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Summary of Research from Last year

1. Applications of Tests for Independence (with Phyllis and Thomas

Mikosch)

2. Independent Component Analysis (with Jingjing, John, Sid and

Alparsan)

3. Random Matrix Theory with Heavy Tails (with Mikosch and

students)



1. Distance Covariance: A measure of dependence

Introduction

I Random vectors X ∈ Rp and Y ∈ Rq,

X ⊥ Y ⇐⇒ φX ,Y = φXφY .

where φ denotes the characteristic function.

I Define distance covariance w.r.t. weight function w(s, t)

V2(X ,Y ;w) =

∫
Rp+q

|φX ,Y (t, s)− φX (t)φY (s)|2w(t, s)dtds

I Empirical version based on data (time series?) (X1,Y1), . . . , (Xn,Yn)

V̂2
n (X ,Y ;w) =

∫
Rp+q

|φ̂X ,Y (t, s)− φ̂X (t)φ̂Y (s)|2w(t, s)dtds
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Distance Covariance: A measure of dependence

Choice of Weight Function w(s, t)

I For special choices of w(s, t), the empirical distance covariance can

be expressed as

1
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∑
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h1(Xk ,Xl)h2(Yk ,Yl) +
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h1(Xk ,Xl)
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h2(Yr ,Ys)

− 2

n3

∑
k,l,r

h1(Xk ,Xl)h2(Yk ,Yr ) (1)

I Székely et al.: w(t, s) = (c |t|α+p
p |s|α+q

q )−1, 2007, for 0 < α < 2.
I h1(x , x ′) = |x − x ′|αp , h2(y , y ′) = |y − y ′|αq
I Requires E |X |αp + E |Y |αq + E |X |αp |Y |αq <∞

I Take w(s, t) = fS(s)fT (t) to be the product of two probability
densities symmetric about the origin

I h1(x , x ′) = φS(x − x ′), h2(y , y ′) = φT (y − y ′).
I No moment constraints
I E.g., symmetric stable (h1(x1, x2) = exp{−c|x1 − x2|α})
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I Székely et al.: w(t, s) = (c |t|α+p
p |s|α+q

q )−1, 2007, for 0 < α < 2.
I h1(x , x ′) = |x − x ′|αp , h2(y , y ′) = |y − y ′|αq
I Requires E |X |αp + E |Y |αq + E |X |αp |Y |αq <∞

I Take w(s, t) = fS(s)fT (t) to be the product of two probability
densities symmetric about the origin

I h1(x , x ′) = φS(x − x ′), h2(y , y ′) = φT (y − y ′).
I No moment constraints
I E.g., symmetric stable (h1(x1, x2) = exp{−c|x1 − x2|α})



Distance Covariance: A measure of dependence

Choice of Weight Function w(s, t)

I For special choices of w(s, t), the empirical distance covariance can

be expressed as

1

n2

∑
k,l

h1(Xk ,Xl)h2(Yk ,Yl) +
1

n2

∑
k,l

h1(Xk ,Xl)
1

n2

∑
r ,s

h2(Yr ,Ys)

− 2

n3

∑
k,l,r

h1(Xk ,Xl)h2(Yk ,Yr ) (1)
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Distance Covariance: A measure of dependence

Consistency

I If {(Xt ,Yt)} is ergodic, then

V̂2
n (X ,Y )→a.s. V2(X ,Y ).

Limiting theory

I If {(Xt ,Yt)} is α-mixing, and {Xt} ⊥ {Yt}, then

nV̂2
n (X ,Y )

d→
∫
|QX ,Y (s, t)|2w(s, t)dsdt,

where Q is a zero mean Gaussian process.

Could take Yt = Xt+h to get auto-distance covariance for {Xt}.
I For independence testing, we can use stationary bootstrap to

approximate the distribution of the limit.
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Threshold Selection for Multivariate Heavy-Tailed Data

Multivariate Regular Variation

I Set-up: X1,X2,. . . iid RV (α), Ri = ||Xi ||, Θ = Xi/||Xi ||.
I Recall: Xi is RV if and only if

P(Ri > x) = L(x)x−α,

with L(x) slowly varying, and:

P(Θ ∈ ·|R > r)→ Pη(Θ ∈ ·), r →∞.

Likelihood Estimation

I Example: Suppose Pη(Θ ∈ ·) has pdf f (θ|η). Estimate MLE from

L(η) =
n∑

i=1

log f (θi |η)1[Ri>r ].

I Choice of Threshold: r (large?) s.t. (Θi1[Ri>r ],Ri1[Ri>r ]) are

approximately independent.
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Threshold Selection for Multivariate Heavy-Tailed Data

Strategy

I Use distance correlation to approximate independence of Θi and Ri

when Ri is large.

I For each r , test the independence of (Θ1[R>r ],R1[R>r ]) from the

data until the result becomes significant.
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Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Here R is independent of Θ iff R > r0.9.
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Figure: Simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Here R is independent of Θ iff R > r0.9.
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Figure: Simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

P-value path: Given each truncation level, find the p-value of

independence test between logRi ’s and Θi ’s after truncation.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

P-value path: Given each truncation level, find the p-value of

independence test between logRi ’s and Θi ’s after truncation.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

qt

p
-v

a
lu

e
, 
te

s
t 
o

f 
d

is
t.
 c

o
r.

Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Take an independent subsample of size 600 and plot its p-value path.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.) Take another independent subsample and

plot its p-value path.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Take another independent subsample and plot its p-value path.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Take 60 independent subsamples and plot their p-value paths.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1 for 60 independent subsamples.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Plot the mean p-value path.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1 for 60 independent subsamples.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

If independent, the mean p-value should to center around 0.5.
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1 for 60 independent subsamples.



Threshold Selection for Multivariate Heavy-Tailed Data

A simulated example (cont.)

Fit a piece-wise linear spline. See also Sen & Sen (2014).
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Figure: P-value of test of independence of R and Θ vs. truncation level for

simulated data at independence level 0.1 for 60 independent subsamples.



To do:

I Optimal choice of weight function w(s, t).

I Automatic threshold selection for multivariate heavy-tailed data

(perhaps an R package?).

I Other ways to select thresholds: e.g., based on Kolmogorov-Smirnov

test (Clauset et al., 2009).



2. ICA (joint with Jingjing, Nolan, Resnick, Alparslan)

The model

X
d×1

= A
d×d
· S
d×1

I Response X = (x1, · · · , xd)T

I Independent components S = (S1, · · · ,Sd)T

I Full rank d × d transformation matrix A

I The goal is to recover the unmixing matrix W = A−1 and S = W ·X



A Strategy: Maximum Likelihood Estimator with

Log-Concave Densities

I Find

f = |detŴ |
d∏

j=1

fj(ŵ
T
j x)

that optimizes the log-likelihood∫
Rd

log(f )dPn

I Use nonparametric density estimates

I Estimate f in space of d-dimensional log-concave densities

I Log-concave: exponential of piece-wise linear densities, normal,

Laplace

I Not log-concave: t, stable, Pareto



Estimation Procedure

I Start from an arbitrary initial value of Ŵ

I Step 1: Find log-concave density estimation f̂j of ŵT
j X

I Step 2: With f̂j , update Ŵ to maximize the log-likelihood

log |detŴ |+ 1

n

n∑
i=1

d∑
j=1

log f̂j(ŵ
T
j xi )

I Iterate steps 1 and 2, until convergence of the log-likelihood



Pre-Whitening

I Assume each component of S has finite variance (can relax, c.f.

Chen and Bickel (2005))

I Let ΣX = cov(X ) and Z = Σ
−1/2
X X

I S = O · Z , where O = W · Σ−1/2X is an orthogonal matrix

I Number of unknown parameters reduced from d2 to d(d − 1)/2

I In practice, estimate ΣX with sample covariance matrix Σ̂X



Consistency of the Maximum Likelihood Estimator

I If
∫
‖x‖dP <∞, Ŵ

a.s.−−→W (Samworth and Yuan (2012))

I If
∫
‖x‖dP =∞,

∫
Rd log(f ) dP = −∞ for all f ∈ Fd

I If Γ−1S Σ̂
1/2
S

P−→ I , consistency holds for pre-whitened estimator (Chen
and Bickel (2005))

I ΓS : sample variance matrix of S
I Σ̂S : sample covariance matrix of S
I Condition holds for all non-degenerate independent distributions
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Convergence of Estimation Algorithm

S1 ∼ t3, S2 ∼ t4
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Convergence of Estimation Algorithm

S1 ∼ t3, S2 ∼ t4
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S1 ∼ t0.75, S2 ∼ Cauchy
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Â1
Â2
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Convergence of Estimation Algorithm

S1 ∼ t0.75, S2 ∼ Cauchy
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S1 ∼ t0.75, S2 ∼ Cauchy
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Convergence of Estimation Algorithm

S1 ∼ t0.75, S2 ∼ Cauchy
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M-estimator Based on Nonparametric Mutual Information

I Aim to relax the moment condition
∫
‖x‖dP <∞ for heavy-tailed

distributions

I For fixed a > 0, find Ŵ that minimizes∫
Rd

f̂ dPŴ ,a
n −

∫
Rd

f̃ dPŴ ,a
n

I f̂ : log-concave estimation of ŴX · 1{ŴX∈[−a,a]d}

I f̃ : log-concave estimation of the marginals of ŴX · 1{ŴX∈[−a,a]d}



Overcomplete ICA

X
d×1

= A
d×m
· S
m×1

I d < m

I Challenge: A not invertible

I For fixed A, infinitely many S such that X = AS because of m − d

missing components

I Strategy: for fixed A and f , estimate missing S with maximum

likelihood estimators



Estimation Procedure Overcomplete ICA

I Start from an arbitrary initial value of Â and S such that X = ÂS

I Step 1: Find log-concave estimation f̂j of the distribution of Sj

I Step 2: With f̂j , update Â to maximize the log-likelihood
I With an extra optimization step to estimate missing S

I Iterate steps 1 and 2, until convergence of the log-likelihood



Plans for next year

I Complete project on testing independence in a time series setting.

I Complete project on selection of threshold for multivariate RV data

and its offshoots. (Partly joint with Cornell group.)

I Expand development of statistical tools for multivariate heavy tails:

parameter estimation of parameters in the spectral distribution with

emphasis on network models; changepoints in heavy-tails, etc.

(Joint with Cornell team.)

I Complete theory and develop algorithms for the ICA model in the

undercomplete case.

I Develop methodology to handle the overcomplete case in ICA (with

Nolan)

I Expand the random matrix work (with p and n going to infinity) to

the case of nonlinear models. Rank transforms of the rows may be

of particular interest.


