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Past work

Degree distribution is not enough - the false Achilles heel of the
Internet

Can one hear the shape of a complex network - spectral analysis in
terms of the heat content function

Computational methods for very large matrices in eigenvalue range
intervals
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Degree distribution is not enough
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1D PCSDE Model for Power-Law Behaviors

Upper Tail Power-Law Generator

dXt = βXtdt + (x0 − Xt−)dNt

Nt is a Poisson counter with rate λ.

Stationary density:

fX (x) =
λ

βx0

(
x

x0

)−λ
β
−1

, x ≥ x0

Complementary Cumulative Distribution Function (CCDF):

F̄X (x) =

(
x

x0

)−λ
β

, x ≥ x0.
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SDE Model with both Poisson Counter and Browian Motion

dXt = βXtdt + σXtdWt + (x0 − Xt−)dNt

Geometric Browian Motion (GBM) with Poisson Resetting.

Stationay density: double-Pareto distribution [Reed, 2001].

Power-law behavior in both tails.

Figure: Twitter out-degree distribution
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2D Power-Law in Real Data

2D Power-Law in Real Data [KONECT, 2013]:

Social Networks: Youtube, Flickr, Livejournal, etc.

2D PCSDE model as an explanation of correlated power law behavior
in social networks?
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2D PCSDE Model with a Shared Poisson Counter

Model formulation

dXi = Xidt + (1− Xi )(dN0 + dNi ), i = 1, 2

N0, N1 and N2 are independent Poisson counters with rates λ0, λ1

and λ2. Let λ+ = λ0 + λ1 + λ2,

fXi
(xi ) = (λ0 + λi )x

−(λ0+λi+1)
i , xi ≥ 1,

fX1,X2(x1, x2) = λ0x
−(λ++1)
1 δ(x1 − x2) + λ1x

−(λ++1)
1 fX2(x2x

−1
1 )x−1

1

+ λ2x
−(λ++1)
2 fX1(x1x

−1
2 )x−1

2 , x1, x2 ≥ 1.

Tail behavior: P(X2 > x |X1 > x) =
F̄X1,X2

(x ,x)

F̄X1
(x)

= x−λ2
x→∞−−−→ 0.
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Markov on-off Modulation I

Model formulation

dXi = Xidt + (1− Xi ) ((1− Y )dN0 + YdNi ) , i = 1, 2

Markov on-off Process Yt ,

dYt = (1− Yt)dM1 − YtdM2,Y0 ∈ {0, 1}

M1 and M2 are independent Poisson counters with rates µ1 and µ2.

The shared Poisson counter N0 is effective when Yt = 0;

The independent Poisson counters N1 and N2 are effective when
Yt = 1.
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Use the characteristic function as in [JBGT, 2012];

Marginal and Joint CCDF:

F̄Xi
(x) = ax−Aib, F̄X1,X2(x , x) = ax−Ab,

where

Ai =

(
λ0 λi − λ0

−µ1 λi + µ1 + µ2

)
, A =

(
λ0

∑
i=1,2 λi − λ0

−µ1
∑

i=1,2(λi + µi )

)
,

with a = (1, 0), b = (1,m(∞))T and m(∞) = E[Y∞] = µ1
µ1+µ2

.
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Tail behavior: let ξi±: eigenvalues of Ai ; ξ±: eigenvalues of A,

ξ
(i)
± =

λ0 + λi + µ1 + µ2

2
±
√

(λi − λ0 + µ2 − µ1)2 + 4µ1µ2

2

ξ± =
λ+ + µ1 + µ2

2
±
√

(λ1 + λ2 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
.

Easy to check ξ− − ξ(1)
− > 0;

P(X2 > x |X1 > x) ∼ Cx−(ξ−−ξ(1)
− ) x→∞−−−→ 0;

Still asymptotically independent.
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Markov on-off Modulation II

Model formulation

dY = (1− Y )dM1 − YdM2,

dXi = Xidt + (1− Xi )((1− Y )(dN0 + dM1) + Y (dNi + dM2)).

Xi resets when Markov on-off process Y changes its state.

Marginal and Joint CCDF:

F̄Xi
(x) = ax−Aib F̄X1,X2(x , x) = ax−Ab,

Ai =

(
λ0 + µ1 λi + µ2 − λ0 − µ1

0 λi + µ2

)
,

A =

(
λ0 + µ1

∑
i=1,2 λi + µ2 − λ0 − µ1

0
∑

i=1,2 λi + µ2

)
.
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The spectral decomposition of A and Ai leads to

F̄Xi
(x) = x−(λi+µ2)m(∞) + x−(λ0+µ1)(1−m(∞)),

F̄X1,X2(x , x) = x−(λ1+λ2+µ2)m(∞) + x−(λ0+µ1)(1−m(∞)).

Tail behavior: let λ1 = λ2 = λ, λ0 + µ1 = λ′0, λ+ µ2 = λ′,

P(X2 > x |X1 > x)
x→∞−−−→


1 λ′ > λ′0
µ2

µ1+µ2
λ′ = λ′0

0 λ′ < λ′0.

Tail dependence coefficient goes to 1 or 0;
The case when tail dependence coefficient is fractional is not robust.
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Interpretation of Modulation II

Mixture of two models:{
dXi = Xidt + (1− Xi )dN0, w .p. 1−m(∞);

dXi = Xidt + (1− Xi )dNi , w .p. m(∞),

N0 with rate λ′0 and Ni , i = 1, 2 with rate λ1 = λ2 = λ′.

Tail behavior is determined by which model the observed large value
more likely belongs to.

A model with stable fractional tail dependence?
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Model with Coupled Growth

Model formulation

d

(
X1

X2

)
=

(
1 β
β 1

)(
X1

X2

)
dt +

(
1− X1

0

)
dN1 +

(
0

1− X2

)
dN2

Marginal tail: let Xn be the value of X1(t) at the nth arrival of the
Poisson process N2. Prove (Xn) satisfy a stochastic recursion

Xn+1 = An+1Xn + Bn+1, n = 1, 2, . . .

Then, for a stationary random variable X satisfy

X
d

== AX + B,

we have P(X > x) ∼ Cx−α, x →∞. α > 0 is such that EAα = 1.
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Write the matirx

β =

(
1 β
β 1,

)
λ1 = λ2 = λ.

Note that the differential equation

dX (t) = βX (t)dt

has the solution

X (t) = e
tβ
X (0)

=
1

2
et(1+β)

(
1 1
1 1

)
X (0)

+
1

2
et(1−β)

(
1 −1
−1 1

)
X (0). (1)
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With (1), we compute A as follows.

Let i.i.d. (Tj) ∼ exp(2λ) independent of N ∼ Ge(1/2).

A =


eT1(1+β)+eT1(1−β)

2 N = 0
eT1(1+β)−eT1(1−β)

2 · eT2(1+β)−eT2(1−β)

2

·
∏N+1

j=3
e
Tj (1+β)

+e
Tj (1−β)

2 N ≥ 0

(2)

Solve α,

EAα =
1

2
I1 + I 2

2

1

4− 2I1
= 1,

where

I1 =
λ2−α

β

∫ 1

0
z

2λ−α(1+β)
2β

−1(1 + z)αdz ,

I2 =
λ2−α

β
B

(
2λ− α(1 + β)

2β
, α + 1

)
.
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Numerical Results for Marginal Tail

When β = 0, α = λ.

α decreases with β
increasing.

α > 0 exists when
E[logA] < 0.

Figure: α as a function of β
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Let X be a random variable with the stationary distribution of the
value of X1(t) at the moment when the counter N2 has an arrival.

Consider the combined counter N1 ∪ N2. Its points are W1,W2, . . .,
with (Wn+1 −Wn) i.i.d, exp(2λ).

The state of the system at these points has the stationary distribution(
1
X

)
w .p.

1

2(
X
1

)
w .p.

1

2
(3)

Solution in (1) and (3) give the stationary distribution.
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Joint tail: let T ∼ exp(2λ) and given T = t, u ∼ U(0, t),

V =
eu(1+β) − eu(1−β)

2
;W =

eu(1+β) + eu(1−β)

2
.

In the stationary regime,

(X1,X2)
d

==

{
(XV + W ,XW + V ) w .p. 1

2

(XW + V ,XV + W ) w .p. 1
2

. (4)

where P(X > x) ∼ Cx−α.

Tail behavior: with Breiman’s lemma [Breiman, 1965],

lim
x→∞

P(X2 > x |X1 > x) =
2E[V α]

E[V α] + E[W α]
,
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Numerical results for Tail Dependence

When β = 0, tail
dependence coefficient
equals 0.

Tail dependent coefficient
increases as β increases.

Tail dependent coefficient
approaches 1 when α
approaches 0.

Figure: Tail dependence coefficient
as a function of β
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Generalization

Model formulation

d

(
X1

X2

)
=

(
1 β1

β2 1

)(
X1

X2

)
dt +

(
1− X1

0

)
dN1 +

(
0

1− X2

)
dN2

A is the same as in (2) with β =
√
β1β2.

Let V1 =
√

β1
β2
V and V2 =

√
β2
β1
V ,

lim
x→∞

P(X1 > x ,X2 > x)

P(Xi > x)
=

E [min (W ,V1)α] + E [min (W ,V2)α]

E[V α
i ] + E[W α]

.
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Numerical Results

Figure: α as a function of β
Figure: Tail dependence coefficient
as a function of β

Let λ = 1/4, fix β1 = 0.001, the marginal tail α decreases with the
increasing of β2 value.

The tail dependence coefficients with X1 given or with X2 given are
different when β1 6= β2.
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For Real Data in Social Networks?

The model with coupled differential equations
has a feature not observed in 2D power-law
data we know (but could be useful in modeling
the prey-predator power law?)
(λ = 2, β = 0.2, α = 1.9203.)

Go back to a single Poisson counter (two rare
events occur together in the most likely way -
the same cause)

PCSDE model describe the expected degree
growth.

A Brownian motion component may help
describing the randomness of degree growth.

Figure: Real 2D
data in Social
Network
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2D PCSDE Model with Brownian Motion I

Model Formulation

dX1 = β1X1dt + σ1X1dW1 + (1− X1)dN0

dX2 = β2X2dt + σ2X2dW2 + (1− X2)dN0

Based on 1D Geometric Browian Motion with Poisson resetting.

Let Yi = logXi ,

dYi =

(
βi −

1

2
σ2
i

)
dt + σdWi − YidN0, i = 1, 2.

Given t ∼ exp(λ0),

Xi (t) = exp

((
βi −

1

2
σ2
i

)
t + σiWi (t)

)
, i = 1, 2.
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Synthetic data generated by the model with Browian Motion I with
with different σ values.

The samples from this model do not fit well to the real data in social
networks.

Figure: Synthetic data generated by the model with Brownian Motion I
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How to modify the model to fit real data in social networks?

With preferential attachment, each node is selected to be the target
node with probability proportional to its current degree D.

Think of dividing the node into D nodes with degree 1, each node will
be selected as a target node with equal probability p.

The new degree added to this node d ∼ B(D, p) with mean Dp and
variance Dp(1− p).

A reasonable approximation to B(D, p) when D when D is large is
given by the normal distribution N (Dp,Dp(1− p)).

The variance is proportional to D. So, the standard deviation should
be proportional to

√
D.
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2D PCSDE Model with Brownian Motion II

Model Formulation

dX1 = β1X1dt + σ1

√
X1dW1 + (1− X1)dN0

dX2 = β2X2dt + σ2

√
X2dW2 + (1− X2)dN0

Let Yi =
√
Xi ,

dYi =

(
1

2
βiYi −

1

8
σ2
i

1

Yi

)
dt +

1

2
σidWi + (1− Yi )dN0, i = 1, 2.

For the tail, Yi →∞,

dYi =
1

2
βiYidt +

1

2
σidWi + (1− Yi )dN0, i = 1, 2.
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Synthetic data:

Figure: Synthetic data generated by the model with Brownian motion II

Comparing to real data:
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Other works

David Mumford (1974 Fields medalist) in “Self-similarity of image
statistics and image models”: The hypothesis that natural images of
the world, treated as a single large database, have renormalization
invariant statistics has received remarkable confirmation from many
quite distinct tests.

Understanding the origin and generative mechanisms for scaling law
in natural images is very important in developing more intelligent
image processing methods.

Our hypothesis is that human and animals have to be able to extract
the same features against resolution blurring for survival.
Mathematical study of this could provide new techniques in addition
to the Scale Invariant Feature Transform (SIFT).
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Conclusions

We present a modulated sharing Poisson counter model with tail
dependence coefficient to be 0 or 1. By adding a Brownian motion
component to this model, we generate samples distributed like the
ones observed in social networks.

We also propose a model with fractional tail dependence coefficient.
This model is interesting theoretically; however, the distribution of the
samples generated by this model do not fit to the real data we know.
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Breiman’s Theorem

Suppose that X and Y are two independent nonnegative random variables
such that P(X > x) is regularly varying of index −α, α ≥ 0, and that
E[Y α+ε] <∞ for some ε > 0. Then

P(XY > x) ∼ E[Y α]P(X > x)
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Thank You!
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