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Outline

1. Introduction
o Preferential Attachment (PA)
2. Common Neighbors Model (CN)

e Degree distribution
e Community structure
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Preferential Attachment

e Users prefer to connect to
nodes of high degree



A Exam EmiLy FISCHER

Preferential Attachment

e Users prefer to connect to
nodes of high degree

e Results in heavy-tailed degree
distribution
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Issues with Preferential Attachmment

The LinkedIn graph
1. does NOT have a power law degree distribution

2. has “community structure”
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Log-log plots of degree distribution
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Issues with Preferential Attachmment

The LinkedIn graph
1. does NOT have a power law degree distribution

2. has “community structure”
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What is “community structure”?

e Strong community
structure

e More edges within
community than
between communities
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What is “community structure"?

o

e Preferential attachment

e One central hub around
high-degree node
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Common Neighbors Model
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Common Neighbors Model

Users prefer to connect to
nodes with whom they share
many mutual friends
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Common Neighbors Model

Sequence of graphs (G¢)¢>0.
e Given graph G; with n(t) nodes and m(t) edges
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Sequence of graphs (G¢)¢>0.
e Given graph G; with n(t) nodes and m(t) edges
e At time ¢+ 1, a new node v arrives with probability a
e If no new arrival, select v uniformly among existing nodes
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Common Neighbors Model

Sequence of graphs (G¢)¢>0.
e Given graph G; with n(¢) nodes and m(t) edges
e At time ¢+ 1, a new node v arrives with probability a
e If no new arrival, select v uniformly among existing nodes

e Select receiving node w with probability proportional to number of
common neighbors between v and w
o T',(t) is the neighborhood of v at time ¢
L4 Kvw(t) - |F7J(t) N Fw(t)|

P(select w | sender = v) =
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Common Neighbors Model

Sequence of graphs (G¢)¢>0.
e Given graph G; with n(¢) nodes and m(t) edges
e At time ¢+ 1, a new node v arrives with probability a
e If no new arrival, select v uniformly among existing nodes

e Select receiving node w with probability proportional to number of
common neighbors between v and w
o T',(t) is the neighborhood of v at time ¢
L4 Kvw(t) - |F7J(t) N Fw(t)|

P(select w | sender = v) =

e Form directed edge (v, w).
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Common Neighbors Model

What does Ky, (t) look like?
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Common Neighbors Model

What does Ky, (t) look like?
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Common Neighbors Model

What does Ky, (t) look like?

Hard to analyze - feedback
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Common Neighbor Process

e Want to model evolution of Kj;(t) on its own.
o Start at K;;(0) = 0 for all pairs 7, j.
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Common Neighbor Process

e Want to model evolution of Kj;(t) on its own.
o Start at K;;(0) = 0 for all pairs 7, j.

e Given (Kz’j(t))i,jzo, at t + 1,

e Select ¢ uniformly from existing nodes
[ ]
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Common Neighbor Process

e Want to model evolution of Kj;(t) on its own.
o Start at K;;(0) = 0 for all pairs 7, j.

o Given (Kz’j(t))i,jzo, at t + 1,
e Select ¢ uniformly from existing nodes
e Choose i = ¢(n(t))? nodes, ji, 7, .- - , jn, preferentially with Ky, (t),
and increase

Kije(t + 1) = i(ije(t) + 1L
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Common Neighbor Process

Let

What is the distribution of N;(t)?
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Common Neighbor Process

Let Ny(t) = 3=; Kyj(t). Then there exists a random variable Z; such that

Ni(t)

/0 = Zi

in probability, where Z; has characteristic function

¢Z(Z) = exp{l;aa/o 1( itz )dt}
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Common Neighbor Process

Theoretical params: theta=1.4, alpha=.4
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Common Neighbor Process

Result

o The “total common neighbors” N;(t) converges when scaled by 7.
In progress/Future

o Limiting distribution for Kj;(t).

e Use these distributions to analyze degree distribution of the graph
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Community Structure

e How to quantify “strong community structure”

e Compare community structure of CN and PA.
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Community Structure CN vs. PA

CN, 200 nodes, 500 edges, attraction=high PA, 200 nodes, 500 edges, attraction=high
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Modularity

Given a graph partitioned into ¢ communities, the modularity is

Q=2 (ei—a})
=1

where e;; is the fraction of edges with both end vertices in community ¢,
and a; is the fraction of ends of edges with vertices in community 7.
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Community Detection

e Community detection algorithms aim to assign nodes to
communities in a way that is reasonable

e Some algorithms maximize modularity: Fast-greedy (FG),
Largest-eigenvector (LE)

e But there are other methods as well: Edge-betweenness (EB),
Walktrap (WC).
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Modularity

EmiLy FISCHER

Averages of modularity over 100 trials (a = .2, = .5)

Graph EB | FG | LE | WC
CN 500 | .450 | .472 | .423 | .401
PA 500 | .276 | .379 | .333 | .251
CN 1000 | .310 | .402 | .350 | .301
PA 1000 | .103 | .328 | .279 | .190
CN 5000 | .145 | .320 176
PA 5000 | .039 | .277 120
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Conclusion

1. PA mode lacks characteristics of LinkedIn network:
o Power-law degree distribution
e Lack of community structure

2. Common Neighbors Model

o Limiting distribution of N;(¢) in the common neighbors process
e Better community structure than PA
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Edge Acceptance/Rejection

Node v sends an invitation to a node w.
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Model 1: Edge Acceptance/Rejection

w accepts the invitation with probability py(t).
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Edge Acceptance/Rejection

How can acceptance probability achieve goals of (1) non-power law
degree distribution and (2) community structure?

¢ Rich may choose not to get richer

e Probability of acceptance based on communities
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Edge Acceptance/Rejection

How can acceptance probability achieve goals of (1) non-power law
degree distribution and (2) community structure?

¢ Rich may choose not to get richer: py,(t) J 0

e Probability of acceptance based on communities:

b Cv:Cw
thz
Pl {q Cy # Cu.
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Edge Acceptance/Rejection

For now, constant acceptance probability

Pow(t) =p for all v,w and ¢t > 0.



