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Introduction

Many social phenomena modeled as competition

e.g. online social tagging

Important factors affecting competitions

Cumulative advantage: positive feedback, “rich get richer”

Fitness: intrinsic competitiveness

Simplest model: Pólya urn
CA feedback linear

How do nonlinear CA & fitness interact?
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Model

Nonlinear Pólya urn process with fitness
two colors (1 and 2), add one ball at a time
color k has Xk(t) balls at time t

color k has fitness fk
CA feedback strength β ≥ 0

P[ball added at time t + 1 has color k] =
fkXk(t)β

f1X1(t)β + f2X2(t)β

depends on fitness only through ratio r = f1/f2
assume r ≥ 1 by symmetry
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Metrics

Given 2D process
{(X1(t),X2(t)) : t = 0, 1, 2 . . . }

Duration: time of last tie

T = sup{t ≥ 0 : X1(t) = X2(t)}

Intensity: number of ties

N =

∞∑
t=0

1{X1(t) = X2(t)}
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Stochastic Order: r = 1

Theorem
For equal fitness case (r = 1), stronger feedback (larger β)
results in stochastically shorter and less intense competitions.

For r = 1, β ≥ β′, same initial condition,

P[T ≥ t | β] ≤ P[T ≥ t | β′], ∀t

P[N ≥ n | β] ≤ P[N ≥ n | β′], ∀n

Proof.
By coupling argument.
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Stochastic Order: r > 1

Theorem
Feedback does not increase competition intensity.

P[N ≥ n | β ≥ 0, r] ≤ P[N ≥ n | β = 0, r]

Proof.
Again by coupling argument.

Corollary
For r > 1, competition always ends, i.e. T,N <∞ a.s..
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Does Fittest Always Win?

Yes, if β ≤ 1
β = 0, 1: previously known
β < 1

No, if β > 1
less fit can become monopoly (previously known)
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Duration Distribution: r = 1

Theorem (Duration, equal fitness)
For r = 1,

if β ≤ 1/2, T =∞ a.s. (previously known);
if β > 1/2,

P[T ≥ t] ∼ Ct1/2−β.

Proof.
Use exponential embedding and invariance principle.
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Duration Distribution: r = 1
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Duration Distribution: r > 1

Theorem (Duration, different fitnesses)
For r > 1,

if β > 1,
P[T ≥ t] ∼ C1t1−β;

if β = 1,

P[T ≥ t] = Ω
(

t(1−r)x01
)
∩ O

(
t(1−r)(x01−r−1)

)
;

if β < 1,
P[T ≥ t] = O

(
e−C2t1−β

)
.

Proof.
Use exponential embedding, stochastic ordering & RW.
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Duration Distribution: r > 1, β > 1
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Duration Distribution: r > 1, β < 1
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Intensity Distribution: r = 1

Theorem (Intensity, equal fitness)
For r = 1,

if β ≤ 1/2, N =∞ a.s. (previously known);
if β ∈ (1/2, 1],

P[N ≥ n] = Ω(n−β) ∩ O(n1/2−β);

if β ≥ 1,
P[N ≥ n] = O(n−β).

Proof.
Use convexity/concavity & RW.
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Intensity Distribution: r = 1
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Conjecture: P[N ≥ n] ∼ C3n1−2β.
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Intensity Distribution: r > 1

Theorem (Intensity, different fitness)
For r > 1 and all β,

logP[N ≥ n] ∼ n log
2

r + 1
.

Proof.
Relate to RW.
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Intensity Distribution: r > 1
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Summary

Tail distributions of duration and intensity. Here a = 2/(r + 1).

P[T ≥ t] P[N ≥ n]

r = 1 r > 1 r = 1 r > 1

0 ≤ β ≤ 1
2 1 e−Ω(t1−β) 1 O(an)

1
2 < β < 1 Θ(t

1
2−β) e−Ω(t1−β) Ω(n−β) O(an)

β = 1 Θ(t−
1
2 ) Ω(t(1−r)x01) Θ(n−1) O(an)

β > 1 Θ(t
1
2−β) Θ(t1−β) O(n−β) O(an)
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Future Work

Prove conjecture
More competitors
Applications
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