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Introduction

m Many social phenomena modeled as competition
e e.g. online social tagging

m Important factors affecting competitions
e Cumulative advantage: positive feedback, “rich get richer”
e Fitness: intrinsic competitiveness

m Simplest model: Pélya urn
e CA feedback linear

[ How do nonlinear CA & fitness interact? ]
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Model

Nonlinear Pélya urn process with fitness
m two colors (1 and 2), add one ball at a time
m color k has X, (¢) balls at time ¢
m color k has fithess f;
m CA feedback strength g > 0

X,(1)8
P[ball added at time 7 + 1 has color k] :fX (i;kﬁ :-(?X BE
141 242

m depends on fitness only through ratio r = f; /f>
e assume r > 1 by symmetry
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Metrics

Given 2D process 4
{X1(1),X2(2)) :t=0,1,2...}

m Duration: time of last tie
T =sup{t>0:X(r) =X2(t)}

m Intensity: number of ties

N ="1Xi(1) = X,(1)}
=0
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Stochastic Order: r = 1

Theorem
For equal fitness case (r = 1), stronger feedback (larger [3)
results in stochastically shorter and less intense competitions.

For r =1, B > /', same initial condition,

]
PIT>t|8) <P[T>1]f), Wi
]
PIN>n|B]<PN=n|B], Vn
Proof.
By coupling argument. O
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Stochastic Order: r > 1

Theorem
Feedback does not increase competition intensity.

PIN>n|8>0,r] <PN>n|5=0,r]

Proof.
Again by coupling argument. O

Corollary
Forr > 1, competition always ends, i.e. T,N < x a.s..
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Does Fittest Always Win?

m Yes, if <1
e 3 =0, 1: previously known
o <1
m No,if3>1
e less fit can become monopoly (previously known)
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Duration Distribution: r = 1

Theorem (Duration, equal fitness)

Forr=1,
mif3<1/2, T=c a.s. (previously known);
mifs>1/2,
P[T > 1] ~ Ci'/>75,
Proof.
Use exponential embedding and invariance principle. O
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Duration Distribution: r = 1

r=1, x5=(1,1), L=10", runs=10°

P[T >
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Duration Distribution: r > 1

Theorem (Duration, different fithnesses)

Forr > 1,

mifg>1,

P|T > 1] ~ '8,
mifB=1,
P[T Z t] = Q (t(lfr)xm) N 10 (t(lfr)(x0]7r71)> :
mifg <1,
P[T>1=0 <e—02"*‘3 ) .

Proof.
Use exponential embedding, stochastic ordering & RW. 0
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Duration Distribution: r > 1,5 > 1

r=1.2, xp=(1,1), L=10", runs=10°

P[T >=
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Duration Distribution: r > 1,5 < 1

r=1.2, xp=(1,1), L=10", runs=10°
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Intensity Distribution: r =1

Theorem (Intensity, equal fithess)
Forr=1,
m f3<1/2,N=oca.s. (previously known);
mifpe(1/2,1],

mifg>1,
P[N > n] = 0(n~ ")
Proof.
Use convexity/concavity & RW. O
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Intensity Distribution: r =1

r=1, x,=(1,1), L=10", runs=10°

10° ¢ — T ‘
TRl e —
= 102 }
11
N
Z .43
T 10%F B=05
B=0.6
g
104F B=1
B=1.2
B=1.4
10°® B=16 ‘
10° 10t 10°

Intensity (n)

Conjecture: P[N > n] ~ C3n' =25,

13/17



JMassAmbers
Intensity Distribution: r > 1

Theorem (Intensity, different fithess)
Forr>1andall 3,

log P[N > n] ~ nlog 1
r

Proof.
Relate to RW. O
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Intensity Distribution: r > 1

r=1.2, xo=(1,1), L=10", runs=10°
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Summary

Tail distributions of duration and intensity. Here a = 2/(r + 1).

P[T > 1] P[N > n]

r=1 r>1 r=1 r>1

< % 1 e U7) 1 0]
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Future Work

m Prove conjecture
m More competitors
m Applications
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