MURI Update Meeting Multivariate Heavy Tail Phenomena: Modeling and Diagnostics October 16, 2015, Columbia University,

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

> http://people.orie.cornell.edu/~sid 607 255 1210 sir1@cornell.edu

> > October 15, 2015

Cornell

- 1. Highly Dependent Models
- 1.1. Multivariate heavy tails

 $\begin{aligned} \boldsymbol{X} &= \text{multivariate vector in } \mathbb{R}^p_+ \quad (\text{here } p = 2) \\ A &= \text{subset in } \mathbb{R}^p_+ \\ b(t) &= \text{scaling function} \\ \nu &= \text{limit measure on subsets on } \mathbb{R}^p_+ \end{aligned}$

and **X** has a multivariate regularly varying distribution if as $t \to \infty$,

$$tP[\mathbf{X}/b(t) \in A] \to \nu(A).$$
 (1)

Resolved issues:

- What does " \rightarrow " mean? How do you define convergence?
- What sets A can we put in (1)?
- Such sets define *tail regions*.

Follow up Das and Resnick (2015).

- **1.2.** Extreme cases of $\nu(\cdot)$.
- **1.2.1.** Asymptotic independence: ν concentrates on the axes. Mystery Data 1.

CORNELL

Quit

Typical of Gaussian dependence copulas.

Typical of exchange rate return data, eg. (Chinar, Australiar) vs USD.

Cornell r~Pareto(1), y~U(.45,.55) 2000 0 High CLT pmf 1500 minks r * (1 – y) 1000 Title Page •• 0 000 000 500 \$**6**000 Page <mark>5</mark> of <mark>19</mark> 0 Go Back 500 1000 1500 2000 0 Full Screen r*y Close

1.2.3. Asymptotic high dependence: ν concentrates on a narrow cone about the diagonal. Mystery Data 3.

1.2.4. What's common?

- Limit measure concentrates on a small region of the state space, the support.
- If a risk region A is disjoint from the support, we estimate the risk probability as 0.
- Frequently there is a 2nd multivariate heavy tail regime on

 $\mathbb{R}^p_+ \setminus [\text{support}].$

Gives potential for improved risk estimates.

1.3. Strongly dependent data: Exxon vs Chevron returns.

Raw data highly dependent.

• 3124 (positive & negative) returns

(exxonr,chevronr)

from daily prices 2001–2014.

- Tail α 's all approx 2.5.
- Scatterplot shows high degree of dependence.

Dependence analysis and diamond graph (L_1 -unit sphere):

$$(x,y) \mapsto \left(\frac{x}{|x|+|y|}, \frac{y}{|x|+|y|}\right) = \mathbf{w} = (w_1, w_2),$$

chevronr

Go Back

Full Screen

Close

1.3.1. Empirical angles for 3000 largest values of the L_1 norm in \mathbb{R}^2 (left)and for the 40 largest values (right).

Evidence from *Hillish plot* of a second heavy tail regime on

 $\mathbb{R}^2_+ \setminus [$ narrow cone about diagonal].

2. Asymptotic normality for node counts

2.1. Undirected model

Resnick and Samorodnitsky (2016)

Rules of attachment: Conditional on knowing the graph G_n , at stage n+1 a new node n+1 appears and with a parameter $\delta > -1$, either

1. The new node n + 1 attaches to $v \in V_n$ with probability

$$\frac{D_n(v) + \delta}{n(2+\delta) + (1+\delta)},\tag{2}$$

or

2. n+1 attaches to itself with probability

$$\frac{1+\delta}{n(2+\delta)+(1+\delta)}.$$
(3)

2.1.1. Known: SLLN for node frequencies.

For

 $N_n(k) = \#$ nodes with degree k

we have as $n \to \infty$

 $\frac{N_n(k)}{n} \to p_k.$

2.1.2. CLT:

$$\left(\sqrt{n}\left(\frac{N_n(k)}{n} - p_k\right), \ k = 1, 2, \ldots\right) \Rightarrow \left(Z_k, \ k = 1, 2 \ldots\right)$$

where $(Z_k, k = 1, 2...)$ is a centered Gaussian process with covariance function R_Z that you won't love but can teach a computer to love.

2.2. Directed model

Wang and Resnick (2015).

1. With probability α , append to G(n-1)a new node $v \notin V_{n-1}$ and create directed edge $v \mapsto w \in V_{n-1}$ with probability

$$\frac{D_{in}(v) + \lambda}{(1+\lambda)n}.$$

2. With probability γ , append to G(n-1)a new node $v \notin V_{n-1}$ and create directed edge $w \in V_{n-1} \mapsto v \notin V_{n-1}$ with probability

$$\frac{D_{out}(v) + \mu}{(1+\mu)n}$$

2.2.1. Known: SLLN for node counts.

For

 $N_n(i,j) = \#$ nodes with in-degree i, out-degree j

we have as $n \to \infty$

$$\frac{N_n(i,j)}{n} \to p_{i,j}$$

2.2.2. CLT:

Fix positive integers I, O. Provided that K_{IO} is invertible, we have

$$\left(\sqrt{n}\left(\frac{N_n(i,j)}{n} - p_{ij}\right): \ 0 \le i \le I, \ 0 \le j \le O\right) \Rightarrow N(0, K_{IO}^{-1}\Sigma_{IO}K_{IO}^{-T}).$$

Matrices K_{IO} and Σ_{IO} are are specified in the paper and K_{IO} must be invertible. Expressions are unlovable but can be taught to a computer.

2.3. Follow-on

Apply to more formal inference methods.

Cornell
High
CLT
pmf
minks
Title Page
•• ••
Page 12 of 19
Go Back
Full Screen
Close
Quit

3. pmf vs distribution

3.1. Known:

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016), Resnick and Samorodnitsky (2015) For

 $N_n(i, j) = \#$ nodes with in-degree i, out-degree j

we have as $n \to \infty$

$$\frac{N_n(i,j)}{n} \to p_{i,j},$$

where $\{p_{i,j}\}$ is a pmf.

Let $(I, O) \sim \{p_{i,j}\}$. Then (I, O) has a regularly varying distribution:

$$tP\left[\left(\frac{I}{b_I(t)}, \frac{O}{b_O(t)}\right) \in A\right] \to \nu(A),$$

where $\nu(\cdot)$ is a measure with explicit continuous density on \mathbb{R}^2_+ .

What is the asymptotic behavior of $p_{i,j}$?

Wang & Resnick (in progress).

- If $\{p_{i,j}\}$ is a regularly varying pmf satisfying something (eg. monotonicity) then $\{p_{i,j}\}$ is *embeddable* in a continuous pdf which is also regularly varying.
- A regularly varying density which is monotone generates a regularly varying measure.
- A regularly varying measure with a monotone density or monotone mass function means the density or mass function is regularly varying.

Note:

- 1. At least for some special cases, $\{p_{i,j}\}$ in the preferential attachment model is (eventually) monotone.
- 2. What is a minimal set of conditions or most useful set of conditions to make this all work.

4. Min K-S method and slashdot

Clauset, Shalizi, and Newman (2009)

Back to the Clauset method in one dimension: Can do for continuous version or (harder) discrete.

- J. Sun & Resnick (preliminary).
 - Fix left endpoint x_l and fit Pareto $\hat{\alpha}$ on $[x_l, \infty)$ by, say, MLE. Note $\hat{\alpha}$ is a function of x_l .
 - Compute the K-S distance between the fitted Pareto and the empirical cdf. This distance is function of x_l .
 - Minimize the K-S distance over x_l .
 - Report that value of $\hat{\alpha}$.
 - Can be adapted to censoring on the right.
 - Haven't thought yet about higher dimensions.

Go Back

Full Screen

Close

4.1. Slashdot data

- Recommender network.
- # followers ≤ 200 (unless you pay).
- Study what corresponds to (I, O), in- and out-degree where out-degree is censored.
- Ignore discrete nature of data.

minks(0,30,199)
min ks estimate of alpha is 3.958039
min ks at left endpoint= 191

References

- A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. *SIAM Rev.*, 51(4):661–703, 2009. ISSN 0036-1445. doi: 10.1137/070710111. URL http://dx.doi.org/10.1137/ 070710111.
- B. Das and S.I. Resnick. Models with hidden regular variation: Generation and detection. *Stochastic Systems*, 0:1–44, 2015. doi: 10.1214/14-SSY141. URL http://adsabs.harvard.edu/abs/ 2014arXiv1403.5774D.
- S.I. Resnick and G. Samorodnitsky. Tauberian Theory for Multivariate Regularly Varying Distributions with Application to Preferential Attachment Networks. *Extremes*, 18(3):349–367, 2015. doi: 10.1007/s10687-015-0216-2. URL http://adsabs.harvard.edu/ abs/2014arXiv1406.6395R.
- S.I. Resnick and G. Samorodnitsky. Asymptotic normality of degree counts in a preferential attachment model. *Journal of Applied Probability*, 2016.
- G. Samorodnitsky, S. Resnick, D. Towsley, R. Davis, A. Willis, and P. Wan. Nonstandard regular variation of in-degree and out-degree in the preferential attachment model. *Journal of Applied Probability*, 53(1), March 2016. http://arxiv.org/pdf/1405.4882.pdf.

Corneli

T. Wang and S. I. Resnick. Asymptotic Normality of In- and Out-Degree Counts in a Preferential Attachment Model. *ArXiv e-prints*, October 2015.

