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Outline

1. Introduction
• Preferential Attachment (PA)

2. Common Neighbors Model (CN)
• Degree distribution
• Community structure
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Preferential Attachment

• Users prefer to connect to
nodes of high degree
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Preferential Attachment

• Users prefer to connect to
nodes of high degree

• Results in heavy-tailed degree
distribution
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Issues with Preferential Attachmment

The LinkedIn graph
1. does NOT have a power law degree distribution
2. has “community structure”
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Log-log plots of degree distribution
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1. does NOT have a power law degree distribution
2. has “community structure”



A Exam Emily Fischer

What is “community structure”?

• Strong community
structure

• More edges within
community than
between communities
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What is “community structure"?

• Preferential attachment
• One central hub around
high-degree node
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Common Neighbors Model
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Common Neighbors Model

Users prefer to connect to
nodes with whom they share
many mutual friends
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Common Neighbors Model
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nodes with whom they share
many mutual friends
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Common Neighbors Model

Sequence of graphs (Gt)t≥0.
• Given graph Gt with n(t) nodes and m(t) edges

• At time t + 1, a new node v arrives with probability α
• If no new arrival, select v uniformly among existing nodes

• Select receiving node w with probability proportional to number of
common neighbors between v and w

• Γv(t) is the neighborhood of v at time t
• Kvw(t) = |Γv(t) ∩ Γw(t)|

P(select w | sender = v) = Kvw(t) + δ∑
u Kvu(t) + δn(t)

• Form directed edge (v,w).
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Common Neighbors Model
What does Kvw(t) look like?

Hard to analyze - feedback
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Common Neighbor Process

• Want to model evolution of Kij(t) on its own.
• Start at K̃ij(0) = 0 for all pairs i, j.

• Given (K̃ij(t))i,j≥0, at t + 1,
• Select i uniformly from existing nodes
• Choose η = c(n(t))θ nodes, j1, j2, . . . , jη, preferentially with Kij`

(t) ,
and increase

Kij`
(t + 1) = Kij`

(t) + 1.
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Common Neighbor Process

Let
Ni(t) =

∑
j

K̃ij(t)

What is the distribution of Ni(t)?
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Common Neighbor Process

Theorem
Let Ni(t) =

∑
j K̃ij(t). Then there exists a random variable Zi such that

Ni(t)
tθ → Zi

in probability, where Zi has characteristic function

φZ (z) = exp
{
1− α
αθ

∫ αθ

0

1
t (eitz − 1)dt

}
.
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Common Neighbor Process
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Common Neighbor Process

Result
• The “total common neighbors” Ni(t) converges when scaled by tθ.

In progress/Future
• Limiting distribution for K̃ij(t).
• Use these distributions to analyze degree distribution of the graph
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Community Structure

• How to quantify “strong community structure”
• Compare community structure of CN and PA.
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Community Structure CN vs. PA



A Exam Emily Fischer

Modularity

Definition
Given a graph partitioned into c communities, the modularity is

Q =
c∑

i=1
(eii − a2

i )

where eii is the fraction of edges with both end vertices in community i,
and ai is the fraction of ends of edges with vertices in community i.
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Community Detection

• Community detection algorithms aim to assign nodes to
communities in a way that is reasonable

• Some algorithms maximize modularity: Fast-greedy (FG),
Largest-eigenvector (LE)

• But there are other methods as well: Edge-betweenness (EB),
Walktrap (WC).
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Modularity

Averages of modularity over 100 trials (α = .2, δ = .5)
Graph EB FG LE WC
CN 500 .450 .472 .423 .401
PA 500 .276 .379 .333 .251
CN 1000 .310 .402 .350 .301
PA 1000 .103 .328 .279 .190
CN 5000 .145 .320 .176
PA 5000 .039 .277 .120
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Conclusion

1. PA mode lacks characteristics of LinkedIn network:
• Power-law degree distribution
• Lack of community structure

2. Common Neighbors Model
• Limiting distribution of Ni(t) in the common neighbors process
• Better community structure than PA
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Edge Acceptance/Rejection

Node v sends an invitation to a node w.
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Model 1: Edge Acceptance/Rejection

w accepts the invitation with probability pvw(t).



A Exam Emily Fischer

Edge Acceptance/Rejection

How can acceptance probability achieve goals of (1) non-power law
degree distribution and (2) community structure?
• Rich may choose not to get richer
• Probability of acceptance based on communities

pvw(t) =
{

p Cv = Cw

q Cv 6= Cw .
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Edge Acceptance/Rejection

For now, constant acceptance probability

pvw(t) = p for all v,w and t ≥ 0.


