Update on Projects

Sidney Resnick
School of Operations Research and Information Engineering
Rhodes Hall, Cornell University Ithaca NY 14853 USA
http://people.orie.cornell.edu/~sid
sir1@cornell.edu
MURI CFEM Update

Undirected
Directed

Extremes

Page 1 of 14
March 5, 2015

> Full Screen

1. Undirected growing preferential attachment graphs

Notation:

- $G_{n}=$ graph after n changes; node set is $V_{n}=\{1, \ldots, n\}$.
- $D_{n}(v)=$ degree of $v \in V_{n}$.
- $\delta \geq-1=$ parameter.
- Initialize with one node having a self loop.

Conditional on knowing the graph G_{n}, at stage $n+1$ a new node $n+1$ appears and with a parameter $\delta \geq-1$, either

1. The new node $n+1$ attaches to $v \in V_{n}$ with probability

$$
\begin{equation*}
\frac{D_{n}(v)+\delta}{n(2+\delta)+(1+\delta)}, \tag{1}
\end{equation*}
$$

Title Page

Page 2 of 14

Go Back

Or
2. $n+1$ attaches to itself with probability

```
Full Screen
```

```
Full Screen
```

$$
\begin{equation*}
\frac{1+\delta}{n(2+\delta)+(1+\delta)} \tag{2}
\end{equation*}
$$

```
    Close
```

In the first case

- $D_{n+1}(n+1)=1$ and in the second case

CORNELL

- $D_{n+1}(n+1)=2$.

Frequencies: The number of nodes at time n with degree k is

$$
N_{n}(k)=\sum_{v=1}^{n} 1_{\left[D_{n}(v)=k\right]}
$$

Undirected

Directed

Extremes

and

$$
\frac{N_{n}(k)}{n} \rightarrow p_{k}, \quad(n \rightarrow \infty)
$$

and

$$
p_{k}=\left(\frac{(2+\delta) \Gamma(3+2 \delta)}{\Gamma(1+\delta)}\right) \frac{\Gamma(k+\delta)}{\Gamma(k+3+2 \delta)}=c(\delta) \frac{\Gamma(k+\delta)}{\Gamma(k+3+2 \delta)} .
$$

Title Page

and

$$
p_{k} \sim c(\delta) k^{-3-\delta}, \quad(k \rightarrow \infty)
$$

1.1. CLT for counts

With Gena: Using MG CLT:

$$
\sqrt{n}\left(\frac{N_{n}(k)}{n}-p_{k}\right) \Rightarrow N\left(0, \sigma_{k}^{2}(\delta)\right)
$$

and also jointly in k. Requires knowing order of

$$
\left|\frac{E\left(N_{n}(k)\right)}{n}-p_{k}\right|
$$

Undirected

Directed

1.2. Tail estimation: Estimate δ.

MG convergence theorem: For each v :

$$
\frac{D_{n}(v)}{n^{1 /(2+\delta)}} \rightarrow \xi_{v}, \quad(n \rightarrow \infty)
$$

Title Page

4
Page 4 of 14

Known

$$
\xi_{v} \stackrel{d}{=} \xi_{1} \prod_{j=1}^{v} B_{i}
$$

whre B_{i} are beta rv's.
Known

$$
\bigvee_{v \in V_{n}} \frac{D_{n}(v)}{n^{1 /(2+\delta)}} \rightarrow \bigvee_{v} \xi_{v}<\infty
$$

Should imply

$$
\sum_{n=0}
$$

CORNELL
in $M_{+}(0, \infty]$.

1.2.1. Goals:

With node based data:

Undirected

Directed

Extremes

- Not much is known about the ξ_{v} 's. Is there any connection to Poisson processes. (Yes when $\delta=0$. [Bollobas \& Riordan])
- Connection to tail empirical measure? Use this to get convergence to mean measure.
- Imply the Hill estimator is consistent?

Title Page

Page 5 of 14

Go Back

Full Screen

2. Directed edge preferential attachment

2.1. Model description

- Model parameters: $\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}$ with $\alpha+\beta+\gamma=1$.
- $G(n)$ is a directed random graph with n edges, $N(n)$ nodes.
- Set of nodes of $G(n)$ is V_{n}; so $\left|V_{n}\right|=N(n)$.
- Set of edges of $G(n)$ is $E_{n}=\left\{(u, v) \in V_{n} \times V_{n}:(u, v) \in E_{n}\right\}$.
- In-degree of v is $D_{\text {in }}(v)$; out-degree of v is $D_{\text {out }}$. Dependence on n is suppressed.
- Obtain graph $G(n)$ from $G(n-1)$ in a Markovian way as follows:

Cornell

Undirected

Directed
Extremes

Title Page

Page 6 of 14

1. With probability α, append to $G(n-1)$ a new node $v \notin V_{n-1}$ and create directed edge $v \mapsto w \in V_{n-1}$ with probability

$$
\frac{D_{\mathrm{in}}(w)+\delta_{\mathrm{i} n}}{n-1+\delta_{\mathrm{i} n} N(n-1)} .
$$

CORNELL
2. With probability γ, append to $G(n-1)$ a new node $v \notin V_{n-1}$ and create directed edge $w \in V_{n-1} \mapsto v \notin V_{n-1}$ with probability

$$
\frac{D_{\text {out }}(w)+\delta_{\text {out }}}{n-1+\delta_{\text {out }} N(n-1)} .
$$

3. With probability β, create new directed
```
Indirected
```

irected

Title Page

Page 7 of 14 edge between existing nodes

$$
v \in V_{n-1} \mapsto w \in V_{n-1}
$$

with probability

Go Back

Full Screen
$\left(\frac{D_{\text {out }}(v)+\delta_{\text {out }}}{n-1+\delta_{\text {out }} N(n-1)}\right)\left(\frac{D_{\text {in }}(w)+\delta_{\text {in }}}{n-1+\delta_{\text {in }} N(n-1)}\right)$.

2.2. CLT for count ratios.

With Tiandong Wang:
Let

$$
\begin{aligned}
N_{n}(k, l) & =\sum_{v \in V_{n}} 1_{\left[D_{\text {in }}(v)=k, D_{\text {out }}(v)=l\right]} \\
& =\sum_{v \in V_{n}} \# \text { nodes with in-degree } k, \text { out-degree } l .
\end{aligned}
$$

Undirected

Directed

Extremes

Know

$$
\frac{N_{n}(k, l)}{\# \text { nodes at stage } n} \rightarrow p(k, l)
$$

and $\{p(k, l)\}$ has a distribution which is regularly varying.

2.2.1. Goals:

Title Page

Page 8 of 14

$$
\sqrt{n}\left(\frac{N_{n}(k, l)}{\# \text { nodes at stage } n}-p(k, l)\right)
$$

- Eventually to find estimators for the parameters
- Use MG CLT to study asymptotic normality of

$$
\alpha_{\mathrm{i} n}, \alpha_{\mathrm{out}}
$$

and

$$
\delta_{\mathrm{i} n}, \delta_{\mathrm{out}}, \alpha, \beta, \gamma
$$

Title Page

Page 9 of 14

Go Back

Full Screen

Close

2.3. Reciprocity

With Gena.

For the directed edge model,
What proportion of nodes have reciprocated edges? Find an asymptotic behavior as the number of edges $\rightarrow \infty$. Express this asymptotic as a function of input parameters.

Markov chain approach: Let the set of edges be,

$$
E_{n}=\left\{(u, v): u \in V_{n}, v \in V_{n}, u \mapsto v \text { or } v \mapsto u\right\} .
$$

Define

$$
\begin{aligned}
& S_{n}(u, v)=0, \text { if }(u, v) \notin E_{n},(v, u) \notin E_{n}, \\
& 1, \text { if }(u, v) \in E_{n},(v, u) \notin E_{n}, \\
& 2, \text { if }(u, v) \notin E_{n},(v, u) \in E_{n}, \\
& 3, \text { if }(u, v) \in E_{n},(v, u) \in E_{n},
\end{aligned}
$$

Undirected

Directed

Extremes

Title Page
44
4
Page 10 of 14

3. r th largest

With Ross Maller, Boris Buchmann (ANU).
Cornell
Setup:

- $\left\{X_{n}\right\}$ iid with a continuous df.
- $M_{n}^{(r)}=r$ th largest among X_{1}, \ldots, X_{n}.
- $\boldsymbol{M}^{(r)}=\left\{M_{n}^{(r)}, n \geq r\right\} \in \mathbb{R}^{\infty}$.

Undirected

- Relative ranks:

$$
\begin{aligned}
R_{n} & =\sum_{j=1}^{n} 1_{\left[X_{j} \geq X_{n}\right]} \\
& =\text { relative rank of } X_{n} \text { among } X_{1}, \ldots, X_{n} \\
& =\text { rank of } X_{n} \text { at "birth". }
\end{aligned}
$$

Title Page
44
\square

Page 11 of 14

- Define the r-record times of $\left\{X_{n}\right\}$ by

```
Full Screen
```

$$
L_{0}^{(r)}=0, \quad L_{n+1}^{(r)}=\inf \left\{j>L_{n}^{(r)}: R_{j}=r\right\}
$$

and the r-records are $\left\{X_{L_{n}^{(r)}}, n \geq 1\right\}$ which are points of PRM

3.1. Facts:

- \mathcal{R}_{r}, the range of $\boldsymbol{M}^{(r)}$ is

Cornell

$$
\mathcal{R}_{r}:=\bigcup_{p=1}^{r}\left\{X_{L_{n}^{(p)}}, n \geq 1\right\}
$$

By Ignatov's theorem, this is a sum of r independent $\operatorname{PRM}(\mathrm{R})$ processes and therefore the range of $\boldsymbol{M}^{(r)}$ is $\operatorname{PRM}(r R)$.

- \mathcal{R}_{r}, the range of $\boldsymbol{M}^{(r)}$, converges as a random closed set in the Fell topology to \mathcal{R}, the support of the measure R :

$$
\mathcal{R}_{r} \Rightarrow \mathcal{R}
$$

as $r \rightarrow \infty$.

- $\boldsymbol{M}^{(r)}$ jumps at time k iff

Title Page

Page 12 of 14

$$
R_{k} \in\{1, \ldots, r\}
$$

so

$$
\left\{\left[\boldsymbol{M}^{(r)} \text { jumps at } k\right], k \geq r\right\}
$$

are independent events over k and

> Full Screen

$$
P\left[\boldsymbol{M}^{(r)} \text { jumps at } k\right]=\frac{r}{k} .
$$

3.1.1. Question

Is there anything corresponding to a stationary distribution in the
Cornell Markov chain sense. Is there a non-trivial limit as $r \rightarrow \infty$ for $\boldsymbol{M}^{(r)}$?

Undirected

Title Page

Page 13 of 14

Contents

Undirected

Directed

Title Page

4

Page 14 of 14

Go Back

Full Screen

```
Close
```

