes  
�  Approach: Exploit the fact that most data centers have a 

large number of machines to process jobs 
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A Large Number of Machines 

�  In a data center, there are many machines:  
�  Design asymptotically optimal schedulers to 

minimize the flow time under both fixed           and 
heavy traffic             regimes 

�  A schedule S is asymptotically  optimal if  

      
     where T is the total time slots,       is the total flow  

time of scheduler S (sum of FT of all jobs), and      is 
the minimum total flow time (in total time T) over all 
schedulers, including non-causal schedulers. 

N ! 1

⇢ ! 1

F ⇤

lim

N!1

FS
(N,T )

F ⇤
(N,T )

= 1 w.p.1 for any given 0 < T  1
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�  Main result: All work-conserving schedulers are 
asymptotically optimal in the following scenarios: 

 
�  Asymptotic optimality results allow multiple phases 

scenario (Not limited to Map and Reduce). 
�  Asymptotic optimality results also allow dependency 

among multiple phases (includes multivariate heavy tail 
workload).  

Preemptive and 
Parallelizable 

Non-Preemptive and Non-
Parallelizable 

Fixed 
Traffic 
Heavy 
Traffic 

Asymptotic Optimality 

First	  moments	  are	  finite	  
	

First	  moments	  are	  finite	  
	

Second	  moments	  are	  finite	  
	

Second	  moments	  are	  finite	  
	

as fast as	 slower than	
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Numerical Setup 

�  Job arrival process: Poisson process 
�  Number of Map tasks and workload of Reduce jobs:  
     Pareto Distribution 
 
 
 
�  Traffic Intensity:                    
�  Shape parameter:    
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Preemptive and 
Parallelizable 

Non-Preemptive and Non-
Parallelizable 
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Simple but efficient 

�  Not all work conserving schedulers will work work well for 
moderate number of machines N 
�  Important scenario because distributed data centers are becoming 

quite popular 
�  Question: Can we develop a simple scheduler that requires no 

information about the workload (statistical or real-time) and 
works well for a large range of N? 

�  Dynamic Queue-Length Based Scheduler  
�  A dynamic threshold is determined at each time slot to determine 

the pool of machines to serve Map and Reduce jobs 
�  Threshold is based on the ratio of the queue lengths (# of jobs)  

between Map and Reduce 
�  Intuition: Tries to approximate the threshold based on the workload 

ratio between Map and Reduce without knowledge of the workload 
statistics 
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�  Define QM(t) to be the number of Map jobs and QR(t) to be the number 
of Reduce jobs (new and remaining) in the system at time-slot t.  

�  Then at time t, let the pool of MAP machines be NM(t) and the pool of 
Reduce machines be NR(t), given as:  

 
�  Map jobs have higher priority in the pool                 

of Map machines 
�  Reduce jobs have higher priority in the pool                 

of Reduce machines 
�  Preemptive and parallelizable: If there is idle              

space in either phases, then cross the        
threshold. (Work-conserving) 

�  Non-preemptive and non-parallelizable: Map can cross the threshold, 
Reduce cannot. (Not work-conserving) 

 

Dynamic Queue-Length based Scheduler 

NR(t) 

NM(t) 
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Numerical Comparion 
•  Schedulers 

•  ASRPT 
•  Fair 
•  FIFO 
•  Dynamic Queue 

•  Flow time:  
     ASRPT<Dynamic Queue<Fair, FIFO 
•  Complexity (in terms of # of jobs n):  
     ASRPT (         )>Dynamic Queue(        )=Fair, FIFO (        ) 
•  CCDF tail:  
     ASRPT<Dynamic Queue<Fair<FIFO 
 
 
 

 

N = 100 
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Robustness to Dependency 

�  Dynamic Queue Length Based Scheduler 
�  Pareto distribution: 
�  Correlation Coefficient: 
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Scheduler performance appears to be invariant to the 
level of dependency (dynamic scheduler is robust)	
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Robustness to Heaviness of the Tail 

�  Dynamic Queue Length Based Scheduler 
�  Pareto distribution: 

�  While the delay increases with a heavier tail 
(workload), the relative performance (e.g., efficiency 
ratio) stays relatively flat.  
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Robustness to Heaviness of the Tail 

�  Dynamic Queue Length Based Scheduler 
�  Pareto distribution: 

�  While the delay increases with a heavier tail 
(workload), the relative performance (e.g., efficiency 
ratio) stays relatively flat.  
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Summary 
•  Flow-time minimization problem is strongly NP-hard 

•  No online policy has a bounded competitive ratio (non-pre-emptive) 

•  All work-conserving schedulers have a constant efficiency ratio in both 
preemptive and non-preemptive scenarios. 
•  Efficiency Ratio based analysis provides worse case (w.p.1) guarantees, but 

gives more design flexibility than competitive ratio 

•  A specific algorithm (ASRPT) can guarantee an efficiency ratio of 2 in 
the preemptive scenario & works well for all tested cases.  

•  Under the large-system limit:  
•  Showed that work conserving schedulers are optimal for both fixed traffic 

intensity and heavy traffic scenarios 

•  Developed a simple dynamic threshold based policy that works well for 
moderate sized data centers 

•  Our developed algorithms appear to be robust to:  
•  Varying degrees of heavy tails (varying shape parameter) 
•  Varying levels of dependencies (varying the correlation coefficient) 
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�  Consider cost of data migration 
�  Combine preemptive and non-preemptive scenarios 

 

�  Find schedulers that can maximize the CCDF decay slope… 
�  Design delay based workload agnostic schedulers 

�  Without detailed knowledge of Map or Reduce workload 
�  Consider networks of data centers 

�  Scheduling also includes delays to fetch data from different 
servers 

Ongoing/Future Work 
 

�  Consider Shuffle Phase 
�  Introduce more information (e.g., 

dependency Graph) to the scheduler 
�  So that all reduce tasks don’t wait 

until Map tasks are completed  
�  Find schedulers with highest rate of 

convergence to optimal  
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Collaborations/Synergistic Activities 
n  R. Srikant (UIUC) 

Ø  Jointly supervise OSU PhD student Yousi Zheng via weekly (Thu. 11AM Eastern) 
Skype meetings on data center scheduling problems 

Ø  UIUC PhD student Siva Theja Maguluri visited OSU to collaborate on 
autocorrelation characterization in cloud computing.  

Ø  Visit to OSU, kickoff, and Columbia meetings, plus phone conferences to discuss 
mobility modeling and coupled queuing problems 

Ø  One submitted paper, and others in progress.  

n  Yoora Kim (Math dept., University of Ulsan) 
Ø  Weekly Skype meetings with OSU PhD student Irem Koprulu via weekly (Tue. 

10AM Eastern) on Lévy flight analysis and explore/return model  
Ø  Joint investigation of data-off loading problem 

n  Zhi-Li Zhang (University of Minnesota) 
Ø  Kickoff and Columbia meetings + phone/email conferences to discuss human 

mobility modeling 
Ø  Provided important new references on human mobility 
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