Multivariate Heavy Tails, Preferential Attachment

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

> http://people.orie.cornell.edu/~sid sir1@cornell.edu sr2382@columbia.edu

MURI SpringFest April 2016, CFEM

April 13, 2016

Outline
Strong Dependence
rth largest

Title Page
Page 1 of 14
Go Back
Full Screen
Close
Quit

1. Outline

- Strong dependence and hidden regular variation. (With B. Das.) John: Graphics in higher dimensions?
- The *r*th largest in an infinite sequence of iid random variables as a family of \mathbb{R}^{∞} valued stochastic processes indexed by *r*. What happens as $r \to \infty$? (With Ross Maller and Boris Buchmann.)
- Asymptotic normality of the number of nodes with degree counts in preferential attachment.
 - Undirected case. (with Gena)
 - Directed case. (with Tiandong)
 - Need to use AN in formal math stat techniques for model calibration.
- Relation of regular variation of measure and regular variation of density or mass function. (with Tiandong)
 - If a measure is regularly varying, is the density or mass function?
 - In dimensions more than 1, if the density or mass function is regularly varying, is the measure?
 - Application to preferential attachment.

2. Strong Dependence and HRV

2.1. Regular variation on the first quadrant.

 $\pmb{Z} \geq \pmb{0}$ has a distribution which is regularly varying if

- $\exists b \in RV_{1/\alpha};$
- \exists Radon limit measure $\nu(\cdot)$ on $\mathbb{R}^2_+ \setminus \{\mathbf{0}\};$
- such that as $t \to \infty$,

 $tP[\mathbf{Z}/b(t) \in \cdot] \to \nu(\cdot).$

The limit measure always concentrates on a cone \mathbb{C} .

- What if $\mathbb{C} \subsetneq \mathbb{R}^2_+$?
- If $A \cap \mathbb{C} = \emptyset$, risk estimation of being in A is 0:

$$\widehat{P[\boldsymbol{Z} \in A]} \approx \frac{1}{t} \hat{\nu}(A/\hat{b}(t) = 0$$

Cornell
Outline
Strong Dependence
rth largest
Title Page
•• ••
Page 3 of 14
Go Back
Full Screen
Close
Quit

2.2. Strong Dependence

Consider two cases:

- Asymptotic full dependence: limit measure concentrates on diagonal.
 - Hard to find data examples.

Cornell
Outline
Strong Dependence
rth largest
Title Page
•• ••
Page 4 of 14
Go Back
Full Screen

Close

Quit

Figure 1: Left: $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$ and then [diag] removed Right: $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$ and then [small wedge] is removed. The dotted lines represent the locus of points at distance one from the forbidden zone.

Cornell
Outline
Strong Dependence
rth largest
Title Page
Full Screen
Close
Quit

2.3. HRV

- When the limit measure concentrates on [small wedge], delete it from the state space.
- Look for 2nd regular variation property on $\mathbb{R}^2_+ \setminus [\text{small wedge}]$ using GPOLAR:

$$GPOLAR(\mathbf{x}) = \left(d(\mathbf{x}, [small wedge]), \frac{\mathbf{x}}{d(\mathbf{x}, [small wedge])} \right).$$

- Diagnostics to find 2nd regular variation property such Hillish estimator apply.
- If [small wedge] has boundaries $y = a_l x$ and $y = a_u x$ consider the region $\{(v, w) : w 2a_u v > x\}$; ie compute

 $P[Z_2 - 2a_u Z_1 > x],$

ie, buy

- 1 unit of security I_2 with risk \mathbb{Z}_2 per unit; and
- sell $2a_u$ units of security I_1 with risk Z_1 .

Quit

2.4. (exxonr,chevronr)

- 1316 daily prices of Exxon and Chevron.
- October 10, 2001 to December 29, 2006 daily returns.
- Called (exxonr, chevronr).
- One expects strong dependence from two big companies engaged in similar activities.

Figure 2: Stock prices and scatterplot of Chevron and Exxon returns.

2.4.1. Diamond plots

- Map (exxonr,chevronr) onto L_1 unit sphere;
- Use

$$(x,y) \mapsto \left(\frac{x}{|x|+|y|}, \frac{y}{|x|+|y|}\right) = \boldsymbol{\theta} = (\theta_1, \theta_2).$$

from

$$\mathbb{R}^2 \mapsto \aleph_{\mathbf{0}} = [\text{diamond}] \subset \mathbb{R}^2.$$

• where the L_1 unit sphere is

$$[\text{diamond}] = \{(\theta_1, \theta_2) : |\theta_1| + |\theta_2| = 1\}.$$

- Experiment with mapping at various thresholds determined by k, the number of order statistics of the norms |x| + |y|.
- Use thresholds k = 400 and k = 70.
- Model for the angular measure S of limit measure ν is that S concentrates in the first and third quadrants.
- Use range of θ_1 in these quadrants as estimators. Get
 - 1. for the first quadrant

and

$$(\hat{\theta}_1, \hat{\theta}_2) = (0.312, 0.701)$$

Cornell
Outline
Strong Dependence
rth largest
Title Page
•• ••
Page 8 of 14
Go Back
Full Screen
Close
Quit

2. in the third quadrant

$$(\hat{\theta}_1, \hat{\theta}_2) = (-0.814, -0.284).$$

• These $\hat{\theta}$'s correspond to slopes of rays in Cartesian coordinates of $(\hat{a}_1, \hat{a}_2) = (0.429, 2.226)$ for the first quadrant.

Figure 3: Empirical angles (diamond plot) for 400 largest values under L_1 norm for (exxonr,chevronr) with histogram (left two plots) and the same for 70 largest values (right two plots).

3. The *r*th largest of an iid sequence

- Let $\{X_n, n \ge 1\}$ be iid random variables with common distribution function F(x)
- Set $R(x) = -\log(1 F(x))$, the integrated hazard function.
- Suppose F and R are continuous.
- Let $M_n^{(r)}$ be the *r*th largest among X_1, \ldots, X_n and set

$$\boldsymbol{M}^{(r)} = \{M_n^{(r)}, n \ge r\}.$$
 (1)

3.1. Facts

- By Ignatov's theorem (Engelen et al., 1988; Goldie and Rogers, 1984; Ignatov, 1976/77; Resnick, 2008; Stam, 1985), \mathcal{R}_r , the range of $\mathcal{M}^{(r)}$ is a sum of r independent PRM(R) processes and therefore the range of $\mathcal{M}^{(r)}$ is PRM(rR).
- \mathcal{R}_r , the range of $M^{(r)}$, converges as a random closed set in the Fell topology to \mathcal{R} , the support of the measure R:

$$\mathcal{R}_r \Rightarrow \mathcal{R},$$
 (2)

as $r \to \infty$.

• How to get a random limit? Domain of attraction for minimum condition: Assume

$$rR(a_rx - b_r) \to g(x), \qquad (r \to \infty)$$

or equivalently

$$(\bar{F}(a_r x - b_r))^r = \exp\{-rR(a_r x - b_r)\} \to e^{-g(x)}$$

where

 $e^{-g(x)} = G_{\gamma}(-x)$

and

$$G_{\gamma}(x) = \exp\{-(1+\gamma x)^{-1/\gamma}\}, 1+\gamma x > 0$$

is the shape parameter family of extreme value distributions for maxima (de Haan and Ferreira, 2006; Resnick, 2008).

• Then

$$(\mathcal{R}_r + b_r)/a_r \Rightarrow PRM(m_\gamma).$$

where $m_{\gamma}(\cdot)$ is the measure with density

$$\frac{d}{dx}\Big(-\log G_{\gamma}(-x)\Big).$$

• Under the same domain of attraction condition for minima: in \mathbb{R}^{∞} , as $r \to \infty$,

$$\frac{\boldsymbol{M}^{(r)} + \boldsymbol{b}_r}{\boldsymbol{a}_r} = \left(\frac{\boldsymbol{M}_{r+j}^{(r)} + \boldsymbol{b}_r}{\boldsymbol{a}_r}, j \ge 0\right) \Rightarrow \left(\boldsymbol{g}_{\gamma}^{\leftarrow}(\Gamma_l), l \ge 1\right),$$

where $\{\Gamma_l, l \ge 1\}$ are the points of a homogeneous Poisson process on \mathbb{R}_+ .

- Defining $\{M^{(r)}, r \ge 1\}$ slightly differently yields that this family indexed by r is Markov on the space \mathbb{R}^{∞} .
- \bullet Use?

Cornell
Outline
Strong Dependence
rth largest
Title Page Image 12 of 14 Go Back Full Screen Close Quit

Contents

Outline

Strong Dependence...

rth largest

Cornell

References

- L. de Haan and A. Ferreira. *Extreme Value Theory: An Introduction*. Springer-Verlag, New York, 2006.
- R. Engelen, P. Tommassen, and W. Vervaat. Ignatov's theorem: a new and short proof. J. Appl. Probab., Special Vol. 25A:229–236, 1988. ISSN 0021-9002. A celebration of applied probability.
- C. M. Goldie and L. C. G. Rogers. The k-record processes are i.i.d. Z. Wahrsch. Verw. Gebiete, 67(2):197-211, 1984. ISSN 0044-3719. doi: 10.1007/BF00535268. URL http://dx.doi.org/10. 1007/BF00535268.
- Z. Ignatov. Ein von der Variationsreihe erzeugter Poissonscher Punktprozeß. Annuaire Univ. Sofia Fac. Math. Méc., 71(2):79–94 (1986), 1976/77. ISSN 0205-0811.
- S.I. Resnick. *Extreme Values, Regular Variation and Point Processes.* Springer, New York, 2008. ISBN 978-0-387-75952-4. Reprint of the 1987 original.
- A. J. Stam. Independent Poisson processes generated by record values and inter-record times. *Stochastic Process. Appl.*, 19(2):315–325, 1985. ISSN 0304-4149. doi: 10.1016/0304-4149(85)90033-X. URL http://dx.doi.org/10.1016/0304-4149(85)90033-X.

CORNELI

MURI Update

Tiandong Wang

School of ORIE, Cornell University

April 15th, 2016

Suppose $U(\cdot)$ is a measure on \mathbb{R}^2 with mass function p(i,j):

• If p(i, j) is a regularly varying array-indexed function, can it always be embedded in a regularly varying function g(x, y) of continuous arguments so that

$$p(i,j)=g(i,j).$$

- If the measure U is regularly varying, is the mass function p also regularly varying?
- If the mass function *p* is regularly varying, is *U* a regularly varying measure?

Regularly varying array-indexed functions

Definition 1.1

A doubly indexed function $f : \mathbb{Z}^2 \setminus \{\mathbf{0}\} \mapsto \mathbb{R}_+$ is regularly varying with scaling functions b_1 and b_2 and limit function $\lambda(x, y)$ if for some $h \in RV_{\alpha}$ for some $\alpha \in \mathbb{R}$, $b_i \in RV_{\beta_i}$, $\beta_i > 0$, we have

$$\lim_{n \to \infty} \frac{f([b_1(n)x], [b_2(n)y])}{h(n)} = \lambda(x, y) > 0, \quad \forall x, y > 0.$$
(1.1)

- A function g : ℝ²₊ → ℝ²₊ is regularly varying if the same limit holds without the greatest integer function square brackets [], [].
- When f satisfies (1.1), we say f(i, j) is embeddable if there exists a bivariate regularly varying function g(x, y) such that g(x, y) := f([x], [y]).
- In one dimension, a regularly varying sequence c_n can always be embedded in a regularly varying function g(x) of a continuous argument.

Results

Suppose u(i,j) > 0 is a regularly varying mass function and satisfies some *extra condition*, then

The function

$$g(x,y) := u([x],[y])$$

is regularly varying as function of continuous variables and therefore u(i, j) is embeddable.

• If u(i,j) = p(i,j) is a pmf corresponding to (X, Y), then

$$P[(X,Y) \in \cdot]$$

is a regularly varying measure.

One choice of *extra condition*:

u(i,j) is eventually decreasing in both *i* and *j*. – Easy assumption but hard to check, can only show this hold for standard preferential attachment models.

Alternatively, assume

- $h(\cdot) \in RV_{
 ho}$, ho < 0, and $u: \mathbb{Z}^2_+ \mapsto \mathbb{R}_+$,
- Scaling functions: $b_i(t) = t^{1/\alpha_i}, i = 1, 2.$
- There exists a limit function $\lambda_0 > 0$ defined on

$$\mathcal{E}_0 := \{ (x, y) : \| (x^{\alpha_1}, y^{\alpha_2}) \| = 1 \},$$
(2.1)

such that u satisfies

$$\lim_{t\to\infty}\frac{u([t^{1/\alpha_1}x],[t^{1/\alpha_2}y])}{h(t)}=\lambda_0(x,y),\quad\forall(x,y)\in\mathcal{E}_0.$$
 (2.2)

Then

• The doubly indexed function u(i, j) is regularly varying: For all x, y > 0, define $\mathbf{w} = \mathbf{w}(x, y) := (x^{\alpha_1}, y^{\alpha_2})$ and

$$\lim_{n\to\infty}\frac{u([n^{1/\alpha_1}x],[n^{1/\alpha_2}y])}{h(n)}=\lambda(x,y):=\lambda_0\left(\frac{x}{\|\mathbf{w}\|^{1/\alpha_1}},\frac{y}{\|\mathbf{w}\|^{1/\alpha_2}}\right)\|\mathbf{w}\|^{\rho};$$

- The doubly indexed function u(i, j) is embeddable in a non-standard regularly varying function f : ℝ²₊ → ℝ with limit function λ(·) such that f(x, y) = u([x], [y]);
- If convergence in (2.2) is *uniform* on \mathcal{E}_0 , then also the measure corresponding to u(i,j) is a (discretely supported) regularly varying measure.

See Bollobás, Borgs, Chayes and Riordan (2003) and Krapivsky and Redner (2001).

- Model parameters: α, β, γ , $\delta_{in}, \delta_{out}$ with $\alpha + \beta + \gamma = 1$.
- G(n) is a directed random graph with *n* edges, N(n) nodes.
- Set of nodes of G(n) is V_n ; so $|V_n| = N(n)$.
- Set of edges of G(n) is $E_n = \{(u, v) \in V_n \times V_n : (u, v) \in E_n\}.$
- In-degree of v is D_{in}(v); out-degree of v is D_{out}(v). Dependence on n is suppressed.
- Obtain graph G(n) from G(n-1) in a Markovian way as follows:

1. With probability α , append to G(n-1) a new node $v \notin V_{n-1}$ and create directed edge $v \mapsto w \in V_{n-1}$ with probability

$$\frac{D_{in}(w) + \delta_{in}}{n - 1 + \delta_{in}N(n - 1)}$$

2. With probability γ , append to G(n-1) a new node $v \notin V_{n-1}$ and create directed edge $w \in V_{n-1} \mapsto v \notin V_{n-1}$ with probability

$$\frac{D_{\rm out}(w) + \delta_{\rm out}}{n - 1 + \delta_{\rm out}N(n - 1)}$$

3. With probability β , create new directed edge between existing nodes

$$v \in V_{n-1} \mapsto w \in V_{n-1}$$

with probability

$$\Big(\frac{D_{\text{out}}(v) + \delta_{\text{out}}}{n - 1 + \delta_{\text{out}}N(n - 1)}\Big)\Big(\frac{D_{\text{in}}(w) + \delta_{\text{in}}}{n - 1 + \delta_{\text{in}}N(n - 1)}\Big).$$

Applications to preferential attachment models

For i, j = 0, 1, 2, ... and $n \ge n_0$, let $N_{ij}(n)$ be the random number of nodes in G(n) with in-degree *i* and out-degree *j*. There exist non-random constants p(i, j) such that

$$\lim_{n \to \infty} \frac{N_{ij}(n)}{N(n)} = p(i,j) \quad \text{a.s. for } i, j = 0, 1, 2, \dots$$
(3.1)

Define two random variables (I, O) such that

$$P[I = i, O = j] = p(i, j), \quad i, j = 0, 1, 2, \dots$$

and the distribution generated by (I, O) is a non-standard regularly varying measure. The pair (I, O) has representation

$$(I, O) \stackrel{d}{=} B(1 + X_1, Y_1) + (1 - B)(X_2, 1 + Y_2), \tag{3.2}$$

where *B* is a Bernoulli switching variable independent of X_j , Y_j , j = 1, 2 with

$$\mathbb{P}(B=1)=1-\mathbb{P}(B=0)=rac{\gamma}{lpha+\gamma}$$

Let $T_{\delta}(p)$ be a negative binomial integer valued random variable with parameters $\delta > 0$ and $p \in (0,1)$. Now suppose $\{T_{\delta_1}(p), p \in (0,1)\}$ and $\{\tilde{T}_{\delta_2}(p), p \in (0,1)\}$ are two independent families of negative binomial random variables and define

$$c_1 = rac{lpha + eta}{1 + \delta_{\mathsf{in}}(lpha + \gamma)}, \quad c_2 = rac{eta + \gamma}{1 + \delta_{\mathsf{out}}(lpha + \gamma)} \quad \mathsf{and} \ a = c_2/c_1.$$

 $X_j, Y_j, j = 1, 2$ in (3.2) can be written as

$$(X_1, Y_1) = (T_{\delta_{in}+1}(Z^{-1}), \tilde{T}_{\delta_{out}}(Z^{-a})), (X_2, Y_2) = (T_{\delta_{in}}(Z^{-1}), \tilde{T}_{\delta_{out}+1}(Z^{-a})),$$

where Z is a Pareto random variable on $[1, \infty)$ with index c_1^{-1} , independent of the negative binomial random variables.

From the representations:

$$\lim_{n \to \infty} \frac{p([n^{c_1}x], [n^{c_2}y])}{n^{-(1+c_1+c_2)}} = \frac{\gamma}{\alpha+\gamma} f_1(x, y) + \frac{\alpha}{\alpha+\gamma} f_2(x, y)$$
$$= \frac{\gamma}{\alpha+\gamma} \frac{x^{\delta_{in}} y^{\delta_{out}-1}}{c_1 \Gamma(\delta_{in}+1) \Gamma(\delta_{out})} \int_0^\infty z^{-(2+1/c_1+\delta_{in}+a\delta_{out})} e^{-\left(\frac{x}{z}+\frac{y}{z^a}\right)} dz$$
$$+ \frac{\alpha}{\alpha+\gamma} \frac{x^{\delta_{in}-1} y^{\delta_{out}}}{c_1 \Gamma(\delta_{in}) \Gamma(\delta_{out}+1)} \int_0^\infty z^{-(1+a+1/c_1+\delta_{in}+a\delta_{out})} e^{-\left(\frac{x}{z}+\frac{y}{z^a}\right)} dz.$$

- This convergence can be shown to be uniform on \mathcal{E}_0 .
- Therefore, this uniform convergence implies

$$P[(I, O) \in \cdot]$$

is a regularly varying measure.

Threshold Selection

For power-law distributed data, we want to estimate

- 1. the scaling parameter α
- 2. the lower-limit on the scaling region x_{min} from empirical data. Clauset (2004):

1. For $k = 1 \dots n$, compute the Kolmogorov-Smirnov distance

$$D_k = \sup_{y \ge 1} \left| \frac{1}{k} \sum_{i=1}^k \epsilon_{\frac{X_{(i)}}{X_{(k+1)}}}(y, \infty] - y^{-\hat{\alpha}(k)} \right|,$$

where

$$\hat{\alpha}(k)^{-1} = \frac{1}{k} \sum_{i=1}^{k} \log \frac{X_{(i)}}{X_{(k+1)}}.$$

2. Choose

$$k^* = argminD_k,$$

then $\hat{x}_{min} = X_{(k^*+1)}$ and $\hat{\alpha} = \hat{\alpha}(k^*)$.

Question: Is $\hat{\alpha}(k^*)$ consistent?

We can show that $k^* \xrightarrow{P} \infty$. Asymptotically, under the assumption of second order regular variation $\overline{F} \in 2RV_{-\alpha,\rho}$, D_k is bounded by

$$\frac{1}{\sqrt{k}} \sup_{t \in (0,1]} |W(t) - tW(1) + t \log tW(1)| + Const.g(b(n/k)) + o(k^{-1/2} + g(b(n/k))),$$

for some $g \in RV_{\rho}$, $\rho < 0$. Then k^* satisfies

$$\sqrt{k^*}g(b(n/k^*)) \to 1,$$

and it follows that $k^* = h(n)$, with $h \in RV_{\frac{2|\rho|}{2|\rho|+\alpha}}$. This shows that k_n^* is an intermediate sequence so the corresponding hill estimator $\hat{\alpha}(k_n^*)^{-1}$ is consistent.

Further Questions:

- In practice, given a certain data set, how can we tell whether the underlying distribution has second order regular variation?
 Naive approach: look at hill plots, but can we do better??
- If the data is in fact Pareto or for example, log-gamma (with $\rho = 0$), what shall we do? Experimentally, Clauset's algorithm will lead us to choose the whole sample and do MLE. What about theoretically proving this??