Directional histograms Measuring independence for stable distributions

John Nolan

American University Washington, DC, USA

MURI Workshop, NYC 6 March 2015 Directional histograms

2 Independence measure η_p for bivariate stable r. vectors

3 Sample measure $\widehat{\eta}_p$

2 / 37

Nolan (American U) MURI NYC 6 March 2015

Outline

Directional histograms

 $oxed{2}$ Independence measure η_p for bivariate stable r. vectors

 $oldsymbol{3}$ Sample measure $\widehat{\eta}_{p}$

Nolan (American U)

Directional histogram d = 2 - count how many in each "direction"

6 March 2015 4 / 37

Generalize to $d \ge 3$?

- triangulate sphere
- each simplex on sphere determines a cone
- loop through data points, seeing which cone each falls in
- If d = 3, plot
- Variations:
 - threshold based on distance from center
 - use ℓ_p ball
 - restrict to positive orthant

5 / 37

Directional histogram d = 3

Directional dependence (simulated data)

mix of 5000 light tailed 100 heavy tailed data values

Nolan (American U) MURI NYC 6 March 2015 7 / 37

All data

threshold= 0

Thresholding by distance from origin

threshold= 5

Thresholding by distance from origin (alternate view)

Directional histogram d > 3

Subdivision routines return a list of simplices in some order. For any d, can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.

Directional histogram d > 3

Subdivision routines return a list of simplices in some order. For any d, can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.

Lose geometry, but can show concentration in different directions. Thresholding may reveal a few directions where extremes lie.

Can use to select model to use on a given data set, e.g. isotropic when histogram is roughly uniform, discrete angular measure when just a few directions present after thresholding.

d = 5, with 512 cones/directions - isotropic

d = 5, with 512 cones/directions - m = 7 point masses

13 / 37

d = 5, with 512 cones/directions - concentration in sectors

Outline

Directional histograms

2 Independence measure η_p for bivariate stable r. vectors

3 Sample measure $\widehat{\eta}_p$

Nolan (American U)

Spectral measure characterization

We will say $\mathbf{X} \sim \mathbf{S}(\alpha, \Lambda, \delta; j)$, j = 0, 1 if its joint characteristic function is given by

$$\phi(\mathbf{u}) = E \exp(i \langle \mathbf{u}, \mathbf{X} \rangle) = \exp\left(-\int_{\mathbb{S}} \omega\left(\langle \mathbf{u}, \mathbf{s} \rangle | \alpha; j\right) \, \Lambda(d\mathbf{s}) + i \langle \mathbf{u}, \delta \rangle\right),$$

where

$$\omega(t|\alpha;j) = \begin{cases} |t|^{\alpha}[1+i\operatorname{sign}(t)\tan\frac{\pi\alpha}{2}(|t|^{1-\alpha}-1)] & \alpha \neq 1, j=0 \\ |t|^{\alpha}[1-i\operatorname{sign}(t)\tan\frac{\pi\alpha}{2}] & \alpha \neq 1, j=1 \\ |t|[1+i\operatorname{sign}(t)\frac{2}{\pi}\log|t|] & \alpha = 1, j=0, 1. \end{cases}$$

The 1-parameterization is more commonly used, but discontinuous in α . 0-parameterization is a continuous parameterization.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0

Nolan (American U)

Projection parameterization

Every one dimensional projection $\langle \mathbf{u}, \mathbf{X} \rangle = u_1 X_1 + u_2 X_2 + \cdots + u_d X_d$ has a univariate stable distribution, with a constant index of stability α and skewness $\beta(\mathbf{u})$, scale $\gamma(\mathbf{u})$ and shift $\delta(\mathbf{u})$ that depend on the direction \mathbf{u} .

Projection parameterization

Every one dimensional projection $\langle \mathbf{u}, \mathbf{X} \rangle = u_1 X_1 + u_2 X_2 + \cdots + u_d X_d$ has a univariate stable distribution, with a constant index of stability α and skewness $\beta(\mathbf{u})$, scale $\gamma(\mathbf{u})$ and shift $\delta(\mathbf{u})$ that depend on the direction \mathbf{u} .

We will call the functions $\beta(\cdot)$, $\gamma(\cdot)$ and $\delta(\cdot)$ the projection parameter functions. They determine the joint distribution via the Cramér-Wold device, so we can parameterize **X** by these projection parameter functions:

 $\mathbf{X} \sim \mathbf{S}(\alpha, \beta(\cdot), \gamma(\cdot), \delta(\cdot); i), i = 0 \text{ or } i = 1.$

Nolan (American U) 6 March 2015 17 / 37

Projection parameterization

Every one dimensional projection $\langle \mathbf{u}, \mathbf{X} \rangle = u_1 X_1 + u_2 X_2 + \cdots + u_d X_d$ has a univariate stable distribution, with a constant index of stability α and skewness $\beta(\mathbf{u})$, scale $\gamma(\mathbf{u})$ and shift $\delta(\mathbf{u})$ that depend on the direction \mathbf{u} .

We will call the functions $\beta(\cdot)$, $\gamma(\cdot)$ and $\delta(\cdot)$ the projection parameter functions. They determine the joint distribution via the Cramér-Wold device, so we can parameterize \mathbf{X} by these projection parameter functions: $\mathbf{X} \sim \mathbf{S}(\alpha, \beta(\cdot), \gamma(\cdot), \delta(\cdot); j)$, j=0 or j=1.

In what follows, we will always assume that ${\bf X}$ has normalized components: $\gamma(1,0)=\gamma(0,1)=1.$

Will sometimes use polar notation: $\gamma(\theta) := \gamma(\cos \theta, \sin \theta)$.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

$\Lambda(\cdot)$ and $\gamma(\cdot)$

independent

$\gamma^{\alpha}(\theta)$, $\alpha = 1.5$

Nolan (American U)

MURI NYC

6 March 2015

isotropic

$\gamma^{\alpha}(\theta)$, $\alpha = 1.5$

pos. linear dep.

$\gamma^{\alpha}(\theta)$, $\alpha = 1.5$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

pos. associated

$\gamma^{\alpha}(\theta)$, $\alpha = 1.5$

21 / 37

Set
$$\gamma_{\perp}(\mathbf{u}) = (|u_1|^{\alpha} + |u_2|^{\alpha})^{1/\alpha}$$
 (independence), $p \in [1, \infty]$

$$\eta_p = \eta_p(X_1, X_2) = \|\gamma^{\alpha}(u_1, u_2) - \gamma^{\alpha}_{\perp}(u_1, u_2)\|_{L^p(\mathbb{S}, d\mathbf{u})}. \tag{1}$$

Here $d\mathbf{u}$ is (unnormalized) surface area on \mathbb{S} .

(4日) (個) (注) (注) (注) (200)

Nolan (American U) MURI NYC 6 March 2015 22 / 37

Set
$$\gamma_{\perp}(\mathbf{u}) = (|u_1|^{\alpha} + |u_2|^{\alpha})^{1/\alpha}$$
 (independence), $p \in [1, \infty]$

$$\eta_p = \eta_p(X_1, X_2) = \|\gamma^{\alpha}(u_1, u_2) - \gamma^{\alpha}_{\perp}(u_1, u_2)\|_{L^p(\mathbb{S}, d\mathbf{u})}. \tag{1}$$

Here $d\mathbf{u}$ is (unnormalized) surface area on \mathbb{S} .

X has independent components if and only if $\eta_p=0$ for some (every) $p\in[1,\infty].$

 η_p measures how far the scale function of **X** is from the scale function of a stable r. vector with independent components: when **X** is symmetric, earlier work shows $\sup_{\mathbf{x} \in \mathbb{R}^2} |f(\mathbf{x}) - f_{\perp}(\mathbf{x})| \leq k_{\alpha} ||\gamma(\cdot) - \gamma_{\perp}(\cdot)||$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Nolan (American U) MURI NYC 6 March 2015 22 / 37

Properties of η_p

• The *p*-norm in (1) is evaluated as an integral over the unit circle \mathbb{S} , not all of \mathbb{R}^2 . In polar coordinates,

$$\eta_{p} = \left(2\int_{0}^{\pi} |\gamma^{\alpha}(\cos\theta, \sin\theta) - \gamma_{\perp}^{\alpha}(\cos\theta, \sin\theta)|^{p} d\theta\right)^{1/p}, \quad (2)$$

where the interval of integration has been reduced by using the fact that $\gamma(\cdot)$ is π -periodic

- α can be any value in (0,2) and X can have symmetric or non-symmetric components, and it can be centered or shifted.
- η_p is symmetric: $\eta_p(X_1, X_2) = \eta_p(X_2, X_1)$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

- $\eta_p \geq 0$ by definition, not measuring positive/negative dependence, just distance from independence. Don't think there is a general way of assigning a sign, e.g. rotate the indep. components case by $\pi/4$ and the resulting distribution bunches around both the lines y=x and y=-x for large values of $|\mathbf{X}|$.
- The definition makes sense in the Gaussian case: when $\alpha=2$, the scale function for a bivariate Gaussian distribution with correlation ρ is $\gamma(\mathbf{u})^2=1+2\rho u_1u_2$ and $\gamma_\perp=1$. Then $\eta_p^p=|2\rho|^p\int_{\mathbb{S}}|u_1u_2|^pd\mathbf{u}$, so $\eta_p=k_p|\rho|$. In elliptically contoured/sub-Gaussian case, can get an integral expression that can be evaluated numerically.
- Multivariate stable $\mathbf{X} = (X_1, \dots, X_d)$ has mutually independent components if and only if all pairs are independent, so the components of \mathbf{X} are mutually independent if and only if $\eta_P(X_i, X_j) = 0$ for all i > j.

4D > 4@ > 4 = > 4 = > 9 Q Q

Covariation and co-difference in terms of $\gamma(\cdot)$

For $\alpha > 1$, the covariation is

$$[X_1,X_2]_{\alpha} = \int_{\mathbb{S}} s_1 s_2^{<\alpha-1>} \Lambda(d\mathbf{s}) = \frac{1}{\alpha} \left. \frac{\partial \gamma^{\alpha}(u_1,u_2)}{\partial u_1} \right|_{(u_1=0,u_2=1)}.$$

Thus the covariation depends only on the behavior of $\gamma(\cdot,\cdot)$ near the point (1,0). If X_1 and X_2 are independent, then $[X_1,X_2]_{\alpha}=0$; but the converse is false.

(4日) (個) (注) (注) (注) (200)

26 / 37

Nolan (American U) MURI NYC 6 March 2015

Covariation and co-difference in terms of $\gamma(\cdot)$

For $\alpha > 1$, the covariation is

$$[X_1,X_2]_{\alpha} = \int_{\mathbb{S}} s_1 s_2^{<\alpha-1>} \Lambda(d\mathbf{s}) = \frac{1}{\alpha} \left. \frac{\partial \gamma^{\alpha}(u_1,u_2)}{\partial u_1} \right|_{(u_1=0,u_2=1)}.$$

Thus the covariation depends only on the behavior of $\gamma(\cdot,\cdot)$ near the point (1,0). If X_1 and X_2 are independent, then $[X_1,X_2]_{\alpha}=0$; but the converse is false.

The co-difference is defined for symmetric α -stable vectors, and can be written as

$$\tau = \tau(X_1, X_2) = \gamma^{\alpha}(1, 0) + \gamma^{\alpha}(0, 1) - \gamma^{\alpha}(1, -1),$$

and is defined for any $\alpha \in (0,2)$. If X_1 and X_2 are independent, then $\tau=0$. When $\alpha<1$ and $\tau=0$, then indep. If $\alpha>1$, need both $\tau(X_1,X_2)=0$ and $\tau(X_2,X_1)=0$ to guarantee indep.

Nolan (American U) MURI NYC 6 March 2015 26 / 37

Outline

Directional histograms

 $oxed{2}$ Independence measure η_p for bivariate stable r. vectors

3 Sample measure $\widehat{\eta}_p$

Nolan (American U) MURI NYC 6 March 2015 27 / 37

Use max. likelihood estimation of the marginals and get $\widehat{\alpha}$, normalize each component. For angles $0 \leq \theta_1 < \theta_2 < \dots < \theta_m \leq \pi$, define $\widehat{\gamma}_j = \widehat{\gamma}(\cos\theta_j,\sin\theta_j) = \text{ML}$ estimate of the scale of the projected data set $\langle \mathbf{Y}_i,(\cos\theta_i,\sin\theta_i)\rangle$, $i=1,\dots,n$

Nolan (American U) MURI NYC 6 March 2015 28 / 37

Use max. likelihood estimation of the marginals and get $\widehat{\alpha}$, normalize each component. For angles $0 \leq \theta_1 < \theta_2 < \dots < \theta_m \leq \pi$, define $\widehat{\gamma}_j = \widehat{\gamma}(\cos\theta_j,\sin\theta_j) = \text{ML}$ estimate of the scale of the projected data set $\langle \mathbf{Y}_i,(\cos\theta_j,\sin\theta_j)\rangle$, $i=1,\dots,n$

Define

$$\widehat{\eta}_2 = \left(\sum_{j=1}^m \left(\widehat{\gamma}_j^{\widehat{\alpha}} - \gamma_{\perp,j}^{\widehat{\alpha}}\right)^2\right)^{1/2}.$$

Get critical values by simulation, depends on α and grid.

Suggest uniform grid with m points in first and second quadrant that avoid 0, $\pi/2$, π

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Uniform grid with m = 3 in each quadrant

Covariance of $\widehat{\gamma}(\theta_1)$ and $\widehat{\gamma}(\theta_2)$

Power calculation via simulation, $\alpha=1.5$, 5 grid points per quadrant, 1000 simulations

_						
			indep.	indep.	indep.	exact
	n	isotropic	૭ π/4	૭ π/8	$\circlearrowleft \pi/16$	linear dep.
ľ	25	0.191	0.322	0.243	0.213	1
	50	0.223	0.624	0.381	0.183	1
	100	0.344	0.918	0.644	0.214	1
İ	200	0.636	0.998	0.937	0.440	1
	300	0.874	1	0.997	0.627	1
	400	0.960	1	1	0.791	1
	500	0.989	1	1	0.893	1
	600	0.999	1	1	0.959	1
	700	1	1	1	0.980	1
	800	1	1	1	0.985	1
	900	1	1	1	0.998	1
İ	1000	1	1	1	0.997	1

Multivariate: compute $\widehat{\eta}_{i,j}$ between all pairs (X_i, X_j)

Time series - plot $\eta(X_t, X_{t+h})$

Simulated data with stable innovations:

Time series - returns of Merck stock for 2010-2014

Robustness of acf vs η plot

Simulated time series with independent stable terms. In this simulation, the η and acf plots look similar (left). Changing one point by replacing a point 15 time periods away from max with 0.8*max shows η plot unchanged, but acf shows strong dependence (right).

η for **X** in the domain of attraction of stable

The calculation of η only requires an estimate of the tail index α and scale in directions $\theta_1, \ldots, \theta_m$. Can use any tail estimator of the univariate data sets obtained by projecting the data in different directions. The following examples used a simple tail estimator - regression on the tail probabilities.

η for **X** in the domain of attraction of stable

The calculation of η only requires an estimate of the tail index α and scale in directions $\theta_1, \ldots, \theta_m$. Can use any tail estimator of the univariate data sets obtained by projecting the data in different directions. The following examples used a simple tail estimator - regression on the tail probabilities.

Simulated using symmetrized Paretos: $X = Y_1 - Y_2$ where each term is indep. Pareto($\alpha = 1.5$).

- Fix *n*=sample size.
- Find critical value by simulation. Bootstrap indep. components (X_1, X_2) , compute $\widehat{\eta}$ and tabulate. Repeat M=10000 times and find a critical value c_p based on (1-p) quantile of tabulated values.
- Simulate different data sets: isotropic (cos U, sin U)X where $U \sim \text{Uniform}(0, 2\pi)$; rotations of independent case $R(\theta)(X_1, X_2)$ for $\theta = pi/4, pi/8, pi/16$; exact linear dependence $\epsilon(X, X)$ where $\epsilon = \pm 1$ w/ prob. 1/2.
- Vary n and tabulate power

Nolan (American U) MURI NYC 6 March 2015 36 / 37

Power calculations in DOA case

sample		independent	independent	independent	exact linear
size n	isotropic	Oπ/4	Oπ/8	$\circlearrowleft \pi/16$	dependence
100	0.253	0.057	0.049	0.058	0.161
200	0.708	0.025	0.040	0.049	0.342
300	0.844	0.010	0.013	0.023	0.481
400	0.940	0.011	0.020	0.022	0.995
500	0.956	0.011	0.007	0.018	1
600	0.986	0.024	0.013	0.028	1
700	0.988	0.023	0.003	0.009	1
800	0.995	0.258	0.012	0.019	1
900	0.998	0.284	0.013	0.011	1
1000	0.993	0.498	0.006	0.009	1
2000	1	0.996	0.376	0.008	1
3000	1	1	0.876	0.003	1
4000	1	1	0.989	0.003	1
5000	1	1	1	0.004	1

Require larger sample to detect dependence; depends on choosing cutoff correctly and estimators of α and scale.

4 D > 4 A > 4 B > 4 B > B 9 9 0