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Motivations and outline

e Natural images exhibit power law cluster size distributions and self-
similarity;
e A possible cause could be that the vision systems evolved to a critical

point in order to take advantage of the self-similarity for pattern
searching;

e Percolation theory could provide mathematical analysis tools for the
phenomena;

* Image data could provide a huge resource for rare event data to
facilitate the development of tools for the challenges in the NRC
report on Frontiers in Massive Data Analysis (2013).



Source 1. NRC report on Frontiersin Massive
Data Analysis (2013)

Committee on the Analysis of Massive Data

Committee on Applied and Theoretical Statistics

Board on Mathematical Sciences and Their Applications
Division on Engineering and Physical Sciences

National Research Council, 2013



There are many sources of potential error in massive data analysis, many of which are due
to the interest in “long tails” that often accompany the collection of massive data. Events
in the “long tail” may be vanishingly rare even in a massive data set.

For example, in consumer-facing information technology, where the goal is increasingly
that of providing fine-grained, personalized services, there may be little data available for
many individuals even in very large data sets.

In science, the goal is often that of finding unusual or rare phenomena, and evidence for
such phenomena may be weak, particularly when one considers the increase in error
rates associated with searching over large classes of hypotheses

In general, data analysis is based on assumptions, and the assumptions underlying many
classical data analysis methods are likely to be broken in massive data sets.



Source 2: David Mumford (1974 Fields
Medalist): Self-ssmilarity of image statistics
and Image models (2010)

e One of the earliest discoveries about the statistics of images was that their
power spectratend to obey power laws. This has avery provocative
Interpretation: this power law isimplied by self-similarity!

e The hypothesisthat natural images of the world, treated asasingle large
database, have renormalization invariant statistics has received remarkable
confirmation from many quite distinct tests.



Source 3: Ken Wilson - fluctuations were
happening on all scales at once

e One difficult problem was phase transitions, the passage from water
to steam or atoms lining up to make a magnet. At the critical point —
the temperature at which the change happens — orderly behavior
breaks down, but theorists had few clues to how to calculate what
was happening.

e Dr. Wilson realized that the key to the problem was that fluctuations
were happening on all scales at once — from the jostling and zooming
of individual atoms to the oscillations of the entire system —
something conventional theory could not handle.



Sources 4: Origins of Scaling in Natural Images
Daniel Ruderman,1997.

One of the most robust qualities of our visual world is the scale
invariance of natural images. Not only has scaling been found in
different visual environments, but the phenomenon also appears to be
calibration-independent. This paper proposes a simple property of
natural images which explains this robustness: they are collages of
regions corresponding to statistically independent "objects". Evidence
is provided for these objects having a power-law distribution of sizes
within images, from which follows scaling in natural images.



Hope: The causes behind the rare data may
not be rare

* Generative models could be useful. For example when
confronting 2D tails we might base our analysis of the
observation data on asymptotic independence;

e Other uses of the generative models...;
e Natural images provide a data base for such investigations;

o Self-similarity of patterns in visual images seen in blurring
transformations is useful in developing generative models;

e Percolation theory could help understanding the self-
similarity/power law cluster size distribution in images.



Effect of blurring an image




Effect of coarse graining in percolation theory

The blurring transformation
preserves most of the large-scale
structure of the configuration,

although a lot of the small detail
is lost.




“Zipf’s Law” in natural image

Zipf’s Law: Word frequency in text
?  frequency in image
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Compressed image examples
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Observed power law
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The distribution of bilevels in natural images
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The distribution of bilevels in natural images

10°E

or of ¢.o.

nmb

107 L L L L MR |
10° 10'
size of c.c.



Generating pow-law graph for natural images

1. Generate super-pixel segmentation for the image. (omit if
the original image is not very large, this process is not
needed for small-scale images)

2. Cluster the super-pixels (original pixels) based on K-
nearest-neighbor algorithm.

3. Connect any pair of pixels by letting similar pairs having
larger weights.

4. Merge pixels together according to the clustering result,
form a power-law graph.



1. Super-pixel generation

* If the original image is large, we first do a super-pixel segmentation.
Super-pixel algorithms group original image pixels into perceptually
meaningful atomic regions.

e SLIC (Simple linear iterative clustering) super-pixel (Achanta et al. 2011)
is a very fast super-pixel segmentation algorithm.

* We implement an algorithm similar to the SLIC super-pixel generating
algorithm.

* Image is transformed to CIELAB form (In CIELAB format, L represents the
intensity of the pixel, a and b are coefficients representing the color of
the pixel). A distance measurement between two pixels is defined as (m
is a coefficient, S is the size of the super-pixel).

['lc = \/(1,1 — Z})Z + (t’.-:-.,; — (1_.}')2 + (br,:, — bj)?
ds = /(2 — 25)” + (¥ — 1)’
D= O{Iab = %dﬂ;




Algorithm 1 Efficient superpixel segmentation

1: Initialize cluster centers Cy, = [lx, ax, b, zx, yx]T by sampling pixels at regular grid
steps S.

2: Perturb cluster centers in an n x n neighborhood, to the lowest gradient position.

3: repeat

4:  for each cluster center C} do

5: Assign the best matching pixels from a 25 x 25 square neighborhood around
the cluster center according to the distance measure.

6: end for

7:  Compute new cluster centers and residual error E' { L1 distance between previous

centers and recomputed centers}
8: until F < threshold
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2. Clustering the super-pixels (original pixels)

* The second step is to cluster the super-pixels into larger components.
* For each super-pixel, we compute its average [L, a, b, X, y] values.

 If the image is not very large (less than 150*150), we can directly cluster
the original pixels together.

e The clustering algorithm is a K-nearest-neighbor algorithm. The pixels
are clustered according to their color information. We then segment the
image based on the connectivity of the pixel clustering labels. (Pixels
with the same label which are connected directly (or by other same-
label pixels) are segmented into the same area.)




3. Generating the power-law graph

* The weight between two pixels is defined as

a2 a2
Wi = e dz/or . e—ds Jox

* Based on the clustering result, the weight of the edge is computed by
fl(ﬂ?,, n) — Zméccm ZP;‘Eccn g

* For natural image, the generated graph has power-law property.
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Percolation calculation for power law/self-similarity
phenomena at the critical point
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Derivation of size distribution power law at critical point

Important stuff: Consider the following scaling argument. If we change the scale on which we
measure areas on our lattice by a factor of 5, then all clusters change size according to s — bhs. Of
course, the physics of the system hasn’t changed, only how we measure it, so this change of variables
cannot change the distribution 7 ,, except by a numerical factor to keep the normalization correct.

The argument of f(x) doesn’t change anyway, because s and (s) both change by the same factor 5.
But the argument of g() does change. Thus ¢(x) must satisfy

g(bx) = k(b)g(x), (2)
where /(5) is the numerical factor, which can depend on / but not .. Let us choose the normalization
of g sothat g(1) = 1. Then, setting = = 1 above we have

g(b) = k(b) (3)

for all 4/ and hence k() and g(x) are the same function. Thus
g(xy) = g(x)g(y). (4)
To solve this equation, we take the derivative with respect to y:
9. _ . S
+-9(ry) = zg (zy) = 9(x)g (y), (5
dy

then set y = 1 to get
xg'(x) = g(x)g'(1), (6)



whose solution is
log g(x) = ¢'(1) logx + ¢, (7)

where ¢ is an integration constant. Given ¢(1) = 1, we must have ¢ = (), and hence
glz)=a7, (8)

where 7 = —¢(1). This functional form is called a power law. The quantity 7 is a critical exponent.

The distribution of cluster sizes becomes a power law exactly
at the critical point. Indeed, the same arguments imply that
all distributions will become power laws at the critical point.
This is one of the characteristic features of phase transitions.




Conclusions

e Natural images exhibit power law cluster size distributions
and self-similarity;

* A possible cause could be that the vision systems evolved to
a critical point in order to take advantage of the self-
similarity for pattern searching;

e Percolation theory could provide mathematical analysis tools
for the phenomena;

* Image data could provide a huge resource for rare event data
to facilitate the development of tools for the challenges in
the NRC report on Frontiers in Massive Data Analysis (2013).



