MURI Update Meeting Multivariate Heavy Tail Phenomena: Modeling and Diagnostics The Coming Year,

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

> http://people.orie.cornell.edu/sid 607 255 1210 sir1@cornell.edu

> > October 15, 2015

1. To do list

Inference

- Capitalize on the asymptotic normality results for node counts to do formal inference (estimation, model calibration).
 - Nodes with moderate degree may be modeled by glms (Roy)
 - Nodes with extreme degree modeled using heavy tailed methods.
- Study performance of sampling algorithms on data.
 - What is the sensitivity of the algorithm to
 - $\ast\,$ the number of random walkers?
 - \ast the total graph size?
 - Need theoretical analysis relating performance to mixing times of coupled random walks on networks with heavy tailed degree distribution.
 - How sensitive is the algorithm to changes in heavy tailed dependence between in- and out-degree?
- Threshold selection.
 - Based on distance correlation.

- * Test for multivariate regular variation and comparison of non-parametric and MLE estimation of the angular measure.
- * Experiment with improving performance using weight functions tuned to heavy tails.
- $\ast\,$ Apply to time series and random fields.
- $\ast\,$ Try resampling methods for approximating the limit distribution.
- Based on min K-S distance.
 - * How much error is made by assuming data is continuous when in fact it is discrete.
 - * Mathematical properties of procedure? Consistent? Asymptotically normal?
 - * Extend in higher dimensions? Does this require parameterization of the limit measure or angular measure?
- Data reduction: Continue to develop theory of PCA & ICA for heavy-tailed data.
 - Establish theory for under-complete case when mean is infinite.
 - Derive algorithm for find the IC in the over-complete case.
 - Derive appropriate limit theory for over complete case.

- Apply some of these techniques to understanding hidden regular variation in high dimensions where it is necessary to estimate the support of limit measures.
- \bullet Data analysis on slash dot, Google+, \ldots
 - Evolution of Google+.
 - How do mutually connected components of Google+ evolve over a year period?
- Software:
 - Develop estimation methods for multivariate extreme value distributions and adapt the methods to a software package and release on CRAN.
 - Complete the PCA and ICA software; test on data sets.

Modeling

- Finish work on node degree as a function of graph size.
 - Embedding methods in birth processes.
 - Behavior of the tail empirical process based on degree of a node.
 - Application to
 - $\ast\,$ maximum degree node as a function of graph size.
 - $\ast\,$ inference using estimators such as Hill which are functionals of the tail empirical process.
 - Extensions to the directed graph case.
- Analyze mathematically reciprocity as function of graph size for standard models.
- Continue to develop generative models for multivariate heavy tail distributions aiming at understanding the source and implications of heavy tails in real data in complex networks and natural images.
- Graph exploration algorithm formulated as a multiarmed bandit with heavy tailed dependent rewards.
- Multiclass networks; ie, nodes with vector attributes where the vector may be multivariate regularly varying.

Design and Control

- Mobility problems:
 - How to learn the change of application usage pattern? Study as combinatorial multi-armed bandit.
 - How to exploit the similarity in application usage patterns of users?
 - How can we minimize staleness (i.e., the elapsed time since the last background activity) of applications that require content updates?
- Resource allocation.
 - Extend to more general distributions.
 - Understand the impact of dependencies among these distributions.
 - Load balancing aspects of resource allocation in queueing framework.
 - Develop a combined load balancing/scheduling scheme for data retrieval in cloud storage systems.
 - Continue to generalize results on insensitivity beyond the mean. Remove extraneous assumptions. Complete the work on the mean-field limit in full generality.

