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1. Outline

• Strong dependence and hidden regular variation. (With B. Das.)
John: Graphics in higher dimensions?

• The rth largest in an infinite sequence of iid random variables as
a family of R∞ valued stochastic processes indexed by r. What
happens as r →∞? (With Ross Maller and Boris Buchmann.)

• Asymptotic normality of the number of nodes with degree counts
in preferential attachment.

– Undirected case. (with Gena)

– Directed case. (with Tiandong)

– Need to use AN in formal math stat techniques for model
calibration.

• Relation of regular variation of measure and regular variation of
density or mass function. (with Tiandong)

– If a measure is regularly varying, is the density or mass func-
tion?

– In dimensions more than 1, if the density or mass function is
regularly varying, is the measure?

– Application to preferential attachment.
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2. Strong Dependence and HRV

2.1. Regular variation on the first quadrant.

Z ≥ 0 has a distribution which is regularly varying if

• ∃ b ∈ RV1/α;

• ∃ Radon limit measure ν(·) on R2
+ \ {0};

• such that as t→∞,

tP [Z/b(t) ∈ · ]→ ν(·).

The limit measure always concentrates on a cone C.

• What if C ( R2
+?

• If A ∩ C = ∅, risk estimation of being in A is 0:

̂P [Z ∈ A] ≈ 1

t
ν̂(A/b̂(t) = 0.
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2.2. Strong Dependence

Consider two cases:

• Asymptotic full dependence: limit measure concentrates on diag-
onal.

– Hard to find data examples.

• Asymptotic strong dependence: limit measure concentrates on a
narrow wedge. Can look for 2nd regular variation property on
R2

+ \ [small wedge].
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Figure 1: Left: R2
+ \ {0} and then [diag] removed Right: R2

+ \ {0} and then
[small wedge] is removed. The dotted lines represent the locus of points at distance
one from the forbidden zone.
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2.3. HRV

• When the limit measure concentrates on [small wedge], delete it
from the state space.

• Look for 2nd regular variation property on R2
+ \ [small wedge]

using GPOLAR:

GPOLAR(x) =
(
d(x, [small wedge]),

x

d(x, [small wedge])

)
.

• Diagnostics to find 2nd regular variation property such Hillish
estimator apply.

• If [small wedge] has boundaries y = alx and y = aux consider the
region {(v, w) : w − 2auv > x}; ie compute

P [Z2 − 2auZ1 > x],

ie, buy

– 1 unit of security I2 with risk Z2 per unit; and

– sell 2au units of security I1 with risk Z1.



Outline

Strong Dependence . . .

rth largest

Title Page

JJ II

J I

Page 7 of 14

Go Back

Full Screen

Close

Quit

2.4. (exxonr,chevronr)

• 1316 daily prices of Exxon and Chevron.

• October 10, 2001 to December 29, 2006 daily returns.

• Called (exxonr, chevronr).

• One expects strong dependence from two big companies engaged
in similar activities.
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Figure 2: Stock prices and scatterplot of Chevron and Exxon returns.
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2.4.1. Diamond plots

• Map (exxonr,chevronr) onto L1 unit sphere;

• Use
(x, y) 7→

( x

|x|+ |y|
,

y

|x|+ |y|

)
= θ = (θ1, θ2).

from
R2 7→ ℵ0 = [diamond] ⊂ R2.

• where the L1 unit sphere is

[diamond] = {(θ1, θ2) : |θ1|+ |θ2| = 1}.

• Experiment with mapping at various thresholds determined by k,
the number of order statistics of the norms |x|+ |y|.

• Use thresholds k = 400 and k = 70.

• Model for the angular measure S of limit measure ν is that S
concentrates in the first and third quadrants.

• Use range of θ1 in these quadrants as estimators. Get

1. for the first quadrant

(θ̂1, θ̂2) = (0.312, 0.701)

and
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2. in the third quadrant

(θ̂1, θ̂2) = (−0.814,−0.284).

• These θ̂’s correspond to slopes of rays in Cartesian coordinates of
(â1, â2) = (0.429, 2.226) for the first quadrant.
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Figure 3: Empirical angles (diamond plot) for 400 largest values under L1 norm
for (exxonr,chevronr) with histogram (left two plots) and the same for 70 largest
values (right two plots).
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3. The rth largest of an iid sequence

• Let {Xn, n ≥ 1} be iid random variables with common distribu-
tion function F (x)

• Set R(x) = − log(1− F (x)), the integrated hazard function.

• Suppose F and R are continuous.

• Let M
(r)
n be the rth largest among X1, . . . , Xn and set

M (r) = {M (r)
n , n ≥ r}. (1)

3.1. Facts

• By Ignatov’s theorem (Engelen et al., 1988; Goldie and Rogers,
1984; Ignatov, 1976/77; Resnick, 2008; Stam, 1985), Rr, the range

ofM (r) is a sum of r independent PRM(R) processes and therefore

the range of M (r) is PRM(rR).

• Rr, the range of M (r), converges as a random closed set in the
Fell topology to R, the support of the measure R:

Rr ⇒ R, (2)

as r →∞.
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• How to get a random limit? Domain of attraction for minimum
condition: Assume

rR(arx− br)→ g(x), (r →∞)

or equivalently

(F̄ (arx− br))r = exp{−rR(arx− br)} → e−g(x)

where
e−g(x) = Gγ(−x)

and
Gγ(x) = exp{−(1 + γx)−1/γ}, 1 + γx > 0

is the shape parameter family of extreme value distributions for
maxima (de Haan and Ferreira, 2006; Resnick, 2008).

• Then
(Rr + br)/ar ⇒ PRM(mγ).

where mγ(·) is the measure with density

d

dx

(
− logGγ(−x)

)
.
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• Under the same domain of attraction condition for minima: in
R∞, as r →∞,

M (r) + br
ar

=
(M (r)

r+j + br

ar
, j ≥ 0

)
⇒

(
g←γ (Γl), l ≥ 1

)
,

where {Γl, l ≥ 1} are the points of a homogeneous Poisson process
on R+.

• Defining {M (r), r ≥ 1} slightly differently yields that this family
indexed by r is Markov on the space R∞.

• Use?
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Analysis of the joint mass function

Suppose U(·) is a measure on R2 with mass function p(i , j):

If p(i , j) is a regularly varying array-indexed function, can it always be
embedded in a regularly varying function g(x , y) of continuous
arguments so that

p(i , j) = g(i , j).

If the measure U is regularly varying, is the mass function p also
regularly varying?

If the mass function p is regularly varying, is U a regularly varying
measure?
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Regularly varying array-indexed functions

Definition 1.1

A doubly indexed function f : Z2 \ {0} 7→ R+ is regularly varying with
scaling functions b1 and b2 and limit function λ(x , y) if for some h ∈ RVα
for some α ∈ R, bi ∈ RVβi , βi > 0, we have

lim
n→∞

f ([b1(n)x ], [b2(n)y ])

h(n)
= λ(x , y) > 0, ∀x , y > 0. (1.1)

A function g : R2
+ → R2

+ is regularly varying if the same limit holds
without the greatest integer function square brackets [], [].

When f satisfies (1.1), we say f (i , j) is embeddable if there exists a
bivariate regularly varying function g(x , y) such that
g(x , y) := f ([x ], [y ]).

In one dimension, a regularly varying sequence cn can always be
embedded in a regularly varying function g(x) of a continuous
argument.
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Results

Suppose u(i , j) > 0 is a regularly varying mass function and satisfies some
extra condition, then

The function
g(x , y) := u([x ], [y ])

is regularly varying as function of continuous variables and therefore
u(i , j) is embeddable.

If u(i , j) = p(i , j) is a pmf corresponding to (X ,Y ), then

P[(X ,Y ) ∈ · ]

is a regularly varying measure.

One choice of extra condition:
u(i , j) is eventually decreasing in both i and j . – Easy assumption but
hard to check, can only show this hold for standard preferential
attachment models.
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Alternatively, assume

h(·) ∈ RVρ, ρ < 0, and u : Z2
+ 7→ R+,

Scaling functions: bi (t) = t1/αi , i = 1, 2.

There exists a limit function λ0 > 0 defined on

E0 := {(x , y) : ‖(xα1 , yα2)‖ = 1}, (2.1)

such that u satisfies

lim
t→∞

u([t1/α1x ], [t1/α2y ])

h(t)
= λ0(x , y), ∀(x , y) ∈ E0. (2.2)
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Then

The doubly indexed function u(i , j) is regularly varying: For all
x , y > 0, define w = w(x , y) := (xα1 , yα2) and

lim
n→∞

u([n1/α1x ], [n1/α2y ])

h(n)
= λ(x , y) := λ0

(
x

‖w‖1/α1
,

y

‖w‖1/α2

)
‖w‖ρ;

The doubly indexed function u(i , j) is embeddable in a non-standard
regularly varying function f : R2

+ 7→ R with limit function λ(·) such
that f (x , y) = u([x ], [y ]);

If convergence in (2.2) is uniform on E0, then also the measure
corresponding to u(i , j) is a (discretely supported) regularly varying
measure.
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Model description

See Bollobás, Borgs, Chayes and Riordan (2003) and Krapivsky and
Redner (2001).

Model parameters: α, β, γ, δin, δout with α + β + γ = 1.

G (n) is a directed random graph with n edges, N(n) nodes.

Set of nodes of G (n) is Vn; so |Vn| = N(n).

Set of edges of G (n) is En = {(u, v) ∈ Vn × Vn : (u, v) ∈ En}.
In-degree of v is Din(v); out-degree of v is Dout(v). Dependence on n
is suppressed.

Obtain graph G (n) from G (n − 1) in a Markovian way as follows:
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w	  

v	  

1. With probability α, append to G (n − 1) a new node v /∈ Vn−1 and
create directed edge v 7→ w ∈ Vn−1 with probability

Din(w) + δin
n − 1 + δinN(n − 1)

.
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w	  

v	  

2. With probability γ, append to G (n − 1) a new node v /∈ Vn−1 and
create directed edge w ∈ Vn−1 7→ v /∈ Vn−1 with probability

Dout(w) + δout
n − 1 + δoutN(n − 1)

.
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w	  

v

3. With probability β, create new directed edge between existing nodes

v ∈ Vn−1 7→ w ∈ Vn−1

with probability( Dout(v) + δout
n − 1 + δoutN(n − 1)

)( Din(w) + δin
n − 1 + δinN(n − 1)

)
.
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Applications to preferential attachment models

For i , j = 0, 1, 2, . . . and n ≥ n0, let Nij(n) be the random number of
nodes in G (n) with in-degree i and out-degree j . There exist non-random
constants p(i , j) such that

lim
n→∞

Nij(n)

N(n)
= p(i , j) a.s. for i , j = 0, 1, 2, . . . . (3.1)

Define two random variables (I ,O) such that

P[I = i ,O = j ] = p(i , j), i , j = 0, 1, 2, . . .

and the distribution generated by (I ,O) is a non-standard regularly varying
measure. The pair (I ,O) has representation

(I ,O)
d
= B(1 + X1,Y1) + (1− B)(X2, 1 + Y2), (3.2)

where B is a Bernoulli switching variable independent of Xj ,Yj , j = 1, 2
with

P(B = 1) = 1− P(B = 0) =
γ

α + γ
.
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Let Tδ(p) be a negative binomial integer valued random variable with
parameters δ > 0 and p ∈ (0, 1). Now suppose {Tδ1(p), p ∈ (0, 1)} and
{T̃δ2(p), p ∈ (0, 1)} are two independent families of negative binomial
random variables and define

c1 =
α + β

1 + δin(α + γ)
, c2 =

β + γ

1 + δout(α + γ)
and a = c2/c1.

Xj ,Yj , j = 1, 2 in (3.2) can be written as

(X1,Y1) =(Tδin+1(Z−1), T̃δout(Z
−a)),

(X2,Y2) =(Tδin(Z−1), T̃δout+1(Z−a)),

where Z is a Pareto random variable on [1,∞) with index c−11 ,
independent of the negative binomial random variables.
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From the representations:

lim
n→∞

p([nc1x ], [nc2y ])

n−(1+c1+c2)
=

γ

α + γ
f1(x , y) +

α

α + γ
f2(x , y)

=
γ

α + γ

xδiny δout−1

c1Γ(δin + 1)Γ(δout)

∫ ∞
0

z−(2+1/c1+δin+aδout)e−( x
z
+ y

za )dz

+
α

α + γ

xδin−1y δout

c1Γ(δin)Γ(δout + 1)

∫ ∞
0

z−(1+a+1/c1+δin+aδout)e−( x
z
+ y

za )dz .

This convergence can be shown to be uniform on E0.

Therefore, this uniform convergence implies

P[(I ,O) ∈ · ]

is a regularly varying measure.
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Threshold Selection

For power-law distributed data, we want to estimate

1. the scaling parameter α

2. the lower-limit on the scaling region xmin from empirical data.

Clauset (2004):

1. For k = 1 . . . n, compute the Kolmogorov-Smirnov distance

Dk = sup
y≥1

∣∣∣∣∣1k
k∑

i=1

ε X(i)
X(k+1)

(y ,∞]− y−α̂(k)

∣∣∣∣∣ ,
where

α̂(k)−1 =
1

k

k∑
i=1

log
X(i)

X(k+1)
.

2. Choose
k∗ = argminDk ,

then x̂min = X(k∗+1) and α̂ = α̂(k∗).
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Question: Is α̂(k∗) consistent?

We can show that k∗
P→∞.

Asymptotically, under the assumption of second order regular variation
F ∈ 2RV−α,ρ, Dk is bounded by

1√
k

sup
t∈(0,1]

|W (t)− tW (1) + t log tW (1)|

+ Const.g(b(n/k)) + o(k−1/2 + g(b(n/k))),

for some g ∈ RVρ, ρ < 0.
Then k∗ satisfies √

k∗g(b(n/k∗))→ 1,

and it follows that k∗ = h(n), with h ∈ RV 2|ρ|
2|ρ|+α

. This shows that k∗n is an

intermediate sequence so the corresponding hill estimator α̂(k∗n)−1 is
consistent.
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Further Questions:

In practice, given a certain data set, how can we tell whether the
underlying distribution has second order regular variation?
Naive approach: look at hill plots, but can we do better??

If the data is in fact Pareto or for example, log-gamma (with ρ = 0),
what shall we do?
Experimentally, Clauset’s algorithm will lead us to choose the whole
sample and do MLE. What about theoretically proving this??
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