# Impact of Heavy-tailed Joint Degree Distribution on Network Characteristics

Bo Jiang Joint work by UMass & UMN

MURI, Oct. 7, 2014

#### Introduction

- Many different graph characteristics of interest
  - degree distributions: in-degree, out-degree, joint, ...
  - reciprocity: fraction of links with reciprocal link
  - clustering coefficient

| Network          | in-deg                | out-deg               | recip.              | cl. coeff.         |
|------------------|-----------------------|-----------------------|---------------------|--------------------|
| Spanish Wiki     | PL(1.26) <sup>1</sup> | PL(1.70) <sup>1</sup> | 0.3517 <sup>2</sup> | 0.09 <sup>1</sup>  |
| Portuguese Wiki  | PL(1.10) <sup>1</sup> | PL(1.80) <sup>1</sup> | 0.3563 <sup>2</sup> | 0.05 <sup>1</sup>  |
| Twitter (2007)   | PL(1.4) <sup>3</sup>  | PL(1.4) <sup>3</sup>  | 0.58 <sup>3</sup>   | 0.106 <sup>3</sup> |
| Twitter (2009)   | PL(1.3) <sup>4</sup>  | PL(1.3) <sup>4</sup>  | 0.22 <sup>4</sup>   |                    |
| BlogPulse (2006) | PL(1.38) <sup>5</sup> | PL(1.5?) <sup>5</sup> | $0.033^{5}$         | $0.063^{5}$        |
| Google+ (2011)   | PL(1.3) <sup>6</sup>  | PL(1.2) <sup>6</sup>  | 0.32 <sup>6</sup>   |                    |
|                  |                       |                       |                     |                    |

<sup>&</sup>lt;sup>1</sup> Zlatić et. al. 2006

<sup>&</sup>lt;sup>2</sup> Zamora-López et. al. 2008

<sup>&</sup>lt;sup>3</sup> Java et. al. 2007

<sup>&</sup>lt;sup>4</sup> Kwak et. al. 2009

<sup>&</sup>lt;sup>5</sup> Shi et. al. 2006

<sup>&</sup>lt;sup>6</sup> Magno et. al. 2012

#### Introduction

- Different characteristics are correlated
  - specification of one imposes constraints on others
  - less freedom for design, but more power for inference

#### Introduction

- Different characteristics are correlated
  - specification of one imposes constraints on others
  - less freedom for design, but more power for inference
- Focus on impact of joint degree distribution on reciprocity
  - to what extent is reciprocity determined by joint degree distr.?
  - does reciprocity behave differently for heavy- and light-tailed joint degree distr.?
  - what's impact of in- and out-degree correlation?

▶ **Defn**: fraction of links with reciprocal link

$$r = \frac{R}{L}$$

- # reciprocated links R
- total # links L
- simple digraph, i.e. no self-loops



▶ Given graphical bi-degree sequence  $(d_1^+, d_1^-), \dots, (d_N^+, d_N^-)$ , what are possible values of r?

- ▶ Given graphical bi-degree sequence  $(d_1^+, d_1^-), \dots, (d_N^+, d_N^-)$ , what are possible values of r?
- Configuration model: randomly pair up stubs



- ▶ Given graphical bi-degree sequence  $(d_1^+, d_1^-), \dots, (d_N^+, d_N^-)$ , what are possible values of r?
- Configuration model: randomly pair up stubs



Expected reciprocity is [Zamora-López et .al. 2008]

$$\langle r \rangle = \bar{a} \frac{\langle d^+ d^- \rangle^2}{\langle d \rangle^4}$$

where  $\bar{a} = L/N^2$  is link density,  $\langle d \rangle = \langle d^+ \rangle = \langle d^- \rangle$ .

## Correlation & Reciprocity

Reciprocity can be rewritten

$$\langle r \rangle = \bar{a} \left( \rho c_v^+ c_v^- + 1 \right)^2$$

- ightharpoonup 
  ho is corr. coeff. between in- and out-degrees.
- $ightharpoonup c_{\nu}^+$ ,  $c_{\nu}^-$  are coeff. of variation. for out- and in-degrees

## Correlation & Reciprocity

Reciprocity can be rewritten

$$\langle r \rangle = \bar{a} \left( \rho c_v^+ c_v^- + 1 \right)^2$$

- ho is corr. coeff. between in- and out-degrees.
- $ightharpoonup c_{\nu}^+$ ,  $c_{\nu}^-$  are coeff. of variation. for out- and in-degrees
- ▶ positive corr.  $\Rightarrow$  high reciprocity negative corr.  $\Rightarrow$  low reciprocity uncorrelated  $\Rightarrow \langle r \rangle = \bar{a}$

#### **Crude Calculation**

- ▶ Assume  $\{d_i^+\}$ ,  $\{d_i^-\}$  have power-law distributions  $F^+$ ,  $F^-$  with respective exponents  $\alpha^+$ ,  $\alpha^-$
- ▶ Use expected order statistics of i.i.d. samples from  $F^+$  to approximate corresponding order statistics of  $\{d_i^+\}$
- ▶ Similarly for  $\{d_i^-\}$
- ▶ WLOG, assume  $d_1^+ \ge d_2^+ \ge \cdots \ge d_N^+$

#### Crude Calculation

▶ Positively correlated:  $d_1^- \ge d_2^- \ge \cdots \ge d_N^-$ 

$$\langle r_{pos} \rangle \approx \bar{a} \frac{(1-\beta^+)^2 (1-\beta^-)^2}{(\beta^+ + \beta^- - 1)^2} N^{2(\beta^+ + \beta^- - 1) \vee 0}$$

where 
$$\beta^+ = 1/\alpha^+$$
,  $\beta^- = 1/\alpha^-$ .

▶ Negatively correlated:  $d_1^- \le d_2^- \le \cdots \le d_N^-$ ,

$$\langle r_{neg} \rangle \approx \bar{a} (1 - \beta^+)^2 (1 - \beta^-)^2 B^2 (1 - \beta^+, 1 - \beta^-)$$

where  $B(\cdot, \cdot)$  is beta function.

## Crude Calculation

▶ Positively correlated:  $d_1^- \ge d_2^- \ge \cdots \ge d_N^-$ 

$$\langle r_{pos} \rangle \approx \bar{a} \frac{(1-\beta^+)^2 (1-\beta^-)^2}{(\beta^+ + \beta^- - 1)^2} N^{2(\beta^+ + \beta^- - 1) \vee 0}$$

where  $\beta^+ = 1/\alpha^+$ ,  $\beta^- = 1/\alpha^-$ .

▶ Negatively correlated:  $d_1^- \le d_2^- \le \cdots \le d_N^-$ ,

$$\langle r_{neg} \rangle \approx \bar{a} (1 - \beta^+)^2 (1 - \beta^-)^2 B^2 (1 - \beta^+, 1 - \beta^-)$$

where  $B(\cdot, \cdot)$  is beta function.

• e.g. for  $\alpha^+ = \alpha^- = 1.5$ ,  $N = 10^6$ ,

$$\langle r_{pos} \rangle \approx 1111 \; \bar{a}$$
  
 $\langle r_{neg} \rangle \approx 0.3468 \; \bar{a}$ 

Note  $\bar{a} \rightarrow 0$  in sparse network.

#### What if Less Random?

- Average is not enough, reality may be less random
- Comparison with extremals may be informative of regularity

#### What if Less Random?

- Average is not enough, reality may be less random
- Comparison with extremals may be informative of regularity
- Simple bounds:

$$0 \le r \le \frac{\sum_{i} d_{i}^{+} \wedge d_{i}^{-}}{\sum_{i} d_{i}^{+}}$$

total # links

$$L = \sum_{i} d_{i}^{+}$$

# reciprocated links leaving i bounded by

$$R_i \le d_i^+ \wedge d_i^-$$

# Crude Estimation of Upper Bound

▶ Positively correlated:  $d_1^- \ge d_2^- \ge \cdots \ge d_N^-$ 

$$UB_{pos} \approx 1 + \left(\frac{1-\beta^{+}}{1-\beta^{-}}\right)^{\frac{1-\beta^{-}}{\beta^{+}-\beta^{-}}} - \left(\frac{1-\beta^{+}}{1-\beta^{-}}\right)^{\frac{1-\beta^{+}}{\beta^{+}-\beta^{-}}}$$

▶ Negatively correlated:  $d_1^- \le d_2^- \le \cdots \le d_N^-$ 

$$UB_{neg} \approx 2 - \left[ (1 - \gamma)^{1 - \beta^-} + \gamma^{1 - \beta^+} \right]$$

where  $\gamma$  satisfies  $(1-\beta^+)(1-\gamma)^{1-\beta^-}=(1-\beta^-)\gamma^{\beta^+}$ .

## Numeric Example

For 
$$\alpha^+ = \alpha^- = 1.5$$
,  $N = 10^6$ ,

average

$$\langle r_{pos} \rangle \approx 1111\bar{a}$$
  
 $\langle r_{neg} \rangle \approx 0.3468\bar{a}$ 

upper bound

$$UB_{pos} \approx 1$$
 $UB_{neg} \approx 0.413$ 

#### **Bound** is Loose

▶ Bi-degree sequence

| i        | $(d_i^+, d_i^-)$ | $d_i^+ \wedge d_i^-$ |
|----------|------------------|----------------------|
| 1        | (4,0)            | 0                    |
| $2\sim5$ | (1, 1)           | 1                    |
| 6        | (0,4)            | 0                    |

- ▶ Upper bound  $r \le 1/2$
- ► Actual *r* must be *zero*



#### Questions

- ► For given bi-degree sequence, what's maximum achievable reciprocity?
- Is upper bound asymptotically tight for power-law graphs?

# **Upper Bound Revisited**

# reciprocated links

$$R \le \sum_i d_i^+ \wedge d_i^- = ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1$$

where 
$$\mathbf{d}^+ = (d_1^+, \dots, d_N^+), \, \mathbf{d}^- = (d_1^-, \dots, d_N^-).$$

## **Upper Bound Revisited**

# reciprocated links

$$R \leq \sum_{i} d_i^+ \wedge d_i^- = ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1$$

where 
$$\mathbf{d}^+ = (d_1^+, \dots, d_N^+), \, \mathbf{d}^- = (d_1^-, \dots, d_N^-).$$

- Necessary condition for equality
  - ▶ both  $d^+ \wedge d^-$  and  $d^+ \vee d^-$  are graphical

## **Upper Bound Revisited**

# reciprocated links

$$R \le \sum_{i} d_i^+ \wedge d_i^- = ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1$$

where 
$$\mathbf{d}^+ = (d_1^+, \dots, d_N^+), \, \mathbf{d}^- = (d_1^-, \dots, d_N^-).$$

- Necessary condition for equality
  - ▶ both  $d^+ \wedge d^-$  and  $d^+ \vee d^-$  are graphical
- ► Graphicality of d<sup>+</sup> ∧ d<sup>-</sup> and d<sup>+</sup> ∨ d<sup>-</sup> can be violated independently

# Some Examples

## Example 1

Neither d<sup>+</sup> ∧ d<sup>-</sup> nor d<sup>+</sup> ∨ d<sup>-</sup> is graphical, since they have odd sums.

| i | $(d_i^+, d_i^-)$ | $d_i^+ \wedge d_i^-$ | $d_i^+ \lor d_i^-$ |
|---|------------------|----------------------|--------------------|
| 1 | (1,0)            | 0                    | 1                  |
| 2 | (1, 1)           | 1                    | 1                  |
| 3 | (0, 2)           | 0                    | 2                  |
| 4 | (2, 1)           | 1                    | 2                  |
| 5 | (1, 1)           | 1                    | 1                  |

 $ightharpoonup R_{\text{max}} = 2 < ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1 = 3$ 



# Some Examples

## Example 2

- ▶  $d^+ \lor d^-$  is not graphical while  $d^+ \land d^-$  is.
- $Arr R_{\text{max}} = 0 < ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1 = 4$



| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | i         | $(d_i^+, d_i^-)$ | $d_i^+ \wedge d_i^-$ | $d_i^+ \lor d_i^-$ |
|--------------------------------------------------------|-----------|------------------|----------------------|--------------------|
| $2 \sim 5$ (1,1) 1 1                                   | 1         | (4,0)            | 0                    | 4                  |
| $\frac{6}{6}$ (0.4) 0.4                                | $2\sim 5$ | (1, 1)           | 1                    | 1                  |
| 0 (0,7) 0 7                                            | 6         | (0, 4)           | 0                    | 4                  |

## Some Examples

#### Example 3

- ▶  $\mathbf{d}^+ \wedge \mathbf{d}^-$  is not graphical while  $\mathbf{d}^+ \vee \mathbf{d}^-$  is graphical for even  $m \wedge n$ .
- $R_{\text{max}} = 0 < ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1 = m \wedge n$



| i                         | $(d_i^+, d_i^-)$ | $d_i^+ \wedge d_i^-$ | $d_i^+ \lor d_i^-$ |
|---------------------------|------------------|----------------------|--------------------|
| $\overline{x_1 \sim x_n}$ | (1,0)            | 0                    | 1                  |
| $y_1 \sim y_m$            | (0,1)            | 0                    | 1                  |
| 0                         | (m,n)            | $m \wedge n$         | $m \vee n$         |

## Graph with Maximum Reciprocity

What's structure of graph achieving maximum reciprocity for given bi-degree sequence?

- necessary and sufficient conditions?
- algorithm to maximize reciprocity?

Suppose  $\mathbf{d}^+ = \mathbf{d}^-$ .

▶ Total # links is even  $\Rightarrow R_{\text{max}} = L$ .



Suppose  $\mathbf{d}^+ = \mathbf{d}^-$ .

▶ Total # links is even  $\Rightarrow R_{\text{max}} = L$ .



▶ Total # links is odd  $\Rightarrow$   $R_{\text{max}} = L - 3$ .



Suppose 
$$d_0^+ - d_0^- = 1$$
 and  $d_1^- - d_1^+ = 1$ ,  $d_i^+ = d_i^-$  for  $i \ge 2$ .

▶ Total # links is even  $\Rightarrow R_{\text{max}} = L - 2$  or  $R_{\text{max}} = L - 4$ .



Suppose  $d_0^+ - d_0^- = 1$  and  $d_1^- - d_1^+ = 1$ ,  $d_i^+ = d_i^-$  for  $i \ge 2$ .

▶ Total # links is even  $\Rightarrow R_{\text{max}} = L - 2$  or  $R_{\text{max}} = L - 4$ .



▶ Total # links is odd  $\Rightarrow$   $R_{\text{max}} = L - 1$  or  $R_{\text{max}} = L - 5$ , and  $R_{\text{max}} = L - 1$  iff both  $\mathbf{d}^+ \wedge \mathbf{d}^-$  and  $\mathbf{d}^+ \vee \mathbf{d}^-$  are graphical.



#### Sufficient Condition

## **Proposition 3**

Assume  $\mathbf{d}^+ \vee \mathbf{d}^- > \mathbf{0}$ , i.e. no isolated nodes.  $R_{max} = ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1$  if

- ▶  $d^+ \wedge d^-$  and  $(d^+, d^-) d^+ \wedge d^-$  are graphical;
- $\Delta < \sqrt{N}$ , where  $\Delta = ||(\mathbf{d}^+, \mathbf{d}^-)||_{\infty}$

#### Sufficient Condition

#### Proposition 3

Assume  $\mathbf{d}^+ \vee \mathbf{d}^- > \mathbf{0}$ , i.e. no isolated nodes.  $R_{max} = ||\mathbf{d}^+ \wedge \mathbf{d}^-||_1$  if

- ▶  $d^+ \wedge d^-$  and  $(d^+, d^-) d^+ \wedge d^-$  are graphical;
- $\Delta < \sqrt{N}$ , where  $\Delta = ||(\mathbf{d}^+, \mathbf{d}^-)||_{\infty}$

#### Question

- If marginal in- and out-degree distr. follow power-law with exponents > 2, then  $\Delta < \sqrt{N}$  with high prob.
- ▶ What if exponents  $\in (1,2]$ ?

# Slight Generalization

## **Proposition 4**

 $R_{\max} \ge L - m$  if there exists a sequence  $\mathbf{d}^0$  such that

- ▶  $\mathbf{d}^0$  and  $(\mathbf{d}^+ \mathbf{d}^0, \mathbf{d}^- \mathbf{d}^0)$  are graphical;
- ▶  $||\mathbf{d}^+ \mathbf{d}^0||_1 \le m$ ;
- $\begin{array}{l} \blacktriangleright \ \Delta < \sqrt{\delta N + \left(\delta \frac{1}{2}\right)^2 + \frac{3}{2} \delta}, \ \textit{where} \ N = |V_0|, \\ \Delta = \bigvee_{i \in V_0} (d_i^+ + d_i^- d_i^0) \ \textit{and} \ \delta = \bigwedge_{i \in V_0} (d_i^+ + d_i^- d_i^0), \ \textit{with} \\ V_0 = \{i : d_i^+ \lor d_i^- > 0\}. \end{array}$

#### Question

▶ How to find  $\mathbf{d}^0$ ?

# Ongoing & Future Work

- Better characterization of maximal graph
- More general sufficient condition
- Application to graphs with heavy-tailed degree distr.
- Algorithms to maximize reciprocity
- Application to real network data analysis, e.g. Google+