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Motivation–heavy-tailed data

I Heavy-tails in data often modeled by a Pareto-like

distribution, i.e.,

P(X > x) ∼ 1

xα
, x ≥ 1, (1)

where α > 0.

I Goal is to estimate α.

I Equation (1) is only approximate for x large, i.e., x > L.

I Use maximum likelihood estimation (gold standard) if (1)

holds exactly.

I What if equation is only approximate?
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Hill Estimator

I Independent X1,X2, . . . ,Xn ∼ F (x), where F has Pareto-like

tails.

I Tail index α

I Order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n)

I Hill estimator for 1/α

Hn(k) =
1

k

k∑
i=1

logX(n−i+1) − logX(n−k)
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Hill Plot (Without Truncation)
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Figure: Hill plot of i.i.d. Pareto (α = 0.5) variables (n = 1000)
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Hill Plot
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Figure: With 100 largest observations truncated
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Example: Google+ Data

I A snapshot of the social network taken on Oct, 2012

I 76,438,791 nodes

I 1,442,504,499 edges
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Figure: Hill Plots of In-degrees
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Parametrization of Truncated Hill Estimator

I n: original sample size (before truncation)

I kn: a sequence of integers such that kn →∞ and kn/n→ 0

I δkn: observations truncated and NOT observed

I θkn: number of top observations included in estimation

I Truncated Hill estimator

Hn(δ, θ) =
1

bθknc

bθknc∑
i=1

logX(n−bδknc−i+1) − logX(n−bδknc−bθknc)

7 / 27



Parametrization of Truncated Hill Estimator

I n: original sample size (before truncation)

I kn: a sequence of integers such that kn →∞ and kn/n→ 0

I δkn: observations truncated and NOT observed

I θkn: number of top observations included in estimation

I Truncated Hill estimator

Hn(δ, θ) =
1

bθknc

bθknc∑
i=1

logX(n−bδknc−i+1) − logX(n−bδknc−bθknc)

7 / 27



Parametrization of Truncated Hill Estimator

I n: original sample size (before truncation)

I kn: a sequence of integers such that kn →∞ and kn/n→ 0

I δkn: observations truncated and NOT observed

I θkn: number of top observations included in estimation

I Truncated Hill estimator

Hn(δ, θ) =
1

bθknc

bθknc∑
i=1

logX(n−bδknc−i+1) − logX(n−bδknc−bθknc)

7 / 27



Parametrization of Truncated Hill Estimator

I n: original sample size (before truncation)

I kn: a sequence of integers such that kn →∞ and kn/n→ 0

I δkn: observations truncated and NOT observed

I θkn: number of top observations included in estimation

I Truncated Hill estimator

Hn(δ, θ) =
1

bθknc

bθknc∑
i=1

logX(n−bδknc−i+1) − logX(n−bδknc−bθknc)

7 / 27



Parametrization of Truncated Hill Estimator

I n: original sample size (before truncation)

I kn: a sequence of integers such that kn →∞ and kn/n→ 0

I δkn: observations truncated and NOT observed

I θkn: number of top observations included in estimation

I Truncated Hill estimator

Hn(δ, θ) =
1

bθknc

bθknc∑
i=1

logX(n−bδknc−i+1) − logX(n−bδknc−bθknc)

7 / 27



Functional Convergence of Truncated Hill Estimator

I
√
kn(Hn(δ, θ)− E (Hn)) converges to a Gaussian process

I Different values of δ and α are distinguishable through

behaviors of sample paths of Hn

Figure: Pareto (α = 0.5) variables (n = 1000, kn = 100 and δkn = 100)
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Functional Convergence of Truncated Hill Estimator

I
√
kn(Hn(δ, θ)− E (Hn)) converges to a Gaussian process

I Different values of δ and α are distinguishable through

behavior of sample paths of Hn

Figure: Pareto (α = 0.5) variables (n = 1000, kn = 100 and δkn = 100)
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α = 0.5, δkn = 0
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Gaussian Processes
n = 2000 observations generated from Pareto distribution

I kn = 100

I α = 0.5

Figure: δ = 0 (without truncation) Figure: δ = 1 (with truncation)
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Gaussian Processes
Generate 50 sample paths from the limiting Gaussian processes

I kn = 100

I α = 0.5

Figure: δ = 0 (without truncation) Figure: δ = 1 (with truncation)
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Functional Convergence of Truncated Hill Estimator

Theoretical conditions for the convergence

I F regularly varying

I Second-order regular variation condition

I Bias term in the mean of the Gaussian process if not Pareto
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Estimation Procedure

I Estimate parameters based on the asymptotic joint

distribution of {Hn}
I Solve for maximum likelihood estimators for

I Number of truncated observations δkn
I Tail index α

I Beirlant et al. (2016) modeled truncation with threshold

parameter T and estimated parameters based on Pareto

likelihood
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Estimation Results

I Cauchy distribution

I α = 1, n = 2000, kn = 200, truncation δkn = 200

I Averaged estimation results of 200 independent simulations
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Earthquake Data

I Earthquake fatalities by the U.S. Geological Survey (1900 -

2014) 1

I n = 125 earthquakes with 1,000 or more deaths

I First apply the estimation procedures to the original data

I Then to the data with additional truncation of 10 top

observations

I Estimations should reflect the truncation

1http://earthquake.usgs.gov/earthquakes/world/world_deaths.php
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Earthquake Data

Figure: truncation = 0
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Figure: Estimates of number of truncation
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Earthquake Data

Figure: truncation = 0
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Figure: truncation = 10
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Figure: Estimates of the tail index α
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Earthquake Data

Figure: truncation = 0
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Figure: truncation = 10
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Figure: Hill estimators vs. fitted mean curves (with different number of

observations included in estimation)
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Earthquake Data

Figure: truncation = 0
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Figure: truncation = 10
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Figure: Hill estimators vs. fitted mean curves (with different number of

observations included in estimation)
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Earthquake Data

Figure: truncation = 0
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Figure: Hill estimators vs. fitted mean curves (with different number of

observations included in estimation)
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Google+ Data

Figure: truncation = 0
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Figure: truncation = 400
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Figure: Estimates of number of truncation
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Google+ Data

Figure: truncation = 0
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Figure: truncation = 400
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Figure: Estimates of tail index α
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Google+ Data

Figure: truncation = 0
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Figure: truncation = 400
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Figure: Hill estimators vs. fitted mean curves (with different number of

observations included in estimation)
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Google+ Data

Figure: truncation = 0

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Truncation = 0

k

H

Figure: truncation = 400
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Figure: Hill estimators vs. fitted mean curves (with different number of

observations included in estimation)
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Google+ Data

Figure: truncation = 0
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Figure: Hill estimators vs. fitted mean curves (with different number of

observations included in estimation)
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