MURI Update Meeting
 Multivariate Heavy Tail Phenomena: Modeling and Diagnostics October 16, 2015 , Columbia University,

Sidney Resnick
School of Operations Research and Information Engineering
Rhodes Hall, Cornell University
Ithaca NY 14853 USA

High

Page 1 of 19
http://people.orie.cornell.edu/~sid 6072551210 sir1@cornell.edu

October 15, 2015

1. Highly Dependent Models

1.1. Multivariate heavy tails

$$
\begin{aligned}
\boldsymbol{X} & =\text { multivariate vector in } \mathbb{R}_{+}^{p} \quad(\text { here } p=2) \\
A & =\text { subset in } \mathbb{R}_{+}^{p} \\
b(t) & =\text { scaling function } \\
\nu & =\text { limit measure on subsets on } \mathbb{R}_{+}^{p}
\end{aligned}
$$

High

```
CLT
```

and \boldsymbol{X} has a multivariate regularly varying distribution if as $t \rightarrow \infty$,

$$
\begin{equation*}
t P[\boldsymbol{X} / b(t) \in A] \rightarrow \nu(A) \tag{1}
\end{equation*}
$$

Resolved issues:

- What does " \rightarrow " mean? How do you define convergence?

Go Back

- What sets A can we put in (1)?
- Such sets define tail regions.

Follow up Das and Resnick (2015).

1.2. Extreme cases of $\nu(\cdot)$.

1.2.1. Asymptotic independence: ν concentrates on the axes. Mystery Data 1.

10000 Independent Pareto Components

High
CLT
pmf
minks

Title Page

Typical of Gaussian dependence copulas.
1.2.2. Asymptotic full dependence: ν concentrates on the diagonal. Mystery Data 2.

100000 Perfectly Dependent Pareto Components

High
CLT
pmf
minks

Title Page

Typical of exchange rate return data, eg. (Chinar,Australiar) vs USD.
1.2.3. Asymptotic high dependence: ν concentrates on a narrow cone about the diagonal. Mystery Data 3.

$$
\text { r~Pareto(1), } \mathbf{y \sim U (. 4 5 , . 5 5)}
$$

High
CLT
pmf
minks

Title Page

1.2.4. What's common?

- Limit measure concentrates on a small region of the state space, the support.
- If a risk region A is disjoint from the support, we estimate the risk probability as 0 .
- Frequently there is a 2 nd multivariate heavy tail regime on

$$
\mathbb{R}_{+}^{p} \backslash[\text { support }] .
$$

Gives potential for improved risk estimates.

Title Page

1.3. Strongly dependent data: Exxon vs Chevron returns.

Raw data highly dependent.

- 3124 (positive \& negative) returns
(exxonr,chevronr)
from daily prices 2001-2014.
- Tail α 's all approx 2.5.
- Scatterplot shows high degree
 of dependence.
Dependence analysis and diamond graph (L_{1}-unit sphere):

$$
(x, y) \mapsto\left(\frac{x}{|x|+|y|}, \frac{y}{|x|+|y|}\right)=\mathbf{w}=\left(w_{1}, w_{2}\right)
$$

1.3.1. Empirical angles for 3000 largest values of the L_{1} norm in \mathbb{R}^{2} (left)and for the 40 largest values (right).

Title Page

Evidence from Hillish plot of a second heavy tail regime on
$\mathbb{R}_{+}^{2} \backslash[$ narrow cone about diagonal].

2. Asymptotic normality for node counts

2.1. Undirected model

Resnick and Samorodnitsky (2016)

Rules of attachment: Conditional on knowing the graph G_{n}, at stage
$n+1$ a new node $n+1$ appears and with a parameter $\delta>-1$, either

1. The new node $n+1$ attaches to $v \in V_{n}$ with probability

$$
\begin{equation*}
\frac{D_{n}(v)+\delta}{n(2+\delta)+(1+\delta)} \tag{2}
\end{equation*}
$$

High

CLT
pmf
minks

Title Page
or
2. $n+1$ attaches to itself with probability

$$
\begin{equation*}
\frac{1+\delta}{n(2+\delta)+(1+\delta)} \tag{3}
\end{equation*}
$$

Page 9 of 19

2.1.1. Known: SLLN for node frequencies.

For

$$
N_{n}(k)=\# \text { nodes with degree } k
$$

we have as $n \rightarrow \infty$

$$
\frac{N_{n}(k)}{n} \rightarrow p_{k} .
$$

2.1.2. CLT:

$$
\left(\sqrt{n}\left(\frac{N_{n}(k)}{n}-p_{k}\right), k=1,2, \ldots\right) \Rightarrow\left(Z_{k}, k=1,2 \ldots\right)
$$

where $\left(Z_{k}, k=1,2 \ldots\right)$ is a centered Gaussian process with covariance function R_{Z} that you won't love but can teach a computer to love.

Title Page

2.2. Directed model

Wang and Resnick (2015).

1. With probability α, append to $G(n-1)$ a new node $v \notin V_{n-1}$ and create directed edge $v \mapsto w \in V_{n-1}$ with probability

$$
\frac{D_{i n}(v)+\lambda}{(1+\lambda) n} .
$$

2. With probability γ, append to $G(n-1)$ a new node $v \notin V_{n-1}$ and create directed edge $w \in V_{n-1} \mapsto v \notin V_{n-1}$ with probability

$$
\frac{D_{\text {out }}(v)+\mu}{(1+\mu) n} .
$$

2.2.1. Known: SLLN for node counts.

For

$$
N_{n}(i, j)=\# \text { nodes with in-degree } i, \text { out-degree } j
$$

we have as $n \rightarrow \infty$

$$
\frac{N_{n}(i, j)}{n} \rightarrow p_{i, j}
$$

2.2.2. CLT:

Fix positive integers I, O. Provided that $K_{I O}$ is invertible, we have $\left(\sqrt{n}\left(\frac{N_{n}(i, j)}{n}-p_{i j}\right): 0 \leq i \leq I, 0 \leq j \leq O\right) \Rightarrow N\left(0, K_{I O}^{-1} \Sigma_{I O} K_{I O}^{-T}\right)$.

Title Page
4

4

Page 12 of 19

Go Back

Apply to more formal inference methods.

3. pmf vs distribution

3.1. Known:

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016),

 Resnick and Samorodnitsky (2015)For

$$
N_{n}(i, j)=\# \text { nodes with in-degree } i, \text { out-degree } j
$$

we have as $n \rightarrow \infty$

$$
\frac{N_{n}(i, j)}{n} \rightarrow p_{i, j}
$$

where $\left\{p_{i, j}\right\}$ is a pmf.
Let $(I, O) \sim\left\{p_{i, j}\right\}$. Then (I, O) has a regularly varying distribution:

$$
t P\left[\left(\frac{I}{b_{I}(t)}, \frac{O}{b_{O}(t)}\right) \in A\right] \rightarrow \nu(A)
$$

where $\nu(\cdot)$ is a measure with explicit continuous density on \mathbb{R}_{+}^{2}.

Cornell

Go Back

What is the asymptotic behavior of $p_{i, j}$?
Wang \& Resnick (in progress).

- If $\left\{p_{i, j}\right\}$ is a regularly varying pmf satisfying something (eg. monotonicity) then $\left\{p_{i, j}\right\}$ is embeddable in a continuous pdf which is also regularly varying.
- A regularly varying density which is monotone generates a regularly varying measure.
- A regularly varying measure with a monotone density or mono-
tone mass function means the density or mass function is regularly

Title Page varying.

Note:

1. At least for some special cases, $\left\{p_{i, j}\right\}$ in the preferential attachment model is (eventually) monotone.
2. What is a minimal set of conditions or most useful set of conditions to make this all work.

4. Min K-S method and slashdot

Clauset, Shalizi, and Newman (2009)

Back to the Clauset method in one dimension: Can do for continuous version or (harder) discrete.
J. Sun \& Resnick (preliminary).

- Fix left endpoint x_{l} and fit Pareto $\hat{\alpha}$ on $\left[x_{l}, \infty\right)$ by, say, MLE. Note $\hat{\alpha}$ is a function of x_{l}.
- Compute the K-S distance between the fitted Pareto and the empirical cdf. This distance is function of x_{l}.

Title Page

- Minimize the K-S distance over x_{l}.
- Report that value of $\hat{\alpha}$.
- Can be adapted to censoring on the right.
- Haven't thought yet about higher dimensions.

Go Back

4.1. Slashdot data

- Recommender network.
- \# followers ≤ 200 (unless you pay).
- Study what corresponds to (I, O), in- and out-degree where outdegree is censored.
- Ignore discrete nature of data.

High
CLT
pmf
minks

Title Page

4

Page 16 of 19

Go Back

Full Screen

Close
minks (0, 30,199)
Cornell
min ks estimate of alpha is 3.958039
min ks at left endpoint= 191

Title Page

4
Page 17 of 19

Go Back

Full Screen

Close

References

A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. SIAM Rev., 51(4):661-703, 2009. ISSN 00361445. doi: 10.1137/070710111. URL http://dx.doi.org/10.1137/ 070710111.
B. Das and S.I. Resnick. Models with hidden regular variation: Generation and detection. Stochastic Systems, 0:1-44, 2015. doi: 10.1214/14-SSY141. URL http://adsabs.harvard.edu/abs/ 2014arXiv1403.5774D.
S.I. Resnick and G. Samorodnitsky. Tauberian Theory for Multivariate Regularly Varying Distributions with Application to Preferential Attachment Networks. Extremes, 18(3):349-367, 2015. doi: 10.1007/s10687-015-0216-2. URL http://adsabs.harvard.edu/ abs/2014arXiv1406.6395R.

Title Page

44

Page 18 of 19

Go Back

Full Screen
G. Samorodnitsky, S. Resnick, D. Towsley, R. Davis, A. Willis, and P. Wan. Nonstandard regular variation of in-degree and out-degree in the preferential attachment model. Journal of Applied Probability, 53(1), March 2016. http://arxiv.org/pdf/1405.4882.pdf.
T. Wang and S. I. Resnick. Asymptotic Normality of In- and OutDegree Counts in a Preferential Attachment Model. ArXiv e-prints, October 2015.

Title Page

Page 19 of 19

Go Back

Full Screen

Close

