Multivariate Heavy Tails, Preferential Attachment

Sidney Resnick

School of Operations Research and Information Engineering Rhodes Hall, Cornell University

Ithaca NY 14853 USA
http://people.orie.cornell.edu/~sid
sir1@cornell.edu sr2382@columbia.edu
MURI SpringFest April 2016, CFEM
April 13, 2016

Outline

Strong Dependence.
\square

\square
Page 1 of 14

Go Back

Full Screen

1. Outline

- Strong dependence and hidden regular variation. (With B. Das.) John: Graphics in higher dimensions?
- The r th largest in an infinite sequence of iid random variables as a family of \mathbb{R}^{∞} valued stochastic processes indexed by r. What happens as $r \rightarrow \infty$? (With Ross Maller and Boris Buchmann.)
- Asymptotic normality of the number of nodes with degree counts in preferential attachment.
- Undirected case. (with Gena)
- Directed case. (with Tiandong)
- Need to use AN in formal math stat techniques for model calibration.
- Relation of regular variation of measure and regular variation of

Title Page

44

4
Page 2 of 14

Go Back

Full Screen

Close

- In dimensions more than 1 , if the density or mass function is regularly varying, is the measure?
- Application to preferential attachment.

2. Strong Dependence and HRV

2.1. Regular variation on the first quadrant.

$\boldsymbol{Z} \geq \mathbf{0}$ has a distribution which is regularly varying if

- $\exists b \in R V_{1 / \alpha}$;
- \exists Radon limit measure $\nu(\cdot)$ on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$;

Outline

Strong Dependence

The limit measure always concentrates on a cone \mathbb{C}.

- What if $\mathbb{C} \subsetneq \mathbb{R}_{+}^{2}$?
- If $A \cap \mathbb{C}=\emptyset$, risk estimation of being in A is 0 :

Title Page
44

Page 3 of 14

Go Back

$$
P \widehat{[\boldsymbol{Z} \in A}] \approx \frac{1}{t} \hat{\nu}(A / \hat{b}(t)=0 .
$$

2.2. Strong Dependence

Consider two cases:

- Asymptotic full dependence: limit measure concentrates on diagonal.
- Hard to find data examples.
- Asymptotic strong dependence: limit measure concentrates on a narrow wedge. Can look for 2 nd regular variation property on $\mathbb{R}_{+}^{2} \backslash[$ small wedge $]$.

CORNELL

Outline

Strong Dependence
r th largest

Title Page

Page 4 of 14

Go Back

Figure 1: Left: $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$ and then [diag] removed Right: $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$ and then [small wedge] is removed. The dotted lines represent the locus of points at distance one from the forbidden zone.

Cornell

Outline
Strong Dependence
r th largest

Title Page

Page 5 of 14

Go Back

Full Screen

Close

2.3. HRV

- When the limit measure concentrates on [small wedge], delete it

Cornell from the state space.

- Look for 2 nd regular variation property on $\mathbb{R}_{+}^{2} \backslash$ [small wedge] using GPOLAR:

$$
\operatorname{GPOLAR}(\mathbf{x})=\left(d(\mathbf{x},[\text { small wedge }]), \frac{\mathbf{x}}{d(\mathbf{x},[\text { small wedge }])}\right)
$$

Outline

```
Strong Dependence
```

- Diagnostics to find 2nd regular variation property such Hillish estimator apply.
- If [small wedge] has boundaries $y=a_{l} x$ and $y=a_{u} x$ consider the region $\left\{(v, w): w-2 a_{u} v>x\right\}$; ie compute

$$
P\left[Z_{2}-2 a_{u} Z_{1}>x\right],
$$

Title Page

Page 6 of 14
ie, buy

- 1 unit of security I_{2} with risk Z_{2} per unit; and

```
Full Screen
```

- sell $2 a_{u}$ units of security I_{1} with risk Z_{1}.

2.4. (exxonr,chevronr)

- 1316 daily prices of Exxon and Chevron.
- October 10, 2001 to December 29, 2006 daily returns.
- Called (exxonr, chevronr).
- One expects strong dependence from two big companies engaged in similar activities.

Outline

Strong Dependence

Title Page

Page 7 of 14

Go Back

Figure 2: Stock prices and scatterplot of Chevron and Exxon returns.

2.4.1. Diamond plots

- Map (exxonr,chevronr) onto L_{1} unit sphere;

Cornell

- Use

$$
(x, y) \mapsto\left(\frac{x}{|x|+|y|}, \frac{y}{|x|+|y|}\right)=\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right) .
$$

from

$$
\mathbb{R}^{2} \mapsto \aleph_{0}=[\text { diamond }] \subset \mathbb{R}^{2}
$$

- where the L_{1} unit sphere is

$$
\text { [diamond] }=\left\{\left(\theta_{1}, \theta_{2}\right):\left|\theta_{1}\right|+\left|\theta_{2}\right|=1\right\} .
$$

- Experiment with mapping at various thresholds determined by k, the number of order statistics of the norms $|x|+|y|$.
- Use thresholds $k=400$ and $k=70$.
- Model for the angular measure S of limit measure ν is that S concentrates in the first and third quadrants.
- Use range of θ_{1} in these quadrants as estimators. Get

Title Page

```
    Title Page
```


Page 8 of 14
Go Back
Full Screen

1. for the first quadrant

$$
\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=(0.312,0.701)
$$

2. in the third quadrant

$$
\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=(-0.814,-0.284)
$$

- These $\hat{\theta}$'s correspond to slopes of rays in Cartesian coordinates of $\left(\hat{a}_{1}, \hat{a}_{2}\right)=(0.429,2.226)$ for the first quadrant.

Outline

Strong Dependence
r th largest

Page 9 of 14

Title Page

Figure 3: Empirical angles (diamond plot) for 400 largest values under L_{1} norm
for (exxonr, chevronr) with histogram (left two plots) and the same for 70 largest values (right two plots).

CORNELL

3. The r th largest of an iid sequence

- Let $\left\{X_{n}, n \geq 1\right\}$ be iid random variables with common distribu-

CORNELL tion function $F(x)$

- Set $R(x)=-\log (1-F(x))$, the integrated hazard function.
- Suppose F and R are continuous.
- Let $M_{n}^{(r)}$ be the r th largest among X_{1}, \ldots, X_{n} and set

$$
\begin{equation*}
\boldsymbol{M}^{(r)}=\left\{M_{n}^{(r)}, n \geq r\right\} . \tag{1}
\end{equation*}
$$

3.1. Facts

- By Ignatov's theorem (Engelen et al., 1988; Goldie and Rogers, 1984; Ignatov, 1976/77; Resnick, 2008; Stam, 1985), \mathcal{R}_{r}, the range of $\boldsymbol{M}^{(r)}$ is a sum of r independent $\operatorname{PRM}(\mathrm{R})$ processes and therefore

Outline

Strong Dependence

rth largest

 the range of $\boldsymbol{M}^{(r)}$ is $\operatorname{PRM}(r R)$.- \mathcal{R}_{r}, the range of $\boldsymbol{M}^{(r)}$, converges as a random closed set in the Fell topology to \mathcal{R}, the support of the measure R :

$$
\begin{equation*}
\mathcal{R}_{r} \Rightarrow \mathcal{R} \tag{2}
\end{equation*}
$$

- How to get a random limit? Domain of attraction for minimum condition: Assume

$$
r R\left(a_{r} x-b_{r}\right) \rightarrow g(x), \quad(r \rightarrow \infty)
$$

or equivalently

$$
\left(\bar{F}\left(a_{r} x-b_{r}\right)\right)^{r}=\exp \left\{-r R\left(a_{r} x-b_{r}\right)\right\} \rightarrow e^{-g(x)}
$$

where

$$
e^{-g(x)}=G_{\gamma}(-x)
$$

and

$$
G_{\gamma}(x)=\exp \left\{-(1+\gamma x)^{-1 / \gamma}\right\}, 1+\gamma x>0
$$

is the shape parameter family of extreme value distributions for maxima (de Haan and Ferreira, 2006; Resnick, 2008).

Title Page

Outline

4

Page 11 of 14
where $m_{\gamma}(\cdot)$ is the measure with density

- Then

$$
\left(\mathcal{R}_{r}+b_{r}\right) / a_{r} \Rightarrow P R M\left(m_{\gamma}\right)
$$

$$
\frac{d}{d x}\left(-\log G_{\gamma}(-x)\right)
$$

- Under the same domain of attraction condition for minima: in \mathbb{R}^{∞}, as $r \rightarrow \infty$,

$$
\frac{\boldsymbol{M}^{(r)}+b_{r}}{a_{r}}=\left(\frac{M_{r+j}^{(r)}+b_{r}}{a_{r}}, j \geq 0\right) \Rightarrow\left(g_{\gamma}^{\leftarrow}\left(\Gamma_{l}\right), l \geq 1\right)
$$

where $\left\{\Gamma_{l}, l \geq 1\right\}$ are the points of a homogeneous Poisson process on \mathbb{R}_{+}.

- Defining $\left\{\boldsymbol{M}^{(r)}, r \geq 1\right\}$ slightly differently yields that this family indexed by r is Markov on the space \mathbb{R}^{∞}.
- Use?

Outline

Title Page


```
Page 12 of 14
```


Contents

Outline

Strong Dependence .

Title Page

44

Page 13 of 14

Go Back

Full Screen

Close

References

L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer-Verlag, New York, 2006.
R. Engelen, P. Tommassen, and W. Vervaat. Ignatov's theorem: a new and short proof. J. Appl. Probab., Special Vol. 25A:229-236, 1988. ISSN 0021-9002. A celebration of applied probability.
C. M. Goldie and L. C. G. Rogers. The k-record processes are i.i.d. Z. Wahrsch. Verw. Gebiete, 67(2):197-211, 1984. ISSN 00443719. doi: 10.1007/BF00535268. URL http://dx.doi.org/10.

Title Page 1007/BF00535268.
Z. Ignatov. Ein von der Variationsreihe erzeugter Poissonscher Punktprozeß. Annuaire Univ. Sofia Fac. Math. Méc., 71(2):79-94 (1986), 1976/77. ISSN 0205-0811.
S.I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer, New York, 2008. ISBN 978-0-387-75952-4. Reprint of the 1987 original.
A. J. Stam. Independent Poisson processes generated by record values and inter-record times. Stochastic Process. Appl., 19(2):315-325, 1985. ISSN 0304-4149. doi: 10.1016/0304-4149(85)90033-X. URL

```
Go Back
``` http://dx.doi.org/10.1016/0304-4149(85)90033-X.

\title{
MURI Update
}

\author{
Tiandong Wang
}

School of ORIE, Cornell University
April 15th, 2016

\section*{Analysis of the joint mass function}

Suppose \(U(\cdot)\) is a measure on \(\mathbb{R}^{2}\) with mass function \(p(i, j)\) :
- If \(p(i, j)\) is a regularly varying array-indexed function, can it always be embedded in a regularly varying function \(g(x, y)\) of continuous arguments so that
\[
p(i, j)=g(i, j)
\]
- If the measure \(U\) is regularly varying, is the mass function \(p\) also regularly varying?
- If the mass function \(p\) is regularly varying, is \(U\) a regularly varying measure?

\section*{Regularly varying array-indexed functions}

\section*{Definition 1.1}

A doubly indexed function \(f: \mathbb{Z}^{2} \backslash\{\mathbf{0}\} \mapsto \mathbb{R}_{+}\)is regularly varying with scaling functions \(b_{1}\) and \(b_{2}\) and limit function \(\lambda(x, y)\) if for some \(h \in R V_{\alpha}\) for some \(\alpha \in \mathbb{R}, b_{i} \in R V_{\beta_{i}}, \beta_{i}>0\), we have
\[
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(\left[b_{1}(n) x\right],\left[b_{2}(n) y\right]\right)}{h(n)}=\lambda(x, y)>0, \quad \forall x, y>0 \tag{1.1}
\end{equation*}
\]
- A function \(g: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}\) is regularly varying if the same limit holds without the greatest integer function square brackets [], [].
- When \(f\) satisfies (1.1), we say \(f(i, j)\) is embeddable if there exists a bivariate regularly varying function \(g(x, y)\) such that \(g(x, y):=f([x],[y])\).
- In one dimension, a regularly varying sequence \(c_{n}\) can always be embedded in a regularly varying function \(g(x)\) of a continuous argument.

\section*{Results}

Suppose \(u(i, j)>0\) is a regularly varying mass function and satisfies some extra condition, then
- The function
\[
g(x, y):=u([x],[y])
\]
is regularly varying as function of continuous variables and therefore \(u(i, j)\) is embeddable.
- If \(u(i, j)=p(i, j)\) is a pmf corresponding to \((X, Y)\), then
\[
P[(X, Y) \in \cdot]
\]
is a regularly varying measure.
One choice of extra condition:
\(u(i, j)\) is eventually decreasing in both \(i\) and \(j\). - Easy assumption but hard to check, can only show this hold for standard preferential attachment models.

Alternatively, assume
- \(h(\cdot) \in R V_{\rho}, \rho<0\), and \(u: \mathbb{Z}_{+}^{2} \mapsto \mathbb{R}_{+}\),
- Scaling functions: \(b_{i}(t)=t^{1 / \alpha_{i}}, i=1,2\).
- There exists a limit function \(\lambda_{0}>0\) defined on
\[
\begin{equation*}
\mathcal{E}_{0}:=\left\{(x, y):\left\|\left(x^{\alpha_{1}}, y^{\alpha_{2}}\right)\right\|=1\right\} \tag{2.1}
\end{equation*}
\]
such that \(u\) satisfies
\[
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{u\left(\left[t^{1 / \alpha_{1}} x\right],\left[t^{1 / \alpha_{2}} y\right]\right)}{h(t)}=\lambda_{0}(x, y), \quad \forall(x, y) \in \mathcal{E}_{0} \tag{2.2}
\end{equation*}
\]

Then
- The doubly indexed function \(u(i, j)\) is regularly varying: For all \(x, y>0\), define \(\mathbf{w}=\mathbf{w}(x, y):=\left(x^{\alpha_{1}}, y^{\alpha_{2}}\right)\) and
\[
\lim _{n \rightarrow \infty} \frac{u\left(\left[n^{1 / \alpha_{1}} x\right],\left[n^{1 / \alpha_{2}} y\right]\right)}{h(n)}=\lambda(x, y):=\lambda_{0}\left(\frac{x}{\|\mathbf{w}\|^{1 / \alpha_{1}}}, \frac{y}{\|\mathbf{w}\|^{1 / \alpha_{2}}}\right)\|\mathbf{w}\|^{\rho} ;
\]
- The doubly indexed function \(u(i, j)\) is embeddable in a non-standard regularly varying function \(f: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}\) with limit function \(\lambda(\cdot)\) such that \(f(x, y)=u([x],[y])\);
- If convergence in (2.2) is uniform on \(\mathcal{E}_{0}\), then also the measure corresponding to \(u(i, j)\) is a (discretely supported) regularly varying measure.

\section*{Model description}

See Bollobás, Borgs, Chayes and Riordan (2003) and Krapivsky and Redner (2001).
- Model parameters: \(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\) with \(\alpha+\beta+\gamma=1\).
- \(G(n)\) is a directed random graph with \(n\) edges, \(N(n)\) nodes.
- Set of nodes of \(G(n)\) is \(V_{n}\); so \(\left|V_{n}\right|=N(n)\).
- Set of edges of \(G(n)\) is \(E_{n}=\left\{(u, v) \in V_{n} \times V_{n}:(u, v) \in E_{n}\right\}\).
- In-degree of \(v\) is \(D_{\text {in }}(v)\); out-degree of \(v\) is \(D_{\text {out }}(v)\). Dependence on \(n\) is suppressed.
- Obtain graph \(G(n)\) from \(G(n-1)\) in a Markovian way as follows:

1. With probability \(\alpha\), append to \(G(n-1)\) a new node \(v \notin V_{n-1}\) and create directed edge \(v \mapsto w \in V_{n-1}\) with probability
\[
\frac{D_{\mathrm{in}}(w)+\delta_{\mathrm{in}}}{n-1+\delta_{\mathrm{i} n} N(n-1)} .
\]
2. With probability \(\gamma\), append to \(G(n-1)\) a new node \(v \notin V_{n-1}\) and create directed edge \(w \in V_{n-1} \mapsto v \notin V_{n-1}\) with probability
\[
\frac{D_{\text {out }}(w)+\delta_{\text {out }}}{n-1+\delta_{\text {out }} N(n-1)} .
\]
3. With probability \(\beta\), create new directed edge between existing nodes
\[
v \in V_{n-1} \mapsto w \in V_{n-1}
\]
with probability
\[
\left(\frac{D_{\text {out }}(v)+\delta_{\text {out }}}{n-1+\delta_{\text {out }} N(n-1)}\right)\left(\frac{D_{\text {in }}(w)+\delta_{\text {in }}}{n-1+\delta_{\text {in }} N(n-1)}\right) .
\]

\section*{Applications to preferential attachment models}

For \(i, j=0,1,2, \ldots\) and \(n \geq n_{0}\), let \(N_{i j}(n)\) be the random number of nodes in \(G(n)\) with in-degree \(i\) and out-degree \(j\). There exist non-random constants \(p(i, j)\) such that
\[
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N_{i j}(n)}{N(n)}=p(i, j) \quad \text { a.s. for } i, j=0,1,2, \ldots \tag{3.1}
\end{equation*}
\]

Define two random variables \((I, O)\) such that
\[
P[I=i, O=j]=p(i, j), \quad i, j=0,1,2, \ldots
\]
and the distribution generated by \((I, O)\) is a non-standard regularly varying measure. The pair \((I, O)\) has representation
\[
\begin{equation*}
(I, O) \stackrel{d}{=} B\left(1+X_{1}, Y_{1}\right)+(1-B)\left(X_{2}, 1+Y_{2}\right) \tag{3.2}
\end{equation*}
\]
where \(B\) is a Bernoulli switching variable independent of \(X_{j}, Y_{j}, j=1,2\) with
\[
\mathbb{P}(B=1)=1-\mathbb{P}(B=0)=\frac{\gamma}{\alpha+\gamma}
\]

Let \(T_{\delta}(p)\) be a negative binomial integer valued random variable with parameters \(\delta>0\) and \(p \in(0,1)\). Now suppose \(\left\{T_{\delta_{1}}(p), p \in(0,1)\right\}\) and \(\left\{\tilde{T}_{\delta_{2}}(p), p \in(0,1)\right\}\) are two independent families of negative binomial random variables and define
\[
c_{1}=\frac{\alpha+\beta}{1+\delta_{\text {in }}(\alpha+\gamma)}, \quad c_{2}=\frac{\beta+\gamma}{1+\delta_{\text {out }}(\alpha+\gamma)} \quad \text { and } a=c_{2} / c_{1} .
\]
\(X_{j}, Y_{j}, j=1,2\) in (3.2) can be written as
\[
\begin{aligned}
& \left(X_{1}, Y_{1}\right)=\left(T_{\delta_{\text {in }}+1}\left(Z^{-1}\right), \tilde{T}_{\delta_{\text {out }}}\left(Z^{-a}\right)\right), \\
& \left(X_{2}, Y_{2}\right)=\left(T_{\delta_{\text {in }}}\left(Z^{-1}\right), \tilde{T}_{\delta_{\text {out }}+1}\left(Z^{-a}\right)\right)
\end{aligned}
\]
where \(Z\) is a Pareto random variable on \([1, \infty)\) with index \(c_{1}^{-1}\), independent of the negative binomial random variables.

From the representations:
\[
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{p\left(\left[n^{c_{1}} x\right],\left[n^{c_{2}} y\right]\right)}{n^{-\left(1+c_{1}+c_{2}\right)}}=\frac{\gamma}{\alpha+\gamma} f_{1}(x, y)+\frac{\alpha}{\alpha+\gamma} f_{2}(x, y) \\
& =\frac{\gamma}{\alpha+\gamma} \frac{x^{\delta_{\text {in }}} y^{\delta_{\text {out }}-1}}{c_{1} \Gamma\left(\delta_{\text {in }}+1\right) \Gamma\left(\delta_{\text {out }}\right)} \int_{0}^{\infty} z^{-\left(2+1 / c_{1}+\delta_{\text {in }}+a \delta_{\text {out }}\right)} e^{-\left(\frac{x}{z}+\frac{y}{z^{a}}\right)} \mathrm{d} z \\
& \quad \quad+\frac{\alpha}{\alpha+\gamma} \frac{x^{\delta_{\text {in }}-1} y^{\delta_{\text {out }}}}{c_{1} \Gamma\left(\delta_{\text {in }}\right) \Gamma\left(\delta_{\text {out }}+1\right)} \int_{0}^{\infty} z^{-\left(1+a+1 / c_{1}+\delta_{\text {in }}+a \delta_{\text {out }}\right)} e^{-\left(\frac{x}{z}+\frac{y}{z^{a}}\right)} \mathrm{d} z .
\end{aligned}
\]
- This convergence can be shown to be uniform on \(\mathcal{E}_{0}\).
- Therefore, this uniform convergence implies
\[
P[(I, O) \in \cdot]
\]
is a regularly varying measure.

\section*{Threshold Selection}

For power-law distributed data, we want to estimate
1. the scaling parameter \(\alpha\)
2. the lower-limit on the scaling region \(x_{\min }\) from empirical data.

Clauset (2004):
1. For \(k=1 \ldots n\), compute the Kolmogorov-Smirnov distance
\[
D_{k}=\sup _{y \geq 1}\left|\frac{1}{k} \sum_{i=1}^{k} \epsilon_{\frac{x_{(i)}}{x_{(k+1)}}}(y, \infty]-y^{-\hat{\alpha}(k)}\right|
\]
where
\[
\hat{\alpha}(k)^{-1}=\frac{1}{k} \sum_{i=1}^{k} \log \frac{X_{(i)}}{X_{(k+1)}}
\]
2. Choose
\[
k^{*}=\operatorname{argmin} D_{k},
\]
then \(\hat{x}_{\text {min }}=X_{\left(k^{*}+1\right)}\) and \(\hat{\alpha}=\hat{\alpha}\left(k^{*}\right)\).

Question: Is \(\hat{\alpha}\left(k^{*}\right)\) consistent?
We can show that \(k^{*} \xrightarrow{P} \infty\).
Asymptotically, under the assumption of second order regular variation \(\bar{F} \in 2 R V_{-\alpha, \rho}, D_{k}\) is bounded by
\[
\begin{aligned}
& \frac{1}{\sqrt{k}} \sup _{t \in(0,1]}|W(t)-t W(1)+t \log t W(1)| \\
& \quad+\operatorname{Const} . g(b(n / k))+o\left(k^{-1 / 2}+g(b(n / k))\right)
\end{aligned}
\]
for some \(g \in R V_{\rho}, \rho<0\).
Then \(k^{*}\) satisfies
\[
\sqrt{k^{*}} g\left(b\left(n / k^{*}\right)\right) \rightarrow 1
\]
and it follows that \(k^{*}=h(n)\), with \(h \in R V_{\frac{2|\rho|}{2|\rho|+\alpha}}\). This shows that \(k_{n}^{*}\) is an intermediate sequence so the corresponding hill estimator \(\hat{\alpha}\left(k_{n}^{*}\right)^{-1}\) is consistent.

\section*{Further Questions:}
- In practice, given a certain data set, how can we tell whether the underlying distribution has second order regular variation? Naive approach: look at hill plots, but can we do better??
- If the data is in fact Pareto or for example, log-gamma (with \(\rho=0\)), what shall we do?
Experimentally, Clauset's algorithm will lead us to choose the whole sample and do MLE. What about theoretically proving this??```

