MURI Update Meeting Multivariate Heavy Tail Phenomena: Modeling and Diagnostics October 16, 2015, Columbia University,

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

> http://people.orie.cornell.edu/~sid 607 255 1210 sir1@cornell.edu

> > October 14, 2015

Themes: Modeling, Analysis, Control & Design

- A. Modeling
 - Properties of network growth models with preferential attachment as models of social networks.
 - Preferential attachment yields node frequencies with indegree i and out-degree j which have multivariate heavy tails in (i, j).
 - Empirical degree frequencies are asymptotically multivariate normal for
 - * undirected case (Resnick & Samorodnitsky)
 - * directed case (Wang & Resnick).

Elaboration of the MG central limit theorem.

- Progress on understanding the structure of the extremes of node degree in undirected graphs. Method: embed in birth processes. Goal is to apply to inference of tail indices.
- numerical/computing/simulation/visualization software techniques for multivariate heavy tailed phenomena.
 - Simulation tools for generating data from such network growth models (Atwood, Roy).
 - * Test algorithms.

* Experiment with inference techniques.

- Visualization in two and higher dimensions (Nolan) as an R-tool for using multivariate stable and max-stable distributions.
 - $\ast\,$ Multivariate meshes.
 - * Numerical integration over simplicies.
 - * Generalized spherical distributions–large parametric subfamily.
 - * Models and software to allow computation with multivariate stable and extreme-stable distributions.
- Generation of multivariate heavy tails using linked systems of Poisson process driven stochastic de's (Gong, Towsley, Lu; Samorodnitsky).

CORNELI

- B. Analysis
 - inferential methodologies and statistical methods.
 - Data analysis: classical methods (glm, extreme value) seem effective but ignore discrete nature of the data. (Roy, Jiang, Davis, Zhang, Golnari, Wan)
 - * With modest assumptions discrete mass functions with heavy tailed measures can be embedded in continuous densities. (Wang, Resnick)
 - * Tail empirical process methods applicable to explain why node based data can be treated like iid (but with different limits).
 - * Some progress overcoming censoring using MLE technique in one dimension. (Sun & Resnick)
 - Joint degree distribution estimation and random walks (Towsley)
 - * Sampling algorithm estimates joint degree distributions of large complex graphs.
 - * Uniformly place a population of random walkers and allow them to take a number of random walk steps in a coordinated manner.
 - * Unbiased MLE estimator of tail estimates improves over uniform sampling of nodes.

Cornell

- Dimension reduction:
 - * ICA, PCA for large dimensions; testing on multivariate stable data (Nolan, Davis). Zhang applies PCA to cybersecurity separating malware traffic from benign background traffic in a time series of observed network traffic from a compromised host.
 - * Use of method of projecting onto log-concave densities (Davis, Zou)
- Threshold selection in heavy tail inference
 - * Hypothesis testing method reported by Samorodnitsky & Nguyen (1st year of project) for univariate and multivariate case.
 - * Multivariate case: Distance correlation applied to find threshold where multivariate angle and radius are independent. (Davis & Wan).
 - * Clauset method in one dimension of picking the threshold which minimizes the Kolmogorov-Smirnov distance between the fitted Pareto tail and the empirical tail. (Resnick & Sun, Wan)
- Models for highly dependent heavy tailed variables.
 - * High dependence (eg. exxon vs chevron returns) can be measured by the smallness of the support of the

Cornell

limit measure or the smallness of the support of the angular measure.

- * In cases where the support is small, a second heavy tail regime may exist which concentrates on the complement of the support and would increase accuracy of risk estimation.
- Reciprocity: Directed asymmetric networks usually have minimal reciprocity (percentage of node pairs linked by bi-directional edges).
 - In many real graphs or theoretical models the reciprocity ≈ 0 . Possible to construct a graph whose reciprocity is 1.
 - Have method for maximizing reciprocity for networks constrained to have prescribed in- and out-degree sequences.
 - Yields a characteristic allowing comparison of two graphs via maximum achievable reciprocity. (Towsley, Zhang, Jiang,...)
- Influence maximization in social networks:
 - Selecting the optimal seed set of influential nodes can be NP-hard.
 - However, the influence maximization problem can be solved with a scalable and provably near-optimal greedy algorithm. (Zhang, Towsley)

- C. Control and design of complex systems with multivariate heavy tails: Application to cloud computing and mobile networks (Srikant, Shroff)
 - Mobile application usage in smartphone wireless networks
 - Balancing fast response, battery usage, mobility patterns.
 - Source of heavy tails: pattern of app launch follows Zipf's law and run-times and inter-run-times are dependent heavy tailed.
 - Approach to control: Submodular minimization problem; approximation algorithm proposed and tested on trace data.
 - Resource allocation problems; cloud computing.
 - Multiple dependent tasks with heavy tailed service requirements; parallel servers.
 - How to schedule data retrieval necessary to complete tasks and balance loads across servers.
 - Scheduling policies for several important classes of data downloading time distributions that are either delay-optimal or within a constant gap from the optimum delay performance.
 - Under a mean-field assumption, system performance is insensitive to the task-size distribution, beyond the mean

so the practical implication is that it is possible to design simple load-balancing algorithms for large systems that are robust against the impact of dependencies and heavytails in service-time distributions.

Synthesis

- probability model (eg. pref attachment) \longrightarrow simulation methods for model to collect data.
- new statistical methods & diagnostics \longrightarrow evaluate on simulated data where correct answer is known because we know the generating mechanism
- Real data (eg. slashdot) → apply statistical methods to get empirical properties. → Compare such properties with simulated model data. → Criticize model.
- Decent model allows study of control policies to achieve objectives.

2015 Octoberfest Schedule:

- 1. 9:00-9:05. Joe Myers: Government perspective & introduction.
- 2. 9:05-9:25 Resnick overview, introduction.
- 3. 9:25-9:55 Nolan
- 4. 9:55-10:25 Shroff
- 5. 10:25-10:55 Srikant

10:55-11:15 break

- 6. 11:15-11:45 Towsley
- 7. 11:45-12:15 Zhang

12:15-1:15 lunch [Catered by Columbia]

- 8. 1:15-2:15 Samorodnitsky
- 9. 2:15-2:45 Gong
- 10. 2:45-3:15 Resnick
- 11. 3:15-3:45 Davis
- 12. 3:30-3:40 Resnick Wrap-up: The coming year.

3:40:4:00 Government panelists caucus alone.

4:00:4:20 Government panel gives feedback to MURI team.

