Competitions in Nonlinear Pólya Urn Processes with Fitness

B. Jiang, D. R. Figueiredo, B. Ribeiro, D. Towsley

UMass Amherst

MURI, April 15, 2016

College of Information and Computer Sciences

Introduction

Many social phenomena modeled as competition

- e.g. online social tagging
- Important factors affecting competitions
 - Cumulative advantage: positive feedback, "rich get richer"
 - Fitness: intrinsic competitiveness
- Simplest model: Pólya urn
 - CA feedback linear

How do nonlinear CA & fitness interact?

Model

Nonlinear Pólya urn process with fitness

- two colors (1 and 2), add one ball at a time
- color k has $X_k(t)$ balls at time t
- color k has fitness f_k
- **CA** feedback strength $\beta \ge 0$

 $\mathbb{P}[\text{ball added at time } t+1 \text{ has color } k] = \frac{f_k X_k(t)^{\beta}}{f_1 X_1(t)^{\beta} + f_2 X_2(t)^{\beta}}$

• depends on fitness only through ratio $r = f_1/f_2$

• assume $r \ge 1$ by symmetry

Metrics

Given 2D process $\{(X_1(t), X_2(t)) : t = 0, 1, 2...\}$

Duration: time of last tie

$$T = \sup\{t \ge 0 : X_1(t) = X_2(t)\}$$

Intensity: number of ties

$$N = \sum_{t=0}^{\infty} \mathbf{1} \{ X_1(t) = X_2(t) \}$$

Stochastic Order: r = 1

Theorem

For equal fitness case (r = 1), stronger feedback (larger β) results in stochastically shorter and less intense competitions.

For r = 1, $\beta \ge \beta'$, same initial condition,

$$\mathbb{P}[T \ge t \mid \beta] \le \mathbb{P}[T \ge t \mid \beta'], \quad \forall t$$

 $\mathbb{P}[N \ge n \mid \beta] \le \mathbb{P}[N \ge n \mid \beta'], \quad \forall n$

Proof.

By coupling argument.

Stochastic Order: r > 1

Theorem

Feedback does not increase competition intensity.

$$\mathbb{P}[N \geq n \mid \beta \geq 0, r] \leq \mathbb{P}[N \geq n \mid \beta = 0, r]$$

Proof.

Again by coupling argument.

Corollary

For r > 1, competition always ends, i.e. $T, N < \infty$ a.s..

Does Fittest Always Win?

• Yes, if
$$\beta \leq 1$$

- $\beta = 0, 1$: previously known
- $\beta < 1$
- $\blacksquare \text{ No, if } \beta > 1$
 - · less fit can become monopoly (previously known)

Duration Distribution: r = 1

Theorem (Duration, equal fitness)

For
$$r = 1$$
,
if $\beta \le 1/2$, $T = \infty$ a.s. (previously known);
if $\beta > 1/2$,
 $\mathbb{P}[T \ge t] \sim Ct^{1/2-\beta}$.

Proof.

Use exponential embedding and invariance principle.

Duration Distribution: r = 1

Duration Distribution: r > 1

Theorem (Duration, different fitnesses) For r > 1. $\bullet \quad \text{if } \beta > 1.$ $\mathbb{P}[T > t] \sim C_1 t^{1-\beta};$ $\bullet \quad \text{if } \beta = 1.$ $\mathbb{P}[T \ge t] = \Omega\left(t^{(1-r)x_{01}}\right) \cap O\left(t^{(1-r)(x_{01}-r^{-1})}\right);$ $\blacksquare \text{ if } \beta < 1.$ $\mathbb{P}[T \ge t] = O\left(e^{-C_2 t^{1-\beta}}\right).$

Proof.

Use exponential embedding, stochastic ordering & RW.

Duration Distribution: $r > 1, \beta > 1$

Duration Distribution: $r > 1, \beta < 1$

Intensity Distribution: r = 1

Theorem (Intensity, equal fitness)
For
$$r = 1$$
,
if $\beta \le 1/2$, $N = \infty$ a.s. (previously known);
if $\beta \in (1/2, 1]$,
 $\mathbb{P}[N \ge n] = \Omega(n^{-\beta}) \cap O(n^{1/2-\beta})$;
if $\beta \ge 1$,
 $\mathbb{P}[N \ge n] = O(n^{-\beta})$.

Proof.

Use convexity/concavity & RW.

Intensity Distribution: r = 1

Intensity Distribution: r > 1

Theorem (Intensity, different fitness)

For r > 1 and all β ,

$$\log \mathbb{P}[N \ge n] \sim n \log \frac{2}{r+1}.$$

Proof.

Relate to RW.

Intensity Distribution: *r* > 1

Summary

Tail distributions of duration and intensity. Here a = 2/(r+1).

	$\mathbb{P}[T \ge t]$		$\mathbb{P}[N \ge n]$	
	r = 1	r > 1	r = 1	r > 1
$0\leq\beta\leq \tfrac{1}{2}$	1	$e^{-\Omega(t^{1-\beta})}$	1	$O(a^n)$
$\frac{1}{2} < \beta < 1$	$\Theta(t^{\frac{1}{2}-\beta})$	$e^{-\Omega(t^{1-\beta})}$	$\Omega(n^{-\beta})$	$O(a^n)$
$\beta = 1$	$\Theta(t^{-\frac{1}{2}})$	$\Omega(t^{(1-r)x_{01}})$	$\Theta(n^{-1})$	$O(a^n)$
$\beta > 1$	$\Theta(t^{\frac{1}{2}-\beta})$	$\Theta(t^{1-\beta})$	$O(n^{-\beta})$	$O(a^n)$

Future Work

- Prove conjecture
- More competitors
- Applications