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Networks with MVHT distributions

A MVHT distributions ubiquitous in networks

< in-degree, out-degree, reciprocated degree, labels,
aggregate weights, ...

Q: How to model, generate, estimate, classify, learn
network structures?

Q: What effect does MVHT distributions have on
answers to above questions!



Outline

O competition in growing networks

O statistical inference in large networks

O reciprocity in large networks



Network growth

Cumulative advantage (CA) PN
«“rich gets richer” W
< wealth (edge) attaches to nodes in

proportion to function f of their
wealth (degrees)

(wealth accumulates in prop \i

< linear cumulative advantage (LCA)
generates power laws

I. developed efficient algorithms to generate
networks with 10° — 107 nodes

< studied network structure for different CA functions
2. studied competition under LCA



Competition under cumulative
advantage (to appear ). Stat Mech.)

A duration of competition?
< time taken for winner to emerge

d intensity of competition!?
< total # changes in leadership
3 impact of inherent fitness!?

Q effect of cumulative function f?



Model under LCA
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Equal fitness, r = 1

3 derived joint PMF for
duration, intensity

3 duration, intensity both
exhibit heavy tails

P(duration > t) « t~1/2

P(intensity >n) < n~!
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Different fithess, r > 1

d intensity exponentially tailed
O duration heavy tailed

Q P(duration > t) = Q(t_(r_l)bo) : L
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Competition
becomes less intense,
but much longer

P[N >= n]
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Nonlinear cumulative advantage
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Summary

3 (semi-)complete analysis of two party
competition

d joint heavy tail distribution of
duration/competition for equally fit parties

3 surprising phase transition when one party
becomes “slightly” more fit

< intensity has lighter (exponential) tail
< duration has heavier tail

Questions:

d 3+ parties

[ parameter estimation
A non-linear CA rules

10



Inferring graph characteristics
using random walks

Murai, Ribeiro, Towsley
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Estimating joint degree distribution in
directed graphs: random walks (RWVs)

1 networks extremely large, 10° — 107 nodes
3 sampling methods desirable/necessary

d random walk based methods standard for undirected
networks

Q: adapt to directed graphs!?
A transform digraph to undirected graph, degree distr.

nm(l) = P(degree = I)
3 collect samples using RW
51,525« Sn» Sk = (ikr Ok)
d generate asymptotically unbiased estimates of
m; ; = P(indegree = i, outdegree = j)



Pros/Cons RW-based sampling

Pros

O samples in proportion to degree
< good for heavy-tailed degree distributions (analytical,
empirical)
d inexpensive
< neighbors visible in many networks

(Twitter, Facebook, ...)
Cons

O mixing times, dependence among samples
<in contrast to uniform node sampling
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Loosely connected components
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3 RWV takes long time to get
Combine advantages of uniform from A to B; B to A

vnode & RWs? < inexpensive

3 uniform samples both A and
B subgraphs
< expensive
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Frontier sampling

d multiple coupled RWs - Frontier sampling

treat as virtual random walker

d mixing time decreases with number of
walkers

O estimate combines initial uniform samples +
RW samples

<asymptotically unbiased
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Flickr network: example

|.8M nodes
a 23M edges

d marginal heavy tails,
strongly dependent

True PMF
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Flickr, B = 0.1, FS vs RW

NRMSEFS+/NRMSERW

2 FS, RW comparable for tail | W
a FS exhibits low error for ,

head 8
Why? =
3 largest component 70%

of network 0

o
d many small components 10° N o
— more low degree e 0

nodes



Summary

3 frontier sampling superior to other RW-based
sampling methods

3 well suited to networks with heavy tailed degree
distributions

0 extend to other network inferencing problems
3 promote to network/data scientists

Missing:

d better theoretical foundation
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Reciprocity in directed networks

B. Jiang, D. Towsley (UMass),
Z. Zhang (U.Minn)

Presented at KDD 2015
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Motivation

a reciprocity measures fraction of reciprocal edges

W] MO

reciprocity =

3 important characteristic of directed networks

< invites interpretation as network organizational
principle,
< e.g. reciprocal or anti-reciprocal
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3 nontrivial reciprocity observed in many real
networks

' | Google+ | SwedishWiki | SpanishWiki

observed 34% 21% 15%
random 0 0 0
structural max 47% 28% 36%
ratio 73% 75% 42.5%

3 how to interpret these numbers!?
O most real social networks are reciprocal

A informative to compare with maximum
reciprocity
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Degree bi-sequence

0 degree bi-sequence (d™,d™) of digraph
+out-degree sequence: d* = (d7, ..., d})
+in-degree sequence: d~ = (d, ...,d7)

Qd graphic bi-sequence: realizable by digraph
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Maximum reciprocity problem

Given graphic bi-sequence (d*,d ™)

maximize: reciprocity of G
subject to: G has degree bi-sequence

(d*,d™)

0 Max # reciprocal edges p(d™,d™) upper bounded
by
p(d*,d™) < p(d*,d”) = };min{d7, di }

a characterized for different random graph models
exhibiting MVHT
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Empirical study
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Strong linear relationship

Reciprocity
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Tighter upper bound .

3 identified 4 node
suboptimal motifs

O developed rules to
Increase reciprocity
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Future plans

d network exploration as multi-armed bandit
problem

< potential terrorists
< donors to political parties
< rewards exhibit MVYHT behavior — how to exploit?

3 principled network characterization

« clustering, leveraging observed empirical MVHT
behavior
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