Sampling and Estimating Behaviors of Target Nodes in Networks

Jingjing Zou (Joint work with Richard A. Davis, Gennady Samorodnitsky, Zhi-Li Zhang)

April 15, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Network Data

- Usually recorded by edges
- In-degree: number of nodes to a specific node
- Out-degree: number of nodes from a specific node

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Interested in tail behavior

Webgraph from the Google programming contest (2002)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Directed
- ▶ 875,713 nodes
- 5,105,039 edges

Node Types

- "In": in-degree larger than 95% quantile (of interest here)
- "Out": out-degree larger than 95% quantile
- ▶ "Both": both in- and out-degree larger than 95% quantile

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

"None": Neither

Distribution of node types in initial selection:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

##
both in none out
0.0 0.1 0.9 0.0

Initial Selections

Distribution of types in neighbors of initial selection:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

##
both in none out
0.0959 0.3425 0.4795 0.0822

Goals

- Aim to study tail behavior of the network
- Sample nodes with extreme characteristics efficiently

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Construct unbiased estimators with sampled nodes

Strategies to Sample Target Nodes

- Single random walk: expensive, not representative with disjoint clusters
- Multiple random walks: able to explore multiple clusters
- Frontier Sampling (Ribeiro and Towsley, 2010)
- Uniform sampling of edges: use in-degree to adjust for bias

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our Strategy

Use knowledge of distribution of neighbors' types

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Importance sampling / change of measure
- Construct estimators with weight adjustments

Our Strategy

- ► Step 0: randomly sample *K* nodes from the network
- Step 1: select neighbors of the K initial nodes
- Step 2: keep only the target (yellow) nodes
- Step 3: collect sample by following only paths of target (yellow) nodes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Final Selection

 Coarsening nodes connected in both directions to equivalence classes

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 Nodes in the same equivalence class have the same weight (actual and estimated)

Final Selection

Estimators with Weight Adjustments

- Construct unbiased estimators using weighted averages of sampled nodes
- $w_i = 1/P(n_i \in S)$
- $P(n_i \in S) \propto$ no. of nodes leading to n_i
- ▶ Number of nodes leading to *n_i* cannot be completely observed

Use observed values (proportional to the actual)

Estimation Results: Distribution of In-degree

- Start from 20 nodes in our method
- 200 initial nodes for Multiple Random Walks (RW) and Frontier Sampling (FS)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Distribution of In-degree

Q-Q Plots of Indegree

ヘロト 人間 とくほとくほとう

€ 990

Frontier Sampling

Estimation Results: Joint Distribution of In- and Out-Degrees

- Measured through arctan(In_k/Out_k)
- Start from 200 initial nodes for all methods in comparison

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Histograms of Angles

Proposed Method

Random Walks

Frontier Sampling

<ロト <回ト < 注ト < 注ト

æ

Q-Q Plots of Angles

<ロト <回ト < 回ト < 回ト

æ

Frontier Sampling

Discussion on Computational Efficiency

Cost of our method: choose cut-off, weight calculations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Parallel computing

Camparison of Computing Time: Marginal Distribution of In-Degree

- Proposed method (20 initial nodes): 1-3s for sampling, 1-2s for weight estimation (parallel computing)
- ▶ Multiple Random Walks (200 initial nodes): 3-10s for sampling

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Frontier Sampling (200 initial nodes): > 5min for sampling

Camparison of Computing Time: Joint Distribution

- Proposed method (200 initial nodes): 1-3s for sampling, 1-3s for weight estimation (parallel computing)
- Multiple Random Walks (200 initial nodes): 3-10s for sampling

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Frontier Sampling (200 initial nodes): > 5min for sampling