UMassAmherst

Competitions in Nonlinear Pólya Urn Processes with Fitness

B. Jiang, D. R. Figueiredo, B. Ribeiro, D. Towsley

UMass Amherst
MURI, April 15, 2016

UMassAmherst
 Introduction

■ Many social phenomena modeled as competition

- e.g. online social tagging

■ Important factors affecting competitions

- Cumulative advantage: positive feedback, "rich get richer"
- Fitness: intrinsic competitiveness

■ Simplest model: Pólya urn

- CA feedback linear

How do nonlinear CA \& fitness interact?

UMassA Model

Nonlinear Pólya urn process with fitness
■ two colors (1 and 2), add one ball at a time

- color k has $X_{k}(t)$ balls at time t
- color k has fitness f_{k}

■ CA feedback strength $\beta \geq 0$
$\mathbb{P}[$ ball added at time $t+1$ has color $k]=\frac{f_{k} X_{k}(t)^{\beta}}{f_{1} X_{1}(t)^{\beta}+f_{2} X_{2}(t)^{\beta}}$
■ depends on fitness only through ratio $r=f_{1} / f_{2}$

- assume $r \geq 1$ by symmetry

UMassAmherst Metrics

Given 2D process $\left\{\left(X_{1}(t), X_{2}(t)\right): t=0,1,2 \ldots\right\}$

■ Duration: time of last tie

$$
T=\sup \left\{t \geq 0: X_{1}(t)=X_{2}(t)\right\}
$$

■ Intensity: number of ties

$$
N=\sum_{t=0}^{\infty} 1\left\{X_{1}(t)=X_{2}(t)\right\}
$$

UMassAmherst

Stochastic Order: $r=1$

Theorem

For equal fitness case ($r=1$), stronger feedback (larger β) results in stochastically shorter and less intense competitions.

For $r=1, \beta \geq \beta^{\prime}$, same initial condition,

$$
\begin{gathered}
\mathbb{P}[T \geq t \mid \beta] \leq \mathbb{P}\left[T \geq t \mid \beta^{\prime}\right], \quad \forall t \\
\mathbb{P}[N \geq n \mid \beta] \leq \mathbb{P}\left[N \geq n \mid \beta^{\prime}\right], \quad \forall n
\end{gathered}
$$

Proof.
By coupling argument.

UMassAmherst
 Stochastic Order: $r>1$

Theorem
Feedback does not increase competition intensity.

$$
\mathbb{P}[N \geq n \mid \beta \geq 0, r] \leq \mathbb{P}[N \geq n \mid \beta=0, r]
$$

Proof.
Again by coupling argument.

Corollary

For $r>1$, competition always ends, i.e. $T, N<\infty$ a.s..

UMassAmherst
 Does Fittest Always Win?

■ Yes, if $\beta \leq 1$

- $\beta=0,1$: previously known
- $\beta<1$
\square No, if $\beta>1$
- less fit can become monopoly (previously known)

UMassAmherst
 Duration Distribution: $r=1$

Theorem (Duration, equal fitness)
For $r=1$,
■ if $\beta \leq 1 / 2, T=\infty$ a.s. (previously known);

- if $\beta>1 / 2$,

$$
\mathbb{P}[T \geq t] \sim C t^{1 / 2-\beta}
$$

Proof.

Use exponential embedding and invariance principle.

UMassAmherist

Duration Distribution: $r=1$

UMassAmherst

Duration Distribution: $r>1$

Theorem (Duration, different fitnesses)
For $r>1$,

- if $\beta>1$,

$$
\mathbb{P}[T \geq t] \sim C_{1} t^{1-\beta}
$$

- if $\beta=1$,

$$
\mathbb{P}[T \geq t]=\Omega\left(t^{(1-r) x_{01}}\right) \cap O\left(t^{(1-r)\left(x_{01}-r^{-1}\right)}\right)
$$

■ if $\beta<1$,

$$
\mathbb{P}[T \geq t]=O\left(e^{-C_{2} t^{1-\beta}}\right)
$$

Proof.

Use exponential embedding, stochastic ordering \& RW.

UMassAmherst Duration Distribution: $r>1, \beta>1$

UMassAmherist
 Duration Distribution: $r>1, \beta<1$

UMassAmherst
 Intensity Distribution: $r=1$

Theorem (Intensity, equal fitness)
For $r=1$,

- if $\beta \leq 1 / 2, N=\infty$ a.s. (previously known);
- if $\beta \in(1 / 2,1]$,

$$
\mathbb{P}[N \geq n]=\Omega\left(n^{-\beta}\right) \cap O\left(n^{1 / 2-\beta}\right)
$$

- if $\beta \geq 1$,

$$
\mathbb{P}[N \geq n]=O\left(n^{-\beta}\right)
$$

Proof.

Use convexity/concavity \& RW.

UMassAmherist

Intensity Distribution: $r=1$

Conjecture: $\quad \mathbb{P}[N \geq n] \sim C_{3} n^{1-2 \beta}$.

UMassAmherst
 Intensity Distribution: $r>1$

Theorem (Intensity, different fitness)

For $r>1$ and all β,

$$
\log \mathbb{P}[N \geq n] \sim n \log \frac{2}{r+1}
$$

Proof.
Relate to RW.

UMassAmherst

Intensity Distribution: $r>1$

UMassAmherist
 Summary

Tail distributions of duration and intensity. Here $a=2 /(r+1)$.

\[

\]

UMassAmherst
 Future Work

■ Prove conjecture
■ More competitors
■ Applications

