Multivariate Heavy Tails and Large Networks D. Towsley

Collaborators within MURI: R. Davis, W. Gong, S. Resnick, G. Samorodnitsky, Z. Zhang

Networks with MVHT distributions

MVHT distributions ubiquitous in networks
 * in-degree, out-degree, reciprocated degree, labels, aggregate weights, ...

Q: How to model, generate, estimate, classify, learn network structures?

Q: What effect does MVHT distributions have on answers to above questions?

competition in growing networks

statistical inference in large networks

reciprocity in large networks

Network growth

Cumulative advantage (CA)

- *'rich gets richer'
- wealth (edge) attaches to nodes in proportion to function f of their wealth (degrees)

(wealth accumulates in prop

 linear cumulative advantage (LCA) generates power laws

- I. developed efficient algorithms to generate networks with 10⁶ – 10⁷ nodes
 * studied network structure for different CA functions
- 2. studied competition under LCA

Competition under cumulative advantage (to appear J. Stat Mech.)

duration of competition?
 time taken for winner to emerge
 intensity of competition?
 total # changes in leadership
 impact of inherent fitness?
 effect of cumulative function f?

Model under LCA

two competitors
 state (R,B) in 2D lattice
 each time, R or B increase by I
 transition rule, relative fitness
 $r \ge 1$ for B
 generalized Pólya's urn model

Equal fitness, r = 1

- derived joint PMF for duration, intensity
- duration, intensity both exhibit heavy tails

 $P(duration > t) \propto t^{-1/2}$

 $P(intensity > n) \propto n^{-1}$

Different fitness, r > 1

- intensity exponentially tailed
- duration heavy tailed

$$\square P(duration > t) = \Omega(t^{-(r-1)b_0})$$

* discontinuity at r = 1

* tail much heavier at $r = 1 + \varepsilon$ than r = 1

Competition becomes less intense, but much longer

Nonlinear cumulative advantage

model:

$$\frac{(rB)^{\beta}}{(rB)^{\beta}+R^{\beta}}, \quad \frac{R^{\beta}}{(rB)^{\beta}+R^{\beta}}$$

• equal fitness: power-law for $\beta > 1/2$

$$\lim_{t \to \infty} \frac{\log \mathbb{P}(\operatorname{dur.} > t)}{\log t} = \left(\frac{1}{2} - \beta\right)^{-1}$$

□ conjecture: different fitness: power law for $\beta > 1$, light tailed for $1/2 < \beta < 1$

Summary

- (semi-)complete analysis of two party competition
- joint heavy tail distribution of duration/competition for equally fit parties
- surprising phase transition when one party becomes "slightly" more fit
 - * intensity has lighter (exponential) tail
 - duration has heavier tail
- Questions:
- □ 3+ parties
- parameter estimation
- non-linear CA rules

Inferring graph characteristics using random walks

Murai, Ribeiro, Towsley

Estimating joint degree distribution in directed graphs: random walks (RWs)

- \Box networks extremely large, $10^6 10^7$ nodes
- sampling methods desirable/necessary
- random walk based methods standard for undirected networks
- Q: adapt to directed graphs?
- □ transform digraph to undirected graph, degree distr.

$$\pi(l) = P(\text{degree} = l)$$

collect samples using RW

$$s_1, s_2, \dots, s_n, \qquad s_k = (i_k, o_k)$$

□ generate asymptotically unbiased estimates of $\pi_{i,j} = P(\text{indegree} = i, \text{outdegree} = j)$

Pros/Cons RW-based sampling

Pros

- samples in proportion to degree
 - *good for heavy-tailed degree distributions (analytical, empirical)
- inexpensive
 - neighbors visible in many networks

(Twitter, Facebook, ...)

Cons

- mixing times, dependence among samples
 - In contrast to uniform node sampling

Loosely connected components

Combine advantages of uniform vnode & RWs?

RW takes long time to get from A to B; B to A

*inexpensive

 uniform samples both A and B subgraphs
 * expensive

Frontier sampling

multiple coupled RWs - Frontier sampling treat as virtual random walker

mixing time decreases with number of walkers

estimate combines initial uniform samples + RW samples

* asymptotically unbiased

Flickr network: example

- I.8M nodes
- □ 23M edges
- marginal heavy tails, strongly dependent

Flickr, B = 0.1, FS vs RW

- □ FS, RW comparable for tail
- FS exhibits low error for head

Why?

- largest component 70% of network
- many small components more low degree nodes

Summary

- frontier sampling superior to other RW-based sampling methods
- well suited to networks with heavy tailed degree distributions
- extend to other network inferencing problems
- promote to network/data scientists

Missing:

better theoretical foundation

Reciprocity in directed networks

B. Jiang, D. Towsley (UMass), Z. Zhang (U.Minn)

Presented at KDD 2015

Motivation

reciprocity measures fraction of reciprocal edges

important characteristic of directed networks

- invites interpretation as network organizational principle,
- *e.g. reciprocal or anti-reciprocal

nontrivial reciprocity observed in many real networks

	Google+	Swedish Wiki	Spanish Wiki
observed	34%	21%	15%
random	0	0	0
structural max	47%	28%	36%
ratio	73%	75%	42.5%

- □ how to interpret these numbers?
- most real social networks are reciprocal
- informative to compare with maximum reciprocity

Degree bi-sequence

□ degree bi-sequence (d^+, d^-) of digraph *out-degree sequence: $d^+ = (d_1^+, ..., d_n^+)$ *in-degree sequence: $d^- = (d_1^-, ..., d_n^-)$

graphic bi-sequence: realizable by digraph

Maximum reciprocity problem

Given graphic bi-sequence (d^+, d^-)

maximize: reciprocity of G subject to: G has degree bi-sequence (d^+, d^-)

□ Max # reciprocal edges $\rho(d^+, d^-)$ upper bounded by $\rho(d^+, d^-) \le \beta(d^+, d^-) = \sum_i \min\{d_1^+, d_1^+\}$

characterized for different random graph models exhibiting MVHT

Empirical study

Datasets

- major directed social networks
- directed networks of other categories

Reciprocity varies widely

- P2P: 0
- Slashdot: 90%
- high for social & Wiki
- Iow for P2P & software call

Strong linear relationship

Reciprocity

reciprocated edges

Tighter upper bound

- identified 4 node suboptimal motifs
- developed rules to increase reciprocity

suboptimal 3-paths major source of loss in reciprocity

Future plans

network exploration as multi-armed bandit problem

- potential terrorists
- * donors to political parties
- rewards exhibit MVHT behavior how to exploit?
- principled network characterization
 - clustering, leveraging observed empirical MVHT behavior