MURI Meeting

Phyllis Wan

Columbia University

April 15, 2016

Testing the goodness-of-fit of $A R(p)$ model

$$
X_{t}=\sum_{k=1}^{p} \phi_{k} X_{t-k}+Z_{t}
$$

- $Z_{t} \stackrel{i i d}{\sim} F$
- Causal
- $1-\sum_{k=1}^{p} \phi_{k} z^{k}=0$ no roots inside the unit circle

Testing the goodness-of-fit of $A R(p)$ model

$$
X_{t}=\sum_{k=1}^{p} \phi_{k} X_{t-k}+Z_{t}
$$

- Observations $\left(X_{t}\right)_{t=1, \ldots, n}$

Testing the goodness-of-fit of $\operatorname{AR}(p)$ model

$$
X_{t}=\sum_{k=1}^{p} \hat{\phi}_{k} X_{t-k}+\hat{Z}_{t}
$$

- Observations $\left(X_{t}\right)_{t=1, \ldots, n}$
- Parameter estimates $\hat{\phi}_{k}$ (e.g., least-square, Yule-Walker, etc.)
- Fitted residuals $\left(\hat{Z}_{t}\right)$

Proposal: Test the serial dependence of $\left(\hat{Z}_{t}\right)$

Measure of Dependence: Generalized Distance Covariance

$$
T^{2}(X, Y ; \mu):=\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

- Random variables $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}^{q}$,

$$
X \Perp Y \Longleftrightarrow \varphi_{X, Y}(s, t)=\varphi_{X}(s) \varphi_{Y}(t), \forall s, t
$$

Measure of Dependence: Generalized Distance Covariance

$$
T^{2}(X, Y ; \mu):=\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

- Random variables $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}^{q}$,

$$
X \Perp Y \Longleftrightarrow \varphi_{X, Y}(s, t)=\varphi_{X}(s) \varphi_{Y}(t), \forall s, t
$$

- Existence:
- μ finite
- μ infinite: $\int\left(1 \wedge|s|^{\alpha}\right)\left(1 \wedge|t|^{\alpha}\right) \mu(d s, d t)<\infty$ and $\mathbb{E}\left[|X|^{\alpha}+|Y|^{\alpha}+|X Y|^{\alpha}\right]<\infty$

Measure of Dependence: Generalized Distance Covariance

$$
T^{2}(X, Y ; \mu):=\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

- Random variables $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}^{q}$,

$$
X \Perp Y \Longleftrightarrow \varphi_{X, Y}(s, t)=\varphi_{X}(s) \varphi_{Y}(t), \forall s, t
$$

- Existence:
- μ finite
- μ infinite: $\int\left(1 \wedge|s|^{\alpha}\right)\left(1 \wedge|t|^{\alpha}\right) \mu(d s, d t)<\infty$ and $\mathbb{E}\left[|X|^{\alpha}+|Y|^{\alpha}+|X Y|^{\alpha}\right]<\infty$
- Traditional distance covariance (Székely et al., 07):

$$
\mu(d s, d t)=c|s|^{-2}|t|^{-2}
$$

Measure of Dependence: Generalized Distance Covariance

$$
T^{2}(X, Y ; \mu):=\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

- Random variables $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}^{q}$,

$$
X \Perp Y \Longleftrightarrow \varphi_{X, Y}(s, t)=\varphi_{X}(s) \varphi_{Y}(t), \forall s, t
$$

- Existence:
- μ finite
- μ infinite: $\int\left(1 \wedge|s|^{\alpha}\right)\left(1 \wedge|t|^{\alpha}\right) \mu(d s, d t)<\infty$ and $\mathbb{E}\left[|X|^{\alpha}+|Y|^{\alpha}+|X Y|^{\alpha}\right]<\infty$
- Traditional distance covariance (Székely et al., 07):

$$
\mu(d s, d t)=c|s|^{-2}|t|^{-2}
$$

- Distance correlation:

$$
R^{2}(X, Y ; \mu)=\frac{T^{2}(X, Y ; \mu)}{\sqrt{T^{2}(X, X ; \mu) T^{2}(Y, Y ; \mu)}}
$$

Measure of Dependence: Generalized Distance Covariance

$$
T^{2}(X, Y ; \mu):=\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

- Assume $\mu(d s, d t)=\mu_{1}(d s) \times \mu_{2}(d t)$ symmetric about the origin
- Let $\tilde{\nu}(s)= \begin{cases}\int_{\mathbb{R}^{d}} e^{i(s, x\rangle} \nu(d x) & , \quad \nu \text { finite } \\ \int_{\mathbb{R}^{d}}(1-\cos \langle s, x\rangle) \nu(d x) & , \quad \nu \text { infinite }\end{cases}$

$$
\begin{aligned}
T(X, Y ; \mu)= & \mathbb{E}\left[\tilde{\mu}_{1}\left(X-X^{\prime}\right) \tilde{\mu}_{2}\left(Y-Y^{\prime}\right)\right] \\
& +\mathbb{E}\left[\tilde{\mu}_{1}\left(X-X^{\prime}\right)\right] \mathbb{E}\left[\tilde{\mu}_{2}\left(Y-Y^{\prime}\right)\right] \\
& -2 \mathbb{E}\left[\tilde{\mu}_{1}\left(X-X^{\prime}\right) \tilde{\mu}_{2}\left(Y-Y^{\prime \prime}\right)\right] .
\end{aligned}
$$

- where $X^{\prime}, Y^{\prime}, Y^{\prime \prime}$ are iid copies of X, Y, Y respectively

Measure of Dependence: Generalized Distance Covariance

$$
T_{n}^{2}(\mathbf{X}, \mathbf{Y} ; \mu):=\int\left|\varphi_{\mathbf{X}, \mathbf{Y}}^{n}(s, t)-\varphi_{\mathbf{X}}^{n}(s) \varphi_{\mathbf{Y}}^{n}(t)\right|^{2} \mu(d s, d t)
$$

- Assume $\mu(d s, d t)=\mu_{1}(d s) \times \mu_{2}(d t)$ symmetric about the origin
- Let $\tilde{\nu}(s)= \begin{cases}\int_{\mathbb{R}^{d}} e^{i(s, x\rangle} \nu(d x) & , \quad \nu \text { finite } \\ \int_{\mathbb{R}^{d}}(1-\cos \langle s, x\rangle) \nu(d x) & , \quad \nu \text { infinite }\end{cases}$

$$
\begin{aligned}
T_{n}(X, Y ; \mu)= & \frac{1}{n^{2}} \sum_{i, j=1}^{n} \tilde{\mu}_{1}\left(X_{i}-X_{j}\right) \tilde{\mu}_{2}\left(Y_{i}-Y_{j}\right) \\
& +\frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n} \tilde{\mu}_{1}\left(X_{i}-X_{j}\right) \tilde{\mu}_{2}\left(Y_{k}-Y_{l}\right) \\
& -\frac{2}{n^{3}} \sum_{i, j, k=1}^{n} \tilde{\mu}_{1}\left(X_{i}-X_{j}\right) \tilde{\mu}_{2}\left(Y_{i}-Y_{k}\right) .
\end{aligned}
$$

Measure of Dependence: Generalized Distance Covariance

$$
T_{n}^{2}(\mathbf{X}, \mathbf{Y} ; \mu):=\int\left|\varphi_{\mathbf{X}, \mathbf{Y}}^{n}(s, t)-\varphi_{\mathbf{X}}^{n}(s) \varphi_{\mathbf{Y}}^{n}(t)\right|^{2} \mu(d s, d t)
$$

- Consistency under ergodicity
- Asymptoticity under certain α-mixing condition

Auto-Distance Covariance Function

Let $\mathbf{Z}_{1}=\left(Z_{1}, \ldots, Z_{n-h}\right), \mathbf{Z}_{h+1}=\left(Z_{h+1}, \ldots, Z_{n}\right)$, then

$$
T_{n}^{2}(h):=T_{n}^{2}\left(\mathbf{Z}_{1}, \mathbf{Z}_{h+1} ; \mu\right)
$$

If $Z_{t} \stackrel{\text { iid }}{\sim} F$, then

$$
n T_{n}^{2}(h) \xrightarrow{d} \int\left|G_{F}(s, t)\right|^{2} \mu(d s, d t)
$$

- G_{F} is a Gaussian field dependent on F

Example: Kilkenny wind speed time series

Figure : ACF and auto-distance correlation function (ADCF) of Kilkenny daily wind speed time series from $1 / 1 / 61-9 / 27 / 63$

Testing the goodness-of-fit of $\operatorname{AR}(p)$ model

$$
X_{t}=\sum_{k=1}^{p} \hat{\phi}_{k} X_{t-k}+\hat{Z}_{t}
$$

- Observations $\left(X_{t}\right)_{t=1, \ldots, n}$
- Parameter estimates $\hat{\phi}_{k}$
- Fitted residuals $\left(\hat{Z}_{t}\right)$

Proposal: Test the serial dependence of $\left(\hat{Z}_{t}\right)$
Statistic of interest: $\tilde{T}_{n}^{2}(h):=T_{n}^{2}\left(\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{h+1} ; \mu\right)$

Auto-distance covariance of $\operatorname{AR}(p)$ residuals

$$
X_{t}=\sum_{k=1}^{p} \hat{\phi}_{k} X_{t-k}+\hat{Z}_{t}
$$

Statistic of interest: $\tilde{T}_{n}^{2}(h):=T_{n}^{2}\left(\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{h+1} ; \mu\right)$
Theorem

- Assume that

$$
\int\left(s^{2} \wedge t^{2} \wedge(s t)^{2}\right) \mu(d s, d t)<\infty
$$

- If $\mathbb{E} Z^{2}<\infty$, then

$$
n \tilde{T}_{n}^{2}(h) \xrightarrow{d} \int\left|G_{F}(s, t)+\xi_{h}(s, t)\right|^{2} \mu(d s, d t)
$$

where

$$
\xi_{h}(s, t)=t \varphi_{Z}(t) \varphi_{Z}^{\prime}(s) \Psi_{h}^{T} \mathbf{Q}
$$

- $\Psi_{h}=\left(\psi_{h-j}\right)_{j=1, \ldots, p}$ where ψ_{j} are the coefficients in the causal representation $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$
- \mathbf{Q} is the limit distribution of $\sqrt{n}(\hat{\phi}-\phi)$

Example: Auto-distance covariance of $\mathrm{AR}(10)$ residuals: $Z_{t} \sim N(0,1)$

Figure: Left panel: empirical box plots of \tilde{T}_{n}^{2}; Right panel: empirical 5\%, 50\%, 95% quantiles of \tilde{T}_{n}^{2} and T_{n}^{2}

Example: Auto-distance covariance of $\mathrm{AR}(10)$ residuals: $Z_{t} \sim N(0,1)$

Figure : Left panel: empirical box plots of \tilde{T}_{n}^{2}; Right panel: empirical 5\%,50\%, 95% quantiles of \tilde{T}_{n}^{2}, from simulations and from bootstrapping, and that of T_{n}^{2}

Example: Auto-distance covariance of $\operatorname{AR}(10)$ residuals

$$
X_{t}=\sum_{k=1}^{p} \hat{\phi}_{k} X_{t-k}+\hat{Z}_{t}
$$

Statistic of interest: $\tilde{T}_{n}^{2}(h):=T_{n}^{2}\left(\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{h+1} ; \mu\right)$
Theorem

- Assume that

$$
\int\left(s^{2} \wedge t^{2} \wedge(s t)^{2}\right) \mu(d s, d t)<\infty
$$

- If Z is in the domain of attraction of a stable distribution of index $\alpha \in(0,2)$, then

$$
n \tilde{T}_{n}^{2}(h) \xrightarrow{d} \int\left|G_{F}(s, t)\right|^{2} \mu(d s, d t) .
$$

Example: Auto-distance covariance of $\mathrm{AR}(10)$ residuals: $Z_{t} \sim t(1.5)$

Figure: Left panel: empirical box plots of \tilde{T}_{n}^{2}; Right panel: empirical 5\%,50\%, 95% quantiles of \tilde{T}_{n}^{2} and T_{n}^{2}

Example: Kilkenny wind speed time series

Figure : ACF and auto-distance correlation function (ADCF) of Kilkenny daily wind speed time series after $\operatorname{AR}(3)$ fitting.

