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1. Outline

• Hidden regular variation (HRV): a semi-parametric asymptotic
approximation method for improving risk estimates.

– Case 1: Asymptotic independence of variables as in the Gaus-
sian copula dependence model.

– Case 2: Strong dependence or full asynptotic dependence.

• Preferential attachment as a model for social network growth.

– Understanding the multivariate heavy tail of (in,out)-degree.

– Simulation of preferential attachment growing networks.

– Statistical analysis social network data and calibration of a
linear preferential attachment model.

• No time: Threshold selection by the minimum distance method;

– the limitations of the Clauset (Virkar and Clauset (2014))
method.

– When doing tail estimation, what portion of the data should
be used?
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2. Hidden Regular Variation: Asymptotic Indepen-
dence and Strong Asyptotic Dependence

Das and Resnick (2015); Das and Resnick (2016); Das, Mitra, and
Resnick (2013)

2.1. Regular variation on the first quadrant.

Z ≥ 0 has a distribution which is regularly varying (has a multivariate
heavy tail) if

• ∃ b(t) ∈ RV1/α;

• ∃ limit measure ν(·) on R2
+ \ {0};

• As t→∞, for nice sets A bounded away from 0:

tP
[ Z
b(t)
∈ A

]
→ ν(A).
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The limit measure always concentrates on
a cone C.

• What if C ( R2
+?

• If A ∩C = ∅, risk estimation of being
in A is 0:

̂P [Z ∈ A] ≈ 1

t
ν̂(A/b̂(t) = 0.

0

∞
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2.2. Cases

Consider cases:

1. Asymptotic independence: Limit measure ν concentrates mass
on C = two axes. Results from using Gaussian copula.

d = 2 and C = axes and

A = (x,∞] = (x1,∞]×(x2,∞]

and

P [X ∈ A] = P [X1 > x1, X2 > x2] = 0.

0

x

Risk contagion: Can two or more components of the risk vector
X be simultaneously large?

• Not if the model has asymptotic independence.

• This is the Achilles heel of the Gaussian copula.
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2. Asymptotic full dependence: Limit
measure concentrates on diagonal.

• Hard to find data examples.

0

∞

3. Asymptotic strong dependence:
Limit measure concen-
trates on a narrow cone
or wedge C.

Example: Returns
Exxon vs Chevron.
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Summary and strategy.

• If the risk region A is disjoint from C where the limit measure
ν(·) concentrates, the risk estimate of

̂P [Z ∈ A] ≈ 1

t
ν̂(A/b̂(t) = 0.

• Concentration on a narrow cone is evident in many mathematical
and data examples; present when modeling via Gaussian copula.

• Strategy:

– Decide that thresholded data is from model whose limit mea-
sure concentrates on a cone C that is a proper subset of R2

+.

– Estimate and then remove C
from the state space and use
remaining data to infer a 2nd
(lighter) heavy tail property on
R2

+ \ C.
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– Make non-zero risk estimates based on 2nd property.

– Create diagnostics to reveal:

∗ Presence of 2nd heavy tail property (Hillish plot).

∗ Estimated cone C (Diamond plot).

• A second regular variation on R2
+ \C allows non-zero estimate of,

for example,
P [Z2 − 2auZ1 > x],

ie, the probability of a loss when one buys

– 1 unit of security I2 with risk Z2 per unit; and

– sell 2au units of security I1 with risk Z1.
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2.3. (exxonr,chevronr)

• 1316 daily prices of Exxon and Chevron.

• October 10, 2001 to December 29, 2006 daily returns.

• Called (exxonr, chevronr).

• One expects strong dependence from two big companies engaged
in similar activities.
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Figure 1: Stock prices and scatterplot of Chevron and Exxon returns.
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2.3.1. Diamond plots

• Map (x, y) =(exxonr,chevronr) onto L1 unit sphere after discard-
ing points below a threshold value of x + y.

• Use
(x, y) 7→

( x

|x|+ |y|
,

y

|x|+ |y|

)
= θ = (θ1, θ2).

from
R2 7→ ℵ0 = [diamond] ⊂ R2.

• where the L1 unit sphere is

[diamond] = {(θ1, θ2) : |θ1|+ |θ2| = 1}.

• Experiment with mapping at various thresholds determined by k,
the number of order statistics of the norms |x|+ |y|.

• Use thresholds k = 400 and k = 70.

• Model for the angular measure S of limit measure ν is that S
concentrates in the first and third quadrants.

• Use range of θ1 in these quadrants as estimators. Get

1. for the first quadrant

(θ̂1, θ̂2) = (0.312, 0.701)
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and

2. in the third quadrant

(θ̂1, θ̂2) = (−0.814,−0.284).

• These θ̂’s correspond to slopes of rays in Cartesian coordinates of
(â1, â2) = (0.429, 2.226) for the first quadrant.
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Figure 2: Empirical angles (diamond plot) for 400 largest values under L1 norm
for (exxonr,chevronr) with histogram (left two plots) and the same for 70 largest
values (right two plots).
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3. Preferential Attachment as Model for Network Growth

Resnick and Samorodnitsky (2015); Samorodnitsky, Resnick, Towsley,
Davis, Willis, and Wan (2016); Wan, Wang, Davis, and Resnick (2016);
Wang and Resnick (2016)

3.1. A model

Bollobás et al. (2003); Krapivsky and Redner (2001)

• Model parameters: α, β, γ, δin, δout with α + β + γ = 1.

• G(n) = (Vn, En) is a directed random graph with n edges, N(n)
nodes, node set Vn and edge set

En = {(u, v) ∈ Vn × Vn : (u, v) ∈ En}.

• Node degree:

– In-degree of v in G(n) is D
(n)
in (v);

– Out-degree of v in G(n) is D
(n)
out(v).

• Obtain graph G(n) from G(n− 1) in a Markovian way as follows:
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1. α scenario: With probability α, ap-
pend to G(n−1) a new node v /∈ Vn−1 and
create directed edge v 7→ w ∈ Vn−1 with
probability

D
(n−1)
in (w) + δin

n− 1 + δinN(n− 1)
.

w	  

v	  

2. γ scenario: With probability γ, ap-
pend to G(n−1) a new node v /∈ Vn−1 and
create directed edge w ∈ Vn−1 7→ v /∈ Vn−1
with probability

D
(n−1)
out (w) + δout

n− 1 + δoutN(n− 1)
.

w	  

v	  

3. β scenario: With probability β, create
new directed edge between existing nodes

v ∈ Vn−1 7→ w ∈ Vn−1

with probability( D
(n−1)
out (v) + δout

n− 1 + δoutN(n− 1)

)( D
(n−1)
in (w) + δin

n− 1 + δinN(n− 1)

)
.

w	  

v
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3.2. Background.

Set

Nij(n) = # nodes with in-degree=i and out-degree=j in G(n).

Then (eg, Bollobás et al. (2003)) the limiting proportion of nodes with
in-degree=i and out-degree=j is

lim
n→∞

Nij(n)

N(n)
= p(i, j) = a prob mass function.

3.2.1. Marginal behavior.

The limiting degree frequency (p(i, j)) has power-law tails: For some
finite positive constants Cin and Cout,

pi(in) :=
∞∑
j=0

p(i, j) ∼ Cini
−αin as i→∞, as long as αδin + γ > 0,

pj(out) :=
∞∑
i=0

p(i, j) ∼ Coutj
−αout as j →∞, as long as γδout + α > 0,

where

αin = 1 +
1 + δin(α + γ)

α + β
, αout = 1 +

1 + δout(α + γ)

γ + β
.
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3.2.2. Joint behavior.

Resnick and Samorodnitsky (2015); Samorodnitsky, Resnick, Towsley,
Davis, Willis, and Wan (2016); Wan, Wang, Davis, and Resnick (2016);
Wang and Resnick (2016)
Set

c1 =
1

αin − 1
, c2 =

1

αout − 1
, a = c2/c1.

For x > 0, y > 0,

lim
m→∞

p([mc1x], [mc2y])

m−(1+c1+c2)
=

γ

α + γ

xδinyδout−1

c1Γ(δin + 1)Γ(δout)

∫ ∞
0

z−(2+1/c1+δin+aδout)e−(x
z
+ y

za )dz

+
α

α + γ

xδin−1yδout
c1Γ(δin)Γ(δout + 1)

∫ ∞
0

z−(1+a+1/c1+λ+aδout)e−(x
z
+ y

za )dz

= f(x, y;α, β, γ, δin, δout) = f(x, y;θ).
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3.3. Model Calibration/Fitting/Estimation

Issues, approaches, thoughts:

• Should we use asymptotics to do estimation? Note f(x, y;θ) re-
sults from essentially a double limit:

– Taking limn→∞Nn(i, j)/N(n) to get p(i, j).

– Letting i→∞ and j →∞ in a controlled way in p(i, j).

– Asymptotics philosophy can be implemented and requires us-
ing f(x, y;θ). Could use tail methods to estimate

∗ αin;

∗ αout;

and then the other parameters based on estimated angular
measure corresponding to f(x, y;θ).

– Asymptotic methods would be more robust against inevitable
model error but suffer in accuracy compare to model based
estimation when the model is correct (ie simulated).



Outline

Hidden Regular . . .

Preferential . . .

Threshold

Title Page

JJ II

J I

Page 17 of 25

Go Back

Full Screen

Close

Quit

• What data is available?

– Full history of edge creation with time stamps?

∗ Available when simulate network (Atwood, Ribeiro, and
Towsley (2015), J. Roy, P. Wan)

∗ Available with real data; time stamps can be unreliable.

∗ Full MLE methodology implemented and works well when
model is correct (simulated).
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· Simulate 5000 data sets with
105 edges from model with
θ = (0.3, 0.5, 0.2, 2, 1).

· For each data set, estimate
with full MLE θ.

· Make normal QQ-plot for 5000
normalized MLE estimates

· The fitted lines in black is R’s
qq-line function; the red line is
the 45-degree line through the
origin.

· Conclude: Estimates are
normal(0, 1).
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Data available? (continued)

– Fixed time snapshot of the network; effectively observe at
time n and NOT at times 1, . . . , n.

∗ MLE (approximate) still works well; estimators CAN but
unsurprisingly there is noticeable loss of efficiency com-
pared to MLE on full history.
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∗ Simulate 5000 data sets with
105 edges from model with
θ = (0.3, 0.5, 0.2, 2, 1).

∗ For each data set, estimate θ
with snapshot MLE.

∗ Make normal QQ-plots for
5000 normalized MLE esti-
mates

∗ The fitted line in black is R’s
qq-line function; the red line is
the 45-degree line through the
origin.

∗ Conclude: Estimates are nor-
mal but variance increased
due to loss of info.
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• Other issues?

– Is the data from a stationary model? Some success fitting
using piecewise parameters that are piecewise constant over
time.

– Our model of preferential attachment is linear in the in- and
out-degree. Other forms of preferential attachment?

– Wrestling with fitting real data to the model.

∗ Fit struggling.

∗ Some data have more than 3 scenarios and should have 5:

(α, β, γ, δ, ψ)

adding to 1.
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4. Minimum distance threshold selection

• For heavy tailed data, what part of the data should be used?

• Rule: use k upper order statistics.

• Clausett method (Clauset et al. (2009); Virkar and Clauset (2014))

– With data X1, . . . , Xn and order-statistics X(1) ≥ · · · > X(n),
use X(1) ≥ · · · > X(k).

– What k?

– Suggestion: Define KS distance between empirical tail CDF
and Pareto tail using k order statistics:

Dk := sup
y≥1

∣∣∣1
k

n∑
i=1

εXi/X(k)
(y,∞]− y−α̂(k)

∣∣∣, 1 ≤ k ≤ n.

Choose the optimal k∗ as the one that minimizes the KS
distance, that is,

k∗ := argmink∈IDk,
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• But: If data is really Pareto k∗ ∼ cn so what is the point?

• If data is Pareto but only from some point on, still have the chal-
lenge of finding the endpoint. The min distance method does a
reasonable job.

• If data is heavy tailed but not Pareto? Not clear this works in the
case of second order regular variation (eg. stable).
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