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Summary of work done in the last year with the emphasis on
the last 6 months

In the last year I have been working on several topics.

1 Multivariate heavy tails in stochastic geometry.

2 Estimation algorithms in large networks (with Richard Davis
and Jingjing Zou).

3 Detecting change in multivariate heavy tails (with Julian Sun).

4 Generating mechanisms for multivariate heavy tails (with the
Amherst group, and Emily Fisher).

5 Degree growth for fixed nodes in a network (with Sid Resnick).



Multivariate heavy tails in stochastic geometry

Stochastic geometry consists of studying the geometry of
random objects in space.

The objects may be a model of obstacles for movement or for
communication.

They may also be a model for impurities in materials.

Heavy tails arise in the size of the random objects and in the
parts of the space free from obstacles.



The simplest model: the Boolean spherical model. The centers
form a Poisson process in space.

The radii of the spheres are i.i.d. These are assumed to be heavy
tailed.

In this model some balls will overlap. This conflicts with some
applications where a hard-core model is required.



A hard-core model is obtained by thinning. Thinning removes one
or more balls in each overlap.

Different types of thinning:

a large ball wins,

a smaller ball wins,

a random ball wins,

only isolated balls stay.



• Random retained. Assign independent random weights to the grains. Let
the thinned model consist of those grains in the original model which are
not overlapped by any heavier grain in the original model. (This thinning
corresponds to Matérn type II.)

• Small retained. Let the thinned model consist of those grains in the original
model which are not overlapped by any smaller grain in the original model.

• Isolated retained. Let the thinned model be the set of grains in the original
model which do not overlap with any other grain in the original model. (This
thinning corresponds to Matérn type I.)

We remark that—unlike the Matérn type III hard-core model [NB12]—the above
thinnings are local in that the decision whether a proposed grain shall be retained
or not is made solely by looking at the grains which intersect it.

For simplicity, we shall restrict to spherical models where the grains are closed
balls. Figure 1 illustrates the above four thinnings applied to a simulated sample
of a Boolean model in R

2 where the grain centers have mean density λ = 0.05 and
the grain radii have a Pareto distribution F (r) = 1−r−α, r ≥ 1, with tail exponent
α = 2.5.
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Figure 1: Original model and its four hard-core thinnings, where the original model
is generated by disks having a Pareto distribution with tail exponent α = 2.5.

The above thinnings will be analyzed collectively by viewing them as instances

3



An important feature of the model: the contact distribution.

H(r) = P
(

the distance from 0 to the nearest remaining ball ≤ r
)
.

Question: is the contact distribution heavy tailed if the ball radii
are heavy tailed?



Suppose P(R > r) ≈ r−θ, θ > d .

If large balls win, then H̄(r) ≈ r−2(θ−d).

If only isolated balls remain, then H̄(r) ≈ r−(θ−d).

If random balls win, then H̄(r) ≈ r−θ.

If small balls win, then H̄(r) decays exponentially fast.




