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1. Highly Dependent Models

1.1. Multivariate heavy tails

X =multivariate vector in Rp
+ (here p = 2)

A = subset in Rp
+

b(t) = scaling function

ν = limit measure on subsets on Rp
+

and X has a multivariate regularly varying distribution if as t→∞,

tP [X/b(t) ∈ A]→ ν(A). (1)

Resolved issues:

• What does “→” mean? How do you define convergence?

• What sets A can we put in (1)?

• Such sets define tail regions .

Follow up Das and Resnick (2015).
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1.2. Extreme cases of ν(·).
1.2.1. Asymptotic independence: ν concentrates on the axes. Mystery Data 1.
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Typical of Gaussian dependence copulas.
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1.2.2. Asymptotic full dependence: ν concentrates on the diagonal. Mystery
Data 2.
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Typical of exchange rate return data, eg. (Chinar,Australiar) vs USD.
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1.2.3. Asymptotic high dependence: ν concentrates on a narrow cone about
the diagonal. Mystery Data 3.
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1.2.4. What’s common?

• Limit measure concentrates on a small region of the state space,
the support.

• If a risk region A is disjoint from the support, we estimate the
risk probability as 0.

• Frequently there is a 2nd multivariate heavy tail regime on

Rp
+ \ [support].

Gives potential for improved risk estimates.
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1.3. Strongly dependent data: Exxon vs Chevron returns.

Raw data highly dependent.

• 3124 (positive & negative) re-
turns

(exxonr,chevronr)

from daily prices 2001–2014.

• Tail α’s all approx 2.5.

• Scatterplot shows high degree
of dependence.
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Dependence analysis and diamond graph (L1-unit sphere):

(x, y) 7→
( x

|x|+ |y|
,
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)
= w = (w1, w2),
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1.3.1. Empirical angles for 3000 largest values of the L1 norm in R2 (left)and
for the 40 largest values (right) .
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R2
+ \ [narrow cone about diagonal].
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2. Asymptotic normality for node counts

2.1. Undirected model

Resnick and Samorodnitsky (2016)
Rules of attachment: Conditional on knowing the graph Gn, at stage
n+ 1 a new node n+ 1 appears and with a parameter δ > −1, either

1. The new node n+ 1 attaches to v ∈ Vn with probability

Dn(v) + δ

n(2 + δ) + (1 + δ)
, (2)

or

2. n+ 1 attaches to itself with probability

1 + δ

n(2 + δ) + (1 + δ)
. (3)
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2.1.1. Known: SLLN for node frequencies.

For
Nn(k) = # nodes with degree k

we have as n→∞
Nn(k)

n
→ pk.

2.1.2. CLT:

(√
n
(Nn(k)

n
− pk

)
, k = 1, 2, . . .

)
⇒
(
Zk, k = 1, 2 . . .

)
where

(
Zk, k = 1, 2 . . .

)
is a centered Gaussian process with covariance

function RZ that you won’t love but can teach a computer to love.
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2.2. Directed model

Wang and Resnick (2015).

1. With probability α, append to G(n−1)
a new node v /∈ Vn−1 and create directed
edge v 7→ w ∈ Vn−1 with probability

Din(v) + λ

(1 + λ)n
.

w	
  

v	
  

2. With probability γ, append to G(n− 1)
a new node v /∈ Vn−1 and create directed
edge w ∈ Vn−1 7→ v /∈ Vn−1 with probabil-
ity

Dout(v) + µ

(1 + µ)n
.

w	
  

v	
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2.2.1. Known: SLLN for node counts.

For
Nn(i, j) = # nodes with in-degree i, out-degree j

we have as n→∞
Nn(i, j)

n
→ pi,j.

2.2.2. CLT:

Fix positive integers I, O. Provided that KIO is invertible, we have(√
n

(
Nn(i, j)

n
− pij

)
: 0 ≤ i ≤ I, 0 ≤ j ≤ O

)
⇒ N(0, K−1

IOΣIOK
−T
IO ).

Matrices KIO and ΣIO are are specified in the paper and KIO must be
invertible. Expressions are unlovable but can be taught to a computer.

2.3. Follow-on

Apply to more formal inference methods.
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3. pmf vs distribution

3.1. Known:

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016),
Resnick and Samorodnitsky (2015)
For

Nn(i, j) = # nodes with in-degree i, out-degree j

we have as n→∞
Nn(i, j)

n
→ pi,j,

where {pi,j} is a pmf.

Let (I, O) ∼ {pi,j}. Then (I, O) has a regularly varying distribution:

tP
[( I

bI(t)
,
O

bO(t)

)
∈ A

]
→ ν(A),

where ν(·) is a measure with explicit continuous density on R2
+.
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What is the asymptotic behavior of pi,j?

Wang & Resnick (in progress).

• If {pi,j} is a regularly varying pmf satisfying something (eg. mono-
tonicity) then {pi,j} is embeddable in a continuous pdf which is
also regularly varying.

• A regularly varying density which is monotone generates a regu-
larly varying measure.

• A regularly varying measure with a monotone density or mono-
tone mass function means the density or mass function is regularly
varying.

Note:

1. At least for some special cases, {pi,j} in the preferential attach-
ment model is (eventually) monotone.

2. What is a minimal set of conditions or most useful set of conditions
to make this all work.
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4. Min K-S method and slashdot

Clauset, Shalizi, and Newman (2009)
Back to the Clauset method in one dimension: Can do for continuous
version or (harder) discrete.

J. Sun & Resnick (preliminary).

• Fix left endpoint xl and fit Pareto α̂ on [xl,∞) by, say, MLE.
Note α̂ is a function of xl.

• Compute the K-S distance between the fitted Pareto and the em-
pirical cdf. This distance is function of xl.

• Minimize the K-S distance over xl.

• Report that value of α̂.

• Can be adapted to censoring on the right.

• Haven’t thought yet about higher dimensions.
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4.1. Slashdot data

• Recommender network.

• # followers ≤ 200 (unless you pay).

• Study what corresponds to (I, O), in- and out-degree where out-
degree is censored.

• Ignore discrete nature of data.
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minks(O,30,199)

min ks estimate of alpha is 3.958039

min ks at left endpoint= 191
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