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Motivation—heavy-tailed data

» Heavy-tails in data often modeled by a Pareto-like
distribution, i.e.,

1
P(X>x)~x—a, x>1,

where o > 0.
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Motivation—heavy-tailed data

Heavy-tails in data often modeled by a Pareto-like
distribution, i.e.,

PX>x)~ —, x>1, (1)

xa’

where o > 0.
Goal is to estimate a.
Equation (1) is only approximate for x large, i.e., x > L.

Use maximum likelihood estimation (gold standard) if (1)
holds exactly.

What if equation is only approximate?

N
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Hill Estimator
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Order statistics X(1) <

, Xn ~ F(x), where F has Pareto-like

Xoy < < X
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Hill Plot (Without Truncation)
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Figure: Hill plot of i.i.d. Pareto (o = 0.5) variables (n = 1000)
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Hill Plot

Truncation = 100
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Figure: With 100 largest observations truncated
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Example: Google+ Data

» A snapshot of the social network taken on Oct, 2012
> 76,438,791 nodes
> 1,442,504,499 edges
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Figure: Hill Plots of In-degrees



Parametrization of Truncated Hill Estimator

» n: original sample size (before truncation)
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Parametrization of Truncated Hill Estimator

» n: original sample size (before truncation)

v

kn: a sequence of integers such that k, — oo and k,/n — 0

v

Okp: observations truncated and NOT observed

v

0k,: number of top observations included in estimation

Truncated Hill estimator

v

[0kn]
Hn(0,0) = Toka] D " log X(n— 5k, —i+1) — 108 X(n— sk, 1~ 16kn))
iz
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Functional Convergence of Truncated Hill Estimator

» Vkn(Hn(6,0) — E(H,)) converges to a Gaussian process
» Different values of § and « are distinguishable through
behaviors of sample paths of H,

Figure: Pareto (a = 0.5) variables (n = 1000, k, = 100 and 0k, = 100)
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Functional Convergence of Truncated Hill Estimator

» Vkn(Hn(6,0) — E(H,)) converges to a Gaussian process
» Different values of § and « are distinguishable through

behaviors of sample paths of H,

Figure: Pareto (a = 0.5) variables (n = 1000, k, = 100 and 0k, = 100)

Truncation = 100

=058k, =0

a=0.5, 5k, = 100
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Gaussian Processes

n = 2000 observations generated from Pareto distribution
> k, =100
» =05

Figure: 6 = 0 (without truncation)  Figure: § = 1 (with truncation)
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Gaussian Processes

Generate 50 sample paths from the limiting Gaussian processes
> k, =100
» =05

Figure: § = 0 (without truncation)  Figure: § = 1 (with truncation)
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Functional Convergence of Truncated Hill Estimator

Theoretical conditions for the convergence
» F regularly varying
» Second-order regular variation condition

» Bias term in the mean of the Gaussian process if not Pareto
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Estimation Procedure

» Estimate parameters based on the asymptotic joint
distribution of {H,}
» Solve for maximum likelihood estimators for
» Number of truncated observations dk,
» Tail index
> Beirlant et al. (2016) modeled truncation with threshold

parameter T and estimated parameters based on Pareto
likelihood
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Estimation Results

» Cauchy distribution
» o =1, n=2000, k, = 200, truncation dk, = 200

> Averaged estimation results of 200 independent simulations
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Earthquake Data

v

Earthquake fatalities by the U.S. Geological Survey (1900 -
2014) 1

n = 125 earthquakes with 1,000 or more deaths

v

v

First apply the estimation procedures to the original data

Then to the data with additional truncation of 10 top
observations

v

Estimations should reflect the truncation

v

'http://earthquake.usgs.gov/earthquakes/world/world_deaths.php
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Earthquake Data
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Figure: Estimates of number of truncation

27



Earthquake Data
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Figure: Estimates of the tail index «
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Earthquake Data

Figure: truncation = 0 Figure: truncation = 10
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Figure: Hill estimators vs. fitted mean curves (with different number of
observations included in estimation)
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Earthquake Data
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Figure: Hill estimators vs. fitted mean curves (with different number of
observations included in estimation)
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Earthquake Data
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Figure: Hill estimators vs. fitted mean curves (with different number of
observations included in estimation)
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Google+ Data
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Google+ Data
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Google+ Data

Figure: truncation = 0 Figure: truncation = 400

Truncation =0 Truncation = 400

T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000

k k

Figure: Hill estimators vs. fitted mean curves (with different number of
observations included in estimation)
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Google+ Data
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Figure: Hill estimators vs. fitted mean curves (with different number of
observations included in estimation)
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Figure: Hill estimators vs. fitted mean curves (with different number of
observations included in estimation)
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