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Networks with MVHT distributions

 MVHT distributions ubiquitous in networks
 in-degree, out-degree, reciprocated degree, labels,  

aggregate weights, …

Q: How to model, generate, estimate, classify, learn 
network structures?

Q: What effect does MVHT distributions have on 
answers to above questions?
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Outline

 competition in growing networks 

 statistical inference in large networks

 reciprocity in large networks
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Network growth
Cumulative advantage (CA)

“rich gets richer”

wealth (edge) attaches to nodes in                             
proportion to function 𝑓 of their                             
wealth (degrees)

(wealth accumulates in prop

 linear cumulative advantage (LCA)                             
generates power laws

1. developed efficient algorithms to generate 
networks with 106 − 107 nodes
studied network structure for different CA functions

2. studied competition under LCA
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Competition under cumulative 

advantage (to appear J. Stat Mech.)

 duration of competition?
time taken for winner to emerge

 intensity of competition?
total # changes in leadership

 impact of inherent fitness?

 effect of cumulative function 𝑓?
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Model under LCA

 two competitors 

 state (R,B) in 2D lattice
each time, R or B increase by 1 

transition rule, relative fitness                     

𝑟 ≥ 1 for B

generalized Pólya’s urn model
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Equal fitness, 𝑟 = 1

 derived joint PMF for 
duration, intensity

 duration, intensity both 
exhibit heavy tails

𝑃(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑡) ∝ 𝑡−1/2

𝑃(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑛) ∝ 𝑛−1
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 intensity exponentially tailed

 duration heavy tailed

 𝑃 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑡 = Ω 𝑡− 𝑟−1 𝑏0

 discontinuity at 𝑟 = 1

 tail much heavier at 𝑟 = 1 + 𝜀 than 𝑟 = 1

Different fitness, 𝑟 > 1
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Competition 
becomes less intense, 

but much longer



 model:

(𝑟𝐵)𝛽

(𝑟𝐵)𝛽+𝑅𝛽
,  𝑅𝛽

(𝑟𝐵)𝛽+𝑅𝛽

 equal fitness: power-law 
for 𝛽 > 1/2

 conjecture: different fitness: 
power law for 𝛽 > 1,              
light tailed for 1/2 < 𝛽 < 1

Nonlinear cumulative advantage
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Summary

 (semi-)complete analysis of two party 
competition

 joint heavy tail distribution of 
duration/competition for equally fit parties

 surprising phase transition when one party 
becomes “slightly” more fit 
 intensity has lighter (exponential) tail

duration has heavier tail

Questions:

 3+ parties

 parameter estimation

 non-linear CA rules
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Inferring graph characteristics 

using random walks

Murai, Ribeiro, Towsley
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Estimating joint degree distribution in 

directed graphs: random walks (RWs)

 networks extremely large, 106 − 107 nodes

 sampling methods desirable/necessary

 random walk based methods standard for undirected 
networks

Q: adapt to directed graphs?

 transform digraph to undirected graph, degree distr. 

𝜋 𝑙 = 𝑃(degree = 𝑙)

 collect samples using RW
𝑠1, 𝑠2, … , 𝑠𝑛, 𝑠𝑘= (𝑖𝑘 , 𝑜𝑘)

 generate asymptotically unbiased estimates of 
𝜋𝑖,𝑗 = 𝑃(indegree = 𝑖, outdegree = 𝑗)
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Pros/Cons RW-based sampling

Pros

 samples in proportion to degree
good for heavy-tailed degree distributions (analytical, 

empirical)

 inexpensive
neighbors visible in many networks 

(Twitter, Facebook, …)

Cons

 mixing times, dependence among samples
 in contrast to uniform node sampling
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 RW takes long time to get 
from A to B; B to A
 inexpensive

 uniform samples both A and 
B subgraphs
expensive
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A

B

Loosely connected components

Combine advantages of uniform 
vnode & RWs?



Frontier sampling

multiple coupled RWs  - Frontier sampling
treat as virtual random walker

mixing time decreases with number of 
walkers

estimate combines initial uniform samples + 
RW samples
asymptotically unbiased
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Flickr network: example
 1.8M nodes

 23M edges

 marginal heavy tails, 
strongly dependent
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Flickr, 𝐵 = 0.1, FS vs RW

 FS, RW comparable for tail

 FS exhibits low error for       
head

Why?

 largest component 70%      
of network

 many small components     
→ more low degree 

nodes
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Summary

 frontier sampling superior to other RW-based 
sampling methods

 well suited to networks with heavy tailed degree 
distributions

 extend to other network inferencing problems

 promote to network/data scientists

Missing:
 better theoretical foundation

19



Reciprocity in directed networks

B. Jiang, D. Towsley (UMass), 

Z. Zhang (U.Minn)
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Motivation

 reciprocity measures fraction of reciprocal edges

 important characteristic of directed networks
 invites interpretation as network organizational 

principle,

e.g. reciprocal or anti-reciprocal
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Google+ Swedish Wiki Spanish Wiki

observed 34% 21% 15%

random 0 0 0

structural max 47% 28% 36%

ratio 73% 75% 42.5%

 nontrivial reciprocity observed in many real 
networks

 how to interpret these numbers?

 most real social networks are reciprocal

 informative to compare with maximum 
reciprocity
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Degree bi-sequence

degree bi-sequence (𝑑+, 𝑑−) of digraph
out-degree sequence: 𝑑+ = (𝑑1

+, … , 𝑑𝑛
+)

in-degree sequence: 𝑑− = (𝑑1
−, … , 𝑑𝑛

−)

 graphic bi-sequence: realizable by digraph
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Maximum reciprocity problem

Given graphic bi-sequence (𝑑+, 𝑑−)

maximize: reciprocity of G

subject to: G has degree bi-sequence 
𝑑+, 𝑑−

 Max # reciprocal edges ρ 𝑑+, 𝑑− upper bounded 
by

ρ 𝑑+, 𝑑− ≤ 𝛽 𝑑+, 𝑑− =  𝑖min{ 𝑑1
+, 𝑑1

+}

 characterized for different random graph models 
exhibiting MVHT
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Empirical study

Datasets
 major directed social 

networks

 directed networks of other 
categories

Reciprocity varies widely
 P2P: 0

 Slashdot: 90%

 high for social & Wiki

 low for P2P & software call
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Strong linear relationship

Reciprocity # reciprocated edges
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Tighter upper bound

 identified 4 node 
suboptimal motifs

 developed rules to 
increase reciprocity

 suboptimal 3-paths 
major source of loss 
in reciprocity
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Future plans

 network exploration as multi-armed bandit 
problem
potential terrorists

donors to political parties

rewards exhibit MVHT behavior – how to exploit?

 principled network characterization
clustering, leveraging observed empirical MVHT 

behavior
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