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© Directional histograms

© Independence measure 7, for bivariate stable r. vectors
© Sample measure 7j,
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Outline

@ Directional histograms
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Directional histogram d = 2 - count how many in each
“direction”

mix of 5000 light tailed

100 heavy tailed data values threshold= 0
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Generalize to d > 37

@ triangulate sphere

@ each simplex on sphere
determines a cone

@ loop through data
points, seeing which
cone each falls in

o If d =3, plot

Variations:

» threshold based on
distance from center
> use ¢, ball

> restrict to positive
orthant

Nolan (American U) MURI NYC 6 March 2015 5/37



Directional histogram d = 3

Omni-directional data, plot type="radial'
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Directional dependence (simulated data)

mix of 5000 light tailed 100 heawy tailed data values
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All data

threshold=10
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Thresholding by distance from origin

threshold= 5
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Thresholding by distance from origin (alternate view)

threshold= 5
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Directional histogram d > 3

Subdivision routines return a list of simplices in some order. For any d,
can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.
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Directional histogram d > 3

Subdivision routines return a list of simplices in some order. For any d,
can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.

Lose geometry, but can show concentration in different directions.
Thresholding may reveal a few directions where extremes lie.

Can use to select model to use on a given data set, e.g. isotropic when

histogram is roughly uniform, discrete angular measure when just a few
directions present after thresholding.
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d = 5, with 512 cones/directions - isotropic

n=10000 threshold=0 threshold= 3
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d =5, with 512 cones/directions - m = 7 point masses

n= 10000 threshold=0 threshold= 300
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d = 5, with 512 cones/directions - concentration in sectors

Positive data Al positive or all negative coordinates
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Outline

© Independence measure 7, for bivariate stable r. vectors
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Spectral measure characterization

We will say X ~ S (a, A, 6;4), j = 0,1 if its joint characteristic function is
given by

o) = Eeplilu. X)) = exp ([ o ((w5)ai)) AaB) + i) )

where

|t|*[L + isign (t)tan ze(|t[!"* —1)] a#1,j=0
w(t|o;j) = 4 |t]*[1 — isign (t)tan z2] a#£lj=1
|t][1 4 isign (t)2 log [t]] a=1,j=01

The 1-parameterization is more commonly used, but discontinuous in a.
0-parameterization is a continuous parameterization.

Nolan (American U) MURI NYC 6 March 2015 16 / 37



Projection parameterization

Every one dimensional projection (u, X) = u1. X1 + uaXo + -+ - + ug Xy has a
univariate stable distribution, with a constant index of stability o and
skewness [3(u), scale (u) and shift 6(u) that depend on the direction u.
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Projection parameterization

Every one dimensional projection (u, X) = u1. X1 + uaXo + -+ - + ug Xy has a
univariate stable distribution, with a constant index of stability o and
skewness [3(u), scale y(u) and shift 6(u) that depend on the direction u.

We will call the functions 3(+), v(:) and §(-) the projection parameter
functions. They determine the joint distribution via the Cramér-Wold
device, so we can parameterize X by these projection parameter functions:

X~ S (e, 5(:),7(:):0()ij), j=0o0rj=1
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Projection parameterization

Every one dimensional projection (u, X) = u1. X1 + uaXo + -+ - + ug Xy has a
univariate stable distribution, with a constant index of stability o and
skewness [3(u), scale y(u) and shift 6(u) that depend on the direction u.

We will call the functions 3(+), v(:) and §(-) the projection parameter
functions. They determine the joint distribution via the Cramér-Wold
device, so we can parameterize X by these projection parameter functions:

X~ S (e, 5(:),7(:):0()ij), j=0o0rj=1

In what follows, we will always assume that X has normalized components:
7(1,0) =~(0,1) = 1.

Will sometimes use polar notation: (6) := ~y(cos 6, sin 6).
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A() and ~(+)

independent v'(8), a=15
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isotropic v'(8), a=15
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pos. linear dep. v'(8), a=15
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pos. associated v'(8), a=15

15

1.0

0.5

0.0

Nolan (American U) MURI NYC 6 March 2015 21 /37



Set v (u) = (Juz]® + |u2|*)Y* (independence), p € [1, 00
v

Np = Mp(X1, X2) = [|7*(u1, u2) — 7T (1, U2) | e (s, du)- (1)

Here du is (unnormalized) surface area on S.
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Set v, (u) = (Juz|® + |u2|*)Y* (independence), p € [1, ]
Np = Np(X1, X2) = [[7*(u1, u2) — T (u1, u2) |l Lp(s,du)- (1)
Here du is (unnormalized) surface area on S.

X has independent components if and only if 77, = 0 for some (every)
p € [1,00].

np measures how far the scale function of X is from the scale function of a
stable r. vector with independent components: when X is symmetric,
earlier work shows sup,cg2 [f(x) — 1 (X)| < ka|[v(-) = vL()I-
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Properties of 7,

@ The p-norm in (1) is evaluated as an integral over the unit circle S,
not all of R2. In polar coordinates,

™ 1/p
Np = (2/ |v*(cos 6,sin 0) — v (cos 0, sin 0)|P d0> ., (2)
0

where the interval of integration has been reduced by using the fact
that ~(-) is m-periodic

@ « can be any value in (0,2) and X can have symmetric or
non-symmetric components, and it can be centered or shifted.

@ 1), is symmetric: 1p(X1, X2) = 1p(X2, X1).

Nolan (American U) MURI NYC 6 March 2015 24 / 37



@ 1), > 0 by definition, not measuring positive/negative dependence,
just distance from independence. Don’t think there is a general way
of assigning a sign, e.g. rotate the indep. components case by /4
and the resulting distribution bunches around both the lines y = x
and y = —x for large values of |X|.

@ The definition makes sense in the Gaussian case: when o = 2, the
scale function for a bivariate Gaussian distribution with correlation p
is v(u)? = 1+ 2purup and v, = 1. Then 15 = [2p|P [ |u1uz|Pdu, so
np = kp|p|. In elliptically contoured/sub-Gaussian case, can get an
integral expression that can be evaluated numerically.

e Multivariate stable X = (X, ..., Xy) has mutually independent
components if and only if all pairs are independent, so the
components of X are mutually independent if and only if
np(Xi, X;) =0 for all i > j.
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Covariation and co-difference in terms of ~(-)

For @ > 1, the covariation is

a— 1 (e
[X1, Xo]a = /5152< 1>/\(ds) == M
S «

aul (u1=0,up=1)

Thus the covariation depends only on the behavior of (-, -) near the point
(1,0). If X1 and X, are independent, then [X1, X2]o = 0 ; but the converse
is false.
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Covariation and co-difference in terms of ~(-)

For o > 1, the covariation is

a— 1 (o
[X1, Xo]a = /5152< 1>/\(ds) == M .
S o oup (11=0,ur=1)

Thus the covariation depends only on the behavior of (-, ) near the point
(1,0). If X1 and X, are independent, then [X1, X2]o = 0 ; but the converse
is false.

The co-difference is defined for symmetric a-stable vectors, and can be
written as

7 =7(X1,X2) = v%(1,0) + v*(0,1) — v*(1, 1),

and is defined for any o € (0,2). If X; and X3 are independent, then
7=0. When o < 1 and 7 = 0, then indep. If & > 1, need both
7(X1,X2) = 0 and 7(X2, X1) = 0 to guarantee indep.
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Outline

© Sample measure 7,
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Use max. likelihood estimation of the marginals and get &, normalize each
component. For angles 0 < 61 < 0y < --- < 6, <, define
7j = 7(cosbj,sin6;) = ML estimate of the scale of the projected data set

(Yj,(cosbj,sin®;)), i=1,....n
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Use max. likelihood estimation of the marginals and get &, normalize each
component. For angles 0 < 61 < 0, < --- < 0, <, define

7j = 7(cosbj,sin6;) = ML estimate of the scale of the projected data set
(Yi,(cosbj,sinb;)), i=1,....n

Define
1/2

~a_.a \?
(’Yj —VL,j)
1

=

m
Jj=

Get critical values by simulation, depends on « and grid.

Suggest uniform grid with m points in first and second quadrant that
avoid 0, /2, m
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Uniform grid with m = 3 in each quadrant
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Covariance of 7(6;) and 7(6,)
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Power calculation via simulation, e = 1.5, 5 grid points

per quadrant, 1000 simulations

indep. | indep. indep. exact

n | isotropic | O w/4 | O w/8 | O w/16 | linear dep.
25 0.191 | 0.322 | 0.243 0.213 1
50 0.223 | 0.624 | 0.381 0.183 1
100 0.344 | 0918 | 0.644 0.214 1
200 0.636 | 0.998 | 0.937 0.440 1
300 0.874 1| 0.997 0.627 1
400 0.960 1 1 0.791 1
500 0.989 1 1 0.893 1
600 0.999 1 1 0.959 1
700 1 1 1 0.980 1
800 1 1 1 0.985 1
900 1 1 1 0.998 1
1000 1 1 1 0.997 1
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Multivariate: compute 7);; between all pairs (Xj, X;)

Ordered, n= 150 Ordered, n= 4000

Random order, n= 4000 Reordered, n= 4000
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Time series - plot (X, X¢1p)
Simulated data with stable innovations:

AR(1), coef=0.5
n=1000 alpha=1.468 beta=-0.082

0.0

Lag

Nolan (American U) MURI NYC 6 March 2015

33 /37



Time series - returns of Merck stock for 2010-2014
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Robustness of acf vs 7 plot

Simulated time series with independent stable terms. In this simulation,
the n and acf plots look similar (left). Changing one point by replacing a
point 15 time periods away from max with 0.8*max shows 7 plot
unchanged, but acf shows strong dependence (right).

ACF

Independent Independent with one extreme value added
n=1000 alpha=1.54 beta=0.091 n=1000 alpha=1.523 beta= 0.099
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n for X in the domain of attraction of stable

The calculation of 1 only requires an estimate of the tail index « and scale
in directions 61, ...,0,. Can use any tail estimator of the univariate data
sets obtained by projecting the data in different directions. The following
examples used a simple tail estimator - regression on the tail probabilities.
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n for X in the domain of attraction of stable

The calculation of n only requires an estimate of the tail index o and scale
in directions 61, ...,6,,. Can use any tail estimator of the univariate data
sets obtained by projecting the data in different directions. The following
examples used a simple tail estimator - regression on the tail probabilities.

Simulated using symmetrized Paretos: X = Y7 — Y2 where each term is
indep. Pareto(a = 1.5).
@ Fix n=sample size.

@ Find critical value by simulation. Bootstrap indep. components
(X1, X2), compute 77 and tabulate. Repeat M = 10000 times and find
a critical value ¢, based on (1 — p) quantile of tabulated values.

e Simulate different data sets: isotropic (cos U, sin U)X where
U ~Uniform(0, 27); rotations of independent case R(6)(X1, X2) for
0 = pi/4, pi/8, pi/16; exact linear dependence €(X, X) where ¢ = £1
w/ prob. 1/2.

@ Vary n and tabulate power
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Power calculations in DOA case

sample independent | independent | independent | exact linear
size n | isotropic | O w/4 O /8 O /16 dependence
100 | 0.253 0.057 0.049 0.058 0.161
200 | 0.708 0.025 0.040 0.049 0.342
300 | 0.844 0.010 0.013 0.023 0.481
400 | 0.940 0.011 0.020 0.022 0.995
500 | 0.956 0.011 0.007 0.018 1
600 | 0.986 0.024 0.013 0.028 1
700 | 0.988 0.023 0.003 0.009 1
800 | 0.995 0.258 0.012 0.019 1
900 | 0.998 0.284 0.013 0.011 1
1000 | 0.993 0.498 0.006 0.009 1
2000 | 1 0.996 0.376 0.008 1
3000 | 1 1 0.876 0.003 1
4000 | 1 1 0.989 0.003 1
5000 | 1 1 1 0.004 1

Require larger sample to detect dependence; depends on choosing cutoff
correctly and estimators of « and scale.
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