

Avoiding Threshold Selection in Extremal Inference

Gennady Samorodnitsky

ty Julian Sun

Cornell University ORIE gs18@cornell.edu Cornell University ORIE ys598@cornell.edu

- Much of extreme value analysis involves extracting values over certain thresholds
- Idea of "optimal threshold"
- Problems with "optimality"
 - Optimal threshold in terms of marginal distribution
 - Observations below threshold not used
 - Estimators often sensitive to thresholds

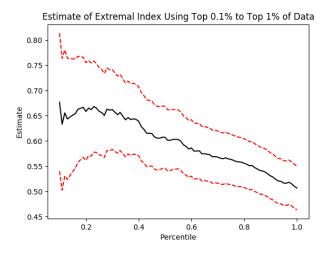


Figure: True value $\theta = 3/4$

Threshold Selection Problem $0 \bullet 0$

Extremal Index - Blocks Estimator 00000000 3/12

Approach to Avoiding Thresholds

- Using data below optimal threshold;
- Giving less weight to smaller observations;
- Achieve reduced asymptotic variance, maintain small bias.

Extremal Index and Blocks Estimator

Take stationary sequence (X_i) , for (u_n) satisfying $n\overline{F}(u_n) \to \tau$ for some $\tau > 0$, the exceedance process

$$N_n = \sum_{i=1}^n \epsilon_{i/n} I_{\{X_i > u_n\}} \to_d N = \sum_{i=1}^\infty \xi_i \epsilon_{\Gamma_i},$$

where (Γ_i) is a Poisson process with intensity $\theta \tau$, and (ξ_i) are the distributions of extremal cluster sizes.

- Extremal index: θ is the reciprocal of expected value of ξ_i
- Blocks estimator: exceedance per block among blocks with at least one exceedance

Blocks Estimator with Threshold u_n

Divide n observations into contiguous blocks of size $r_n = o(n)$, for suitable u_n , take

> $\hat{M}_n = \#$ of blocks with exceedance over u_n , $\hat{\tau}_n = \#$ of exceedances over u_n ,

then blocks estimator $\hat{\theta}_n = \hat{M}_n / \hat{\tau}_n$.

If $h_n = o(n)$ with $r_n = o(n/h_n)$, $\frac{n}{h_n}\overline{F}(u_n) \to \tau$ for some τ , then $\hat{\theta}_n$ is consistent, and

$$\sqrt{h_n}(\hat{\theta}_n - b_n - \theta) \rightarrow_d \mathcal{N}(0, \frac{\theta(\theta^2 m_2 - 1)}{\tau}),$$

where b_n is the bias, and m_2 is second moment of cluster size distribution.

THRESHOLD SELECTION PROBLEM

Extremal Index - Blocks Estimator

6/12

Using Observations below u_n

Take
$$u_n = u_n^1 > u_n^2 > \cdots > u_n^m$$
, and
 $\hat{M}_n(u_n^s) = \#$ of blocks with exceedance over u_n^s ,
 $\hat{\tau}_n(u_n^s) = \#$ of exceedances over u_n^s ,

use estimator

$$\tilde{\theta}_n = \frac{a_1 \hat{M}_n(u_n^1) + \dots + a_m \hat{M}_n(u_n^m)}{a_1 \hat{\tau}_n(u_n^1) + \dots + a_m \hat{\tau}_n(u_n^m)}$$

where $a_1, ..., a_m > 0$.

Similar consistency and asymptotic normality conditions hold under weak dependence assumptions.

Bias Correction

Under mild assumptions, bias term b_n is asymptotically linear in τ :

 $b_n \sim c_n \tau + \zeta_n,$

where $E\zeta_n = 0$ and c_n is a function of r_n, h_n, θ .

One can use linear regression to estimate the bias.

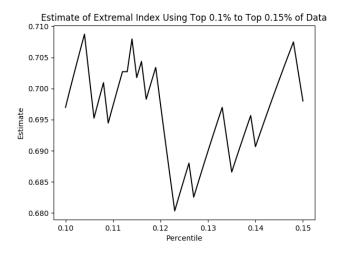


Figure: True value $\theta = 3/4$

Threshold Selection Problem

EXTREMAL INDEX - BLOCKS ESTIMATOR 9/12

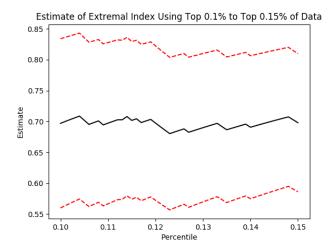


Figure: True value $\theta = 3/4$

Threshold Selection Problem

Extremal Index - Blocks Estimator

10/12

JULIAN SUN

Same Example

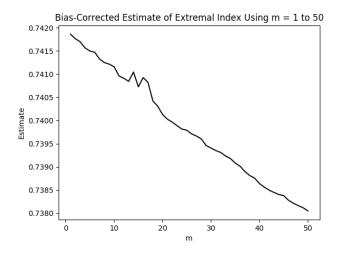


Figure: True value $\theta = 3/4$

THRESHOLD SELECTION PROBLEM 000

EXTREMAL INDEX - BLOCKS ESTIMATOR 11/12

Julian Sun

Same Example

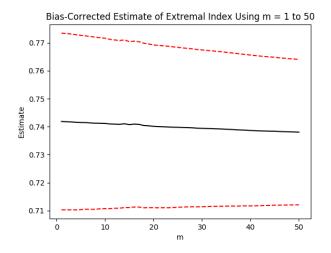


Figure: True value $\theta = 3/4$

THRESHOLD SELECTION PROBLEM 000

EXTREMAL INDEX - BLOCKS ESTIMATOR 12/12