

A Poisson driven stochastic differential equation model with regularly varying tails

Emily Fischer Gennady Samorodnitsky

Cornell University

Shan Lu Weibo Gong Don Towsley University of Massachusetts, Amherst

April 15, 2016

Introduction

- Interest in power law behavior/regular variation in stochastic differential equation models
- We look at two-dimensional model that grows exponentially fast, but is reset at arrivals of two independent Poisson processes
- Goal: Prove converges to stationary distribution, find stationary distribution and show that it is regularly varying.

General case:

- Independent Poisson processes N_1, N_2 , with rates λ_1, λ_2
- State space $[1,\infty) \times [1,\infty)$
- Two dependent process, X_1, X_2 , growing deterministically, reset to 1 at arrivals of N_1, N_2

$$dX_1(t) = \mu_{11}X_1(t)dt + \mu_{12}X_2(t)dt + (1 - X_1(t^-))dN_1(t)$$

$$dX_2(t) = \mu_{21}X_1(t)dt + \mu_{22}X_2(t)dt + (1 - X_2(t^-))dN_2(t)$$

t

Symmetric case:

- Independent Poisson processes N_1, N_2 , with rates $\lambda_1 = \lambda_2 := \lambda$
- State space $[1,\infty) \times [1,\infty)$
- Two dependent process, X_1, X_2 , growing deterministically, reset to 1 at arrivals of N_1, N_2

$$dX_1(t) = X_1(t)dt + \mu X_2(t)dt + (1 - X_1(t^-))dN_1(t)$$

$$dX_2(t) = \mu X_1(t)dt + X_2(t)dt + (1 - X_2(t^-))dN_2(t).$$

If no resets in [0, t], deterministic growth according to

$$X_{1}(t) = \frac{e^{t(1+\mu)} + e^{t(1-\mu)}}{2} X_{1}(0) + \frac{e^{t(1+\mu)} - e^{t(1-\mu)}}{2} X_{2}(0)$$
$$X_{2}(t) = \frac{e^{t(1+\mu)} - e^{t(1-\mu)}}{2} X_{1}(0) + \frac{e^{t(1+\mu)} + e^{t(1-\mu)}}{2} X_{2}(0)$$

Sampled Process

Let's consider a convenient one-dimensional sampling... Let X_n be the value of $X_1(t)$ at the n^{th} arrival of N_2

Joint Process

 $Y \sim$ stationary distribution of (X_n) . At any arrival of $N_1 \cup N_2$, $(X_1(t), X_2(t))$ has stationary distribution

$$\begin{cases} (1, Y) & \text{w.p. } \frac{1}{2} \\ (Y, 1) & \text{w.p. } \frac{1}{2}, \end{cases}$$

and is deterministic in between! Recall, if no arrivals in [0, t],

$$X_{1}(t) = \frac{e^{t(1+\mu)} + e^{t(1-\mu)}}{2} X_{1}(0) + \frac{e^{t(1+\mu)} - e^{t(1-\mu)}}{2} X_{2}(0)$$
$$X_{2}(t) = \frac{e^{t(1+\mu)} - e^{t(1-\mu)}}{2} X_{1}(0) + \frac{e^{t(1+\mu)} + e^{t(1-\mu)}}{2} X_{2}(0)$$

Joint Process

So the continuous time stationary distribution looks like

$$(X_1, X_2) \stackrel{d}{=} \begin{cases} (YV + W, & YW + V) & \text{w.p. } \frac{1}{2} \\ (V + YW, & W + YV) & \text{w.p. } \frac{1}{2} \end{cases}$$

where

$$W = \frac{e^{U(1+\mu)} + e^{U(1-\mu)}}{2}$$
(1)
$$V = \frac{e^{U(1+\mu)} - e^{U(1-\mu)}}{2},$$
(2)

with $T \sim \exp(2\lambda)$ and given T = t, $U \sim U(0, t)$.

Conclusion

- Two-dimensional Poisson counter driven SDE
- Converges to a stationary distribution
- Understand stationary distribution as deterministic between Poisson arrivals
- Easy to do calculations regular variation, asymptotic dependence coefficient