Computational and numerical tools for non-Gaussian multivariate distributions

John Nolan

American University
Washington, DC, USA

MURI Workshop Soldiers Systems Center Natick, MA
21 November 2016

Outline

(1) Introduction

(2) mvmesh Package

- Directional histograms
(3) SimplicialCubature Package

4 SphericalCubature Package
(5) gensphere Package

There is a need for non-Gaussian models for multivariate data. Working in dimension $d>2$ requires new tools.

- grids and meshes on non-rectangular shapes
- numerical integration over surfaces
- simulate from a shape

There is a need for non-Gaussian models for multivariate data.
Working in dimension $d>2$ requires new tools.

- grids and meshes on non-rectangular shapes
- numerical integration over surfaces
- simulate from a shape

R software packages on open source CRAN

- mvmesh - MultiVariate Meshes
- SphericalCubature
- SimplicialCubature
- gensphere - generalized spherical distributions
- ecdfHT - empirical cdf for Heavy Tailed data
- mvevd - MultiVariate Extreme Value Distributions (in progress)

Outline

(1) Introduction

(2) mvmesh Package

- Directional histograms

(3) SimplicialCubature Package

4 SphericalCubature Package

(5) gensphere Package

mvmesh

Functions to generate meshes on standard shapes in dimensions and to work with more complicated shapes

Directional histogram 2D - tabulate \# in each cone

mix of 5000 light tailed 100 heavy tailed data values

threshold= 1

threshold $=0$

threshold= 4

Generalize to $d \geq 3$?

- triangulate sphere
- each simplex on sphere determines a cone
- loop through data points, seeing which cone each falls in
- If $d=3$, plot
- Variations:
- threshold based on distance from center
- use ℓ_{p} ball
- restrict to positive orthant

Directional histogram $d=3$

Omni-directional data, plot.type='radial'

Directional dependence (simulated data)

mix of 5000 light tailed 100 heaw tailed data values

All data

threshold= 0

Thresholding by distance from origin

Thresholding by distance from origin (alternate view)

```
threshold= 5
```


Directional histogram $d>3$

Subdivision routines return a list of simplices in some order. For any d, can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.

Directional histogram $d>3$

Subdivision routines return a list of simplices in some order. For any d, can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.
Lose geometry, but can show concentration in different directions. Thresholding may reveal a few directions where extremes lie.

Can use to select model to use on a given data set, e.g. isotropic when histogram is roughly uniform, discrete angular measure when just a few directions present after thresholding.

$d=5$, with 512 cones/directions $-m=7$ point masses

$n=10000$ threshold=0

threshold $=\mathbf{3 0 0}$

Outline

(1) Introduction

(2) mvmesh Package

- Directional histograms
(3) SimplicialCubature Package

4) SphericalCubature Package

(5) gensphere Package

Integrating over a simplex

Evaluate $\int_{S} f(\mathbf{x}) d \mathbf{x}$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $S=$ ConvexHull $\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n+1}\right)$ is an n dimensional simplex.

Integrating over a simplex

Evaluate $\int_{S} f(\mathbf{x}) d \mathbf{x}$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $S=$ ConvexHull $\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n+1}\right)$ is an n dimensional simplex.

- exact integration of polynomials using Grundmann-Moler quadrature rules or Lasserre-Avranchenkov algebraic method
- adaptive integration with an R translation of Alan Genz's SimPack, Fortran code. Recursively subdivide simplices.
- extensions to integrate over m-dimensional simplices, $m<n$. Used directly when working with multivariate sum stable, extreme value distributions, and below.

Outline

(1) Introduction

(2) mvmesh Package

- Directional histograms
(3) SimplicialCubature Package

4) SphericalCubature Package
(5) gensphere Package

Integrating over a sphere

 Evaluate $\int_{S} f(\mathbf{s}) d \mathbf{s}$
where $S=\{\mathbf{s}:|\mathbf{s}|=1\} \subset \mathbb{R}^{n}$ is a sphere $(n-1$ dimensional).

Integrating over a sphere

 Evaluate $\int_{S} f(\mathbf{s}) d \mathbf{s}$
where $S=\{\mathbf{s}:|\mathbf{s}|=1\} \subset \mathbb{R}^{n}$ is a sphere $(n-1$ dimensional).

- exact integration of polynomials
- adaptive integration with using above SimplicialCubature
- extensions to integrate over spherical triangles

Outline

(1) Introduction

(2) mvmesh Package

- Directional histograms
(3) SimplicialCubature Package

4 SphericalCubature Package
(5) gensphere Package

Generalized spherical distributions

Distributions with level sets that are all scaled versions of a star shaped region. Flexible scheme for building nonstandard star shaped contours.

A tessellation based on the added 'bumps' is automatically generated and A used in simulating from the contour. Process requires arclength/surface

Add a radial component to get a distribution: $\mathbf{X}=R \mathbf{Z}$, where \mathbf{Z} is uniform w.r.t. $(d-1)$-dimensional surface area on contour. Here $R \sim \Gamma(2,1)$

Sample of $\mathbf{X}=R \mathbf{Z}$

density surface

2D example on a cone

3 Gaussian bumps
Radial $R \sim \Gamma(2,1)$

Many contour shapes possible

Choice of R determines radial behavior

$\begin{array}{lll}\text { (a) } R \sim \operatorname{Uniform}(0,1) & \text { (b) } R \sim \Gamma(2,1) & \text { (c) } R=|\mathbf{Y}| \text { where } \mathbf{Y} \text { is 2D }\end{array}$ isotropic stable
(d) $R \sim \Gamma(5,1)$

3D example - contour

uniform sample from contour

sample from distribution \mathbf{X} with $R \sim \Gamma(2,1)$

Simulation from general tessellations

Related work

- ecdfHT - empirical cdf for Heavy Tailed data, graphical diagnostic
- flexible classes of multivariate extreme value distributions, partition the unit simplex and put mass in different regions
- flexible classes of multivariate sum stable distributions - partition the unit sphere and put mass in different regions
- refinements of multivariate grids - focus integration routines on specific regions. E.g. compute $P(\mathbf{X} \in S)$ for $\mathbf{X} \sim$ $\operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ and simplex S in the unit simplex.

