Impact of Heavy-tailed Joint Degree Distribution on Network Characteristics

Bo Jiang
Joint work by UMass \& UMN

MURI, Oct. 7, 2014

Introduction

- Many different graph characteristics of interest
- degree distributions: in-degree, out-degree, joint, ...
- reciprocity: fraction of links with reciprocal link
- clustering coefficient

Network	in-deg	out-deg	recip.	cl. coeff.
Spanish Wiki	$\mathrm{PL}(1.26)^{1}$	$\mathrm{PL}(1.70)^{1}$	0.3517^{2}	0.09^{1}
Portuguese Wiki	$\mathrm{PL}(1.10)^{1}$	$\mathrm{PL}(1.80)^{1}$	0.3563^{2}	0.05^{1}
Twitter (2007)	$\mathrm{PL}(1.4)^{3}$	$\mathrm{PL}(1.4)^{3}$	0.58^{3}	0.106^{3}
Twitter (2009)	$\mathrm{PL}(1.3)^{4}$	$\mathrm{PL}(1.3)^{4}$	0.22^{4}	
BlogPulse (2006)	$\mathrm{PL}(1.38)^{5}$	$\mathrm{PL}(1.5 ?)^{5}$	0.033^{5}	0.063^{5}
Google+ (2011)	$\mathrm{PL}(1.3)^{6}$	$\mathrm{PL}(1.2)^{6}$	0.32^{6}	

${ }^{1}$ Zlatić et. al. 2006
${ }^{2}$ Zamora-López et. al. 2008
${ }^{3}$ Java et. al. 2007
${ }^{4}$ Kwak et. al. 2009
${ }^{5}$ Shi et. al. 2006
${ }^{6}$ Magno et. al. 2012

Introduction

- Different characteristics are correlated
- specification of one imposes constraints on others
- less freedom for design, but more power for inference

Introduction

- Different characteristics are correlated
- specification of one imposes constraints on others
- less freedom for design, but more power for inference
- Focus on impact of joint degree distribution on reciprocity
- to what extent is reciprocity determined by joint degree distr.?
- does reciprocity behave differently for heavy- and light-tailed joint degree distr.?
- what's impact of in- and out-degree correlation?

Reciprocity

- Defn: fraction of links with reciprocal link

$$
r=\frac{R}{L}
$$

- \# reciprocated links R
- total \# links L
- simple digraph, i.e. no self-loops

Reciprocity

- Given graphical bi-degree sequence $\left(d_{1}^{+}, d_{1}^{-}\right), \ldots,\left(d_{N}^{+}, d_{N}^{-}\right)$, what are possible values of r ?

Reciprocity

- Given graphical bi-degree sequence $\left(d_{1}^{+}, d_{1}^{-}\right), \ldots,\left(d_{N}^{+}, d_{N}^{-}\right)$, what are possible values of r ?
- Configuration model: randomly pair up stubs

Reciprocity

- Given graphical bi-degree sequence $\left(d_{1}^{+}, d_{1}^{-}\right), \ldots,\left(d_{N}^{+}, d_{N}^{-}\right)$, what are possible values of r ?
- Configuration model: randomly pair up stubs

- Expected reciprocity is [Zamora-López et .al. 2008]

$$
\langle r\rangle=\bar{a} \frac{\left\langle d^{+} d^{-}\right\rangle^{2}}{\langle d\rangle^{4}}
$$

where $\bar{a}=L / N^{2}$ is link density, $\langle d\rangle=\left\langle d^{+}\right\rangle=\left\langle d^{-}\right\rangle$.

Correlation \& Reciprocity

- Reciprocity can be rewritten

$$
\langle r\rangle=\bar{a}\left(\rho c_{v}^{+} c_{v}^{-}+1\right)^{2}
$$

- ρ is corr. coeff. between in- and out-degrees.
- c_{v}^{+}, c_{v}^{-}are coeff. of variation. for out- and in-degrees

Correlation \& Reciprocity

- Reciprocity can be rewritten

$$
\langle r\rangle=\bar{a}\left(\rho c_{v}^{+} c_{v}^{-}+1\right)^{2}
$$

- ρ is corr. coeff. between in- and out-degrees.
- c_{v}^{+}, c_{v}^{-}are coeff. of variation. for out- and in-degrees
- positive corr. \Rightarrow high reciprocity negative corr. \Rightarrow low reciprocity uncorrelated $\Rightarrow\langle r\rangle=\bar{a}$

Crude Calculation

- Assume $\left\{d_{i}^{+}\right\},\left\{d_{i}^{-}\right\}$have power-law distributions F^{+}, F^{-} with respective exponents α^{+}, α^{-}
- Use expected order statistics of i.i.d. samples from F^{+}to approximate corresponding order statistics of $\left\{d_{i}^{+}\right\}$
- Similarly for $\left\{d_{i}^{-}\right\}$
- WLOG, assume $d_{1}^{+} \geq d_{2}^{+} \geq \cdots \geq d_{N}^{+}$

Crude Calculation

- Positively correlated: $d_{1}^{-} \geq d_{2}^{-} \geq \cdots \geq d_{N}^{-}$

$$
\left\langle r_{p o s}\right\rangle \approx \bar{a} \frac{\left(1-\beta^{+}\right)^{2}\left(1-\beta^{-}\right)^{2}}{\left(\beta^{+}+\beta^{-}-1\right)^{2}} N^{2\left(\beta^{+}+\beta^{-}-1\right) \vee 0}
$$

where $\beta^{+}=1 / \alpha^{+}, \beta^{-}=1 / \alpha^{-}$.

- Negatively correlated: $d_{1}^{-} \leq d_{2}^{-} \leq \cdots \leq d_{N}^{-}$,

$$
\left\langle r_{\text {neg }}\right\rangle \approx \bar{a}\left(1-\beta^{+}\right)^{2}\left(1-\beta^{-}\right)^{2} B^{2}\left(1-\beta^{+}, 1-\beta^{-}\right)
$$

where $B(\cdot, \cdot)$ is beta function.

Crude Calculation

- Positively correlated: $d_{1}^{-} \geq d_{2}^{-} \geq \cdots \geq d_{N}^{-}$

$$
\left\langle r_{p o s}\right\rangle \approx \bar{a} \frac{\left(1-\beta^{+}\right)^{2}\left(1-\beta^{-}\right)^{2}}{\left(\beta^{+}+\beta^{-}-1\right)^{2}} N^{2\left(\beta^{+}+\beta^{-}-1\right) \vee 0}
$$

where $\beta^{+}=1 / \alpha^{+}, \beta^{-}=1 / \alpha^{-}$.

- Negatively correlated: $d_{1}^{-} \leq d_{2}^{-} \leq \cdots \leq d_{N}^{-}$,

$$
\left\langle r_{\text {neg }}\right\rangle \approx \bar{a}\left(1-\beta^{+}\right)^{2}\left(1-\beta^{-}\right)^{2} B^{2}\left(1-\beta^{+}, 1-\beta^{-}\right)
$$

where $B(\cdot, \cdot)$ is beta function.

- e.g. for $\alpha^{+}=\alpha^{-}=1.5, N=10^{6}$,

$$
\begin{aligned}
& \left\langle r_{\text {pos }}\right\rangle \approx 1111 \bar{a} \\
& \left\langle r_{\text {neg }}\right\rangle \approx 0.3468 \bar{a}
\end{aligned}
$$

Note $\bar{a} \rightarrow 0$ in sparse network.

What if Less Random?

- Average is not enough, reality may be less random
- Comparison with extremals may be informative of regularity

What if Less Random?

- Average is not enough, reality may be less random
- Comparison with extremals may be informative of regularity
- Simple bounds:

$$
0 \leq r \leq \frac{\sum_{i} d_{i}^{+} \wedge d_{i}^{-}}{\sum_{i} d_{i}^{+}}
$$

- total \# links

$$
L=\sum_{i} d_{i}^{+}
$$

- \# reciprocated links leaving i bounded by

$$
R_{i} \leq d_{i}^{+} \wedge d_{i}^{-}
$$

Crude Estimation of Upper Bound

- Positively correlated: $d_{1}^{-} \geq d_{2}^{-} \geq \cdots \geq d_{N}^{-}$

$$
U B_{p o s} \approx 1+\left(\frac{1-\beta^{+}}{1-\beta^{-}}\right)^{\frac{1-\beta^{-}}{\beta^{+}-\beta^{-}}}-\left(\frac{1-\beta^{+}}{1-\beta^{-}}\right)^{\frac{1-\beta^{+}}{\beta^{+}-\beta^{-}}}
$$

- Negatively correlated: $d_{1}^{-} \leq d_{2}^{-} \leq \cdots \leq d_{N}^{-}$

$$
U B_{n e g} \approx 2-\left[(1-\gamma)^{1-\beta^{-}}+\gamma^{1-\beta^{+}}\right]
$$

where γ satisfies $\left(1-\beta^{+}\right)(1-\gamma)^{1-\beta^{-}}=\left(1-\beta^{-}\right) \gamma^{\beta^{+}}$.

Numeric Example

For $\alpha^{+}=\alpha^{-}=1.5, N=10^{6}$,

- average

$$
\begin{aligned}
& \left\langle r_{\text {pos }}\right\rangle \approx 1111 \bar{a} \\
& \left\langle r_{\text {neg }}\right\rangle \approx 0.3468 \bar{a}
\end{aligned}
$$

- upper bound

$$
\begin{aligned}
& U B_{p o s} \approx 1 \\
& U B_{\text {neg }} \approx 0.413
\end{aligned}
$$

Bound is Loose

- Bi-degree sequence

i	$\left(d_{i}^{+}, d_{i}^{-}\right)$	$d_{i}^{+} \wedge d_{i}^{-}$
1	$(4,0)$	0
$2 \sim 5$	$(1,1)$	1
6	$(0,4)$	0

- Upper bound $r \leq 1 / 2$
- Actual r must be zero

Questions

- For given bi-degree sequence, what's maximum achievable reciprocity?
- Is upper bound asymptotically tight for power-law graphs?

Upper Bound Revisited

- \# reciprocated links

$$
R \leq \sum_{i} d_{i}^{+} \wedge d_{i}^{-}=\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}
$$

where $\mathbf{d}^{+}=\left(d_{1}^{+}, \ldots, d_{N}^{+}\right), \mathbf{d}^{-}=\left(d_{1}^{-}, \ldots, d_{N}^{-}\right)$.

Upper Bound Revisited

- \# reciprocated links

$$
R \leq \sum_{i} d_{i}^{+} \wedge d_{i}^{-}=\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}
$$

where $\mathbf{d}^{+}=\left(d_{1}^{+}, \ldots, d_{N}^{+}\right), \mathbf{d}^{-}=\left(d_{1}^{-}, \ldots, d_{N}^{-}\right)$.

- Necessary condition for equality
- both $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$and $\mathbf{d}^{+} \vee \mathbf{d}^{-}$are graphical

Upper Bound Revisited

- \# reciprocated links

$$
R \leq \sum_{i} d_{i}^{+} \wedge d_{i}^{-}=\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}
$$

where $\mathbf{d}^{+}=\left(d_{1}^{+}, \ldots, d_{N}^{+}\right), \mathbf{d}^{-}=\left(d_{1}^{-}, \ldots, d_{N}^{-}\right)$.

- Necessary condition for equality
- both $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$and $\mathbf{d}^{+} \vee \mathbf{d}^{-}$are graphical
- Graphicality of $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$and $\mathbf{d}^{+} \vee \mathbf{d}^{-}$can be violated independently

Some Examples

Example 1

- Neither $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$nor $\mathbf{d}^{+} \vee \mathbf{d}^{-}$is graphical, since they have odd sums.

i	$\left(d_{i}^{+}, d_{i}^{-}\right)$	$d_{i}^{+} \wedge d_{i}^{-}$	$d_{i}^{+} \vee d_{i}^{-}$
1	$(1,0)$	0	1
2	$(1,1)$	1	1
3	$(0,2)$	0	2
4	$(2,1)$	1	2
5	$(1,1)$	1	1

- $R_{\text {max }}=2<\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}=3$

Some Examples

Example 2

- $\mathbf{d}^{+} \vee \mathbf{d}^{-}$is not graphical while $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$is.
- $R_{\max }=0<\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}=4$

i	$\left(d_{i}^{+}, d_{i}^{-}\right)$	$d_{i}^{+} \wedge d_{i}^{-}$	$d_{i}^{+} \vee d_{i}^{-}$
1	$(4,0)$	0	4
$2 \sim 5$	$(1,1)$	1	1
6	$(0,4)$	0	4

Some Examples

Example 3
$-\mathbf{d}^{+} \wedge \mathbf{d}^{-}$is not graphical while $\mathbf{d}^{+} \vee \mathbf{d}^{-}$is graphical for even $m \wedge n$.

- $R_{\max }=0<\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}=m \wedge n$

Graph with Maximum Reciprocity

What's structure of graph achieving maximum reciprocity for given bi-degree sequence?

- necessary and sufficient conditions?
- algorithm to maximize reciprocity?

Proposition 1
Suppose $\mathbf{d}^{+}=\mathbf{d}^{-}$.

- Total \# links is even $\Rightarrow R_{\max }=L$.

Proposition 1
Suppose $\mathbf{d}^{+}=\mathbf{d}^{-}$.

- Total \# links is even $\Rightarrow R_{\max }=L$.

- Total \# links is odd $\Rightarrow R_{\max }=L-3$.

Proposition 2

Suppose $d_{0}^{+}-d_{0}^{-}=1$ and $d_{1}^{-}-d_{1}^{+}=1, d_{i}^{+}=d_{i}^{-}$for $i \geq 2$.

- Total \# links is even $\Rightarrow R_{\max }=L-2$ or $R_{\max }=L-4$.

Proposition 2

Suppose $d_{0}^{+}-d_{0}^{-}=1$ and $d_{1}^{-}-d_{1}^{+}=1, d_{i}^{+}=d_{i}^{-}$for $i \geq 2$.

- Total \# links is even $\Rightarrow R_{\max }=L-2$ or $R_{\max }=L-4$.

- Total \# links is odd $\Rightarrow R_{\max }=L-1$ or $R_{\max }=L-5$, and $R_{\max }=L-1$ iff both $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$and $\mathbf{d}^{+} \vee \mathbf{d}^{-}$are graphical.

Sufficient Condition

Proposition 3

Assume $\mathbf{d}^{+} \vee \mathbf{d}^{-}>\mathbf{0}$, i.e. no isolated nodes. $R_{\max }=\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}$ if

- $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$and $\left(\mathbf{d}^{+}, \mathbf{d}^{-}\right)-\mathbf{d}^{+} \wedge \mathbf{d}^{-}$are graphical;
- $\Delta<\sqrt{N}$, where $\Delta=\left\|\left(\mathbf{d}^{+}, \mathbf{d}^{-}\right)\right\|_{\infty}$

Sufficient Condition

Proposition 3

Assume $\mathbf{d}^{+} \vee \mathbf{d}^{-}>\mathbf{0}$, i.e. no isolated nodes. $R_{\max }=\left\|\mathbf{d}^{+} \wedge \mathbf{d}^{-}\right\|_{1}$ if

- $\mathbf{d}^{+} \wedge \mathbf{d}^{-}$and $\left(\mathbf{d}^{+}, \mathbf{d}^{-}\right)-\mathbf{d}^{+} \wedge \mathbf{d}^{-}$are graphical;
- $\Delta<\sqrt{N}$, where $\Delta=\left\|\left(\mathbf{d}^{+}, \mathbf{d}^{-}\right)\right\|_{\infty}$

Question

- If marginal in- and out-degree distr. follow power-law with exponents >2, then $\Delta<\sqrt{N}$ with high prob.
- What if exponents $\in(1,2]$?

Slight Generalization

Proposition 4
$R_{\max } \geq L-m$ if there exists a sequence \mathbf{d}^{0} such that

- \mathbf{d}^{0} and $\left(\mathbf{d}^{+}-\mathbf{d}^{0}, \mathbf{d}^{-}-\mathbf{d}^{0}\right)$ are graphical;
- $\left\|\mathbf{d}^{+}-\mathbf{d}^{0}\right\|_{1} \leq m$;
- $\Delta<\sqrt{\delta N+\left(\delta-\frac{1}{2}\right)^{2}}+\frac{3}{2}-\delta$, where $N=\left|V_{0}\right|$,
$\Delta=\bigvee_{i \in V_{0}}\left(d_{i}^{+}+d_{i}^{-}-d_{i}^{0}\right)$ and $\delta=\bigwedge_{i \in V_{0}}\left(d_{i}^{+}+d_{i}^{-}-d_{i}^{0}\right)$, with $V_{0}=\left\{i: d_{i}^{+} \vee d_{i}^{-}>0\right\}$.

Question

- How to find \mathbf{d}^{0} ?

Ongoing \& Future Work

- Better characterization of maximal graph
- More general sufficient condition
- Application to graphs with heavy-tailed degree distr.
- Algorithms to maximize reciprocity
- Application to real network data analysis, e.g. Google+

