A New Sampling Approach for Estimating Features of Large Networks

Gennady Samorodnitsky¹, Richard A. Davis² Zhi-Li Zhang³ and Jingjing Zou²

- School of Operations Research and Information Engineering, Cornell University;
 Department of Statistics, Columbia University;
 - 3. Department of Computer Science and Engineering, University of Minnesota

Goals

Estimate extreme characteristics in a very large network

- The emphasis is on nodes, not edges.
- Extremes of both in-degree and out-degree of interest.
- Joint extremes of in-degree and out-degree also of interest.
- Challenges:
 - Hard to find and sample rare nodes in a very large network.
 - How do obtain approximately unbiased estimators?

The paradigm

- Assume power-like tails of in-degree and out-degree.
- Use multivariate extreme value theory.
- Use extreme value estimators.
 - The estimators benefit from larger sample sizes.
 - Devise sampling to achieve that.

The network

- Webgraph (network of webpages) from the Google programming contest (2002)
- A directed network
- 875,713 nodes (web pages), 5,105,039 edges (links)

Single random walk: expensive, only represents a cluster.

- Single random walk: expensive, only represents a cluster.
- Multiple random walks: explore multiple clusters, but not specifically extreme nodes.

- Single random walk: expensive, only represents a cluster.
- Multiple random walks: explore multiple clusters, but not specifically extreme nodes.
- Frontier Sampling (Ribeiro and Towsley, 2010)
 - Start with multiple initial nodes
 - Each time pursue the most promising lead.

- Single random walk: expensive, only represents a cluster.
- Multiple random walks: explore multiple clusters, but not specifically extreme nodes.
- Frontier Sampling (Ribeiro and Towsley, 2010)
 - Start with multiple initial nodes
 - Each time pursue the most promising lead.
- ► In all cases: an attempt of uniform sampling of edge.
 - Requires adjustement to weight nodes equally.

Our Strategy

- ▶ We concentrate on "promising" nodes.
- Initial choice of nodes is random, as in other approaches.
- Check the neighbours of the chosen nodes.
- Build paths by discarding "non-promising nodes".
- Adaptively decide on the depth of the search.

- Nodes need to be weighted by the likelihood of being seen.
- That likelihood needs to be estimated.
- ► Not straightforward, since only outgoing edges are easily seen.
- Grouping nodes into equivalence classes helps.

Promising nodes

- "In": in-degree larger than the 95% quantile
- "Out": out-degree larger than the 95% quantile
- ▶ "Both": both in- and out-degrees larger than 95% quantiles
- "None": Neither

A small test

- Select at random 10 initial nodes.
- Distribution of node types in the initial selection

\mathtt{both}	in	none	out
0.0	0.1	0.9	0.0

The distribution of types in their neighbors?

Observed types

level-0level-1

Distribution of types among neighbors of the initial nodes:

both in none out 0.0959 0.3425 0.4795 0.0822

The resulting sample of nodes

Weight Adjustment

 Achieve approximate lack of bias by using weighted averages of sampled nodes

イロト 不得下 イヨト イヨト 二日

- Desired weight: $w_i = 1/P(n_i \in S)$
- $P(n_i \in S) \propto$ no. of nodes "leading" to n_i
- The latter cannot be completely observed
- Use observed values and linear regression

Estimation Results: Distribution of In-degree

- We are interested in the top 5% of the nodes
- Start from 20 nodes in our method
- For benchmarking: 200 initial nodes for Multiple Random Walks (RW) and Frontier Sampling (FS)

In-degree histograms, top 5% (Log-scale)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Q-Q Plots of In-degree, top 5%

Estimation Results: Extrems of the Joint Distribution of In- and Out-Degrees

- Measured by the angle: arctan(In_k/Out_k)
- Start from 200 initial nodes for all methods for benchmarking.

Histograms of the Angle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Q-Q Plots of the Angle

Google+ Data

- ► A snapshot of the social network taken on Oct, 2012
- 76,438,791 nodes
- 1,442,504,499 edges

Our procedure

- "Promising" nodes: in the top 1%
- Start with 200 random initial nodes.
- Stopping rule: 3d generation of the initial nodes.
- Overall 17854 "promising" nodes sampled (for in-degree estimation).

Distribution of In-degree (Log-scale)

Q-Q Plot Of In-degree

Actual

Histograms of the Angle

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ う ミ ・ う へ (や 24 / 27

Q-Q Plot of the Angle

Actual

Computations: Webpages, In-Degree

- Proposed method (20 initial nodes): 1-3s for sampling, 1-2s for weight estimation (parallel computing)
- Multiple Random Walks (200 initial nodes): 3-10s for sampling
- Frontier Sampling (200 initial nodes): > 5min for sampling

Computations: Webpages, Joint Distribution

- Proposed method (200 initial nodes): 1-3s for sampling, 1-3s for weight estimation (parallel computing)
- Multiple Random Walks (200 initial nodes): 3-10s for sampling
- Frontier Sampling (200 initial nodes): > 5min for sampling