MURI Update 5.12

Phyllis Wan, Richard Davis

Columbia University

May 12, 2017

Part I - Inference of preferential attachment model

Linear preferential attachment model

- Add one edge each time t

Linear preferential attachment model

- Add one edge each time t

Linear preferential attachment model

- Add one edge each time t

Linear preferential attachment model

- Add one edge each time t

Linear preferential attachment model $\left(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\right)$

- How to add an edge?

With probability $\alpha \quad$ With probability $\beta \quad$ With probability γ

Linear preferential attachment model $\left(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\right)$

With probability α

$\operatorname{Pr}($ node w is chosen $) \propto D_{\text {in }}(w)+\delta_{\text {in }}$

- Small $\delta_{\text {in }}$ - popular nodes get more attention
- Very large $\delta_{\text {in }}$ - all node get (almost) equal attention

Linear preferential attachment model $\left(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\right)$

With probability γ

$\operatorname{Pr}($ node v is chosen $) \propto D_{\text {out }}(v)+\delta_{\text {out }}$

Linear preferential attachment model $\left(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\right)$

With probability β

$\operatorname{Pr}($ nodes w, v are chosen $) \propto\left(D_{\text {in }}(w)+\delta_{\text {in }}\right)\left(D_{\text {out }}(v)+\delta_{\text {out }}\right)$

Power laws in degree distributions

- As $n \rightarrow \infty$,

$$
\begin{gathered}
\frac{N_{i}^{\text {in }}(n)}{N(n)} \xrightarrow[\rightarrow]{\text { a.s. }} p_{i}^{\text {in }} \sim i^{-a_{1}} \\
\frac{N^{\text {out }} j(n)}{N(n)} \xrightarrow[\rightarrow]{\text { a.s. }} p_{j}^{\text {out }} \sim j^{-a_{2}}
\end{gathered}
$$

- with

$$
a_{1}=1+\frac{1+\delta_{\text {in }}(\alpha+\gamma)}{\alpha+\beta}, \quad a_{2}=1+\frac{1+\delta_{\text {out }}(\alpha+\gamma)}{\beta+\gamma} .
$$

Inference on the parameters $\left(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\right)$?

The kind of data likely to be available...

- The full history of the network
- A snapshot of the network

MLE estimation for parameters $\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right)$

- If the full history of the network with n edges is observed

$$
\begin{aligned}
& L\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right) \\
& =\prod_{t=1}^{n}\left(\alpha \frac{D_{\text {in }}^{(t-1)}\left(v_{t}^{(2)}\right)+\delta_{\text {in }}}{t-1+\delta_{\text {in }} N(t-1)}\right)^{\mathbf{1}_{\left\{J_{t}=1\right\}}} \\
& \quad \times \prod_{t=1}^{n}\left(\beta \frac{D_{\text {in }}^{(t-1)}\left(v_{t}^{(2)}\right)+\delta_{\text {in }}}{t-1+\delta_{\text {in }} N(t-1)} \frac{D_{\text {out }}^{(t-1)}\left(v_{t}^{(1)}\right)+\delta_{\text {out }}}{t-1+\delta_{\text {out }} N(t-1)}\right)^{\mathbf{1}_{\left\{J_{t}=2\right\}}} \\
& \quad \times \prod_{t=1}^{n}\left((1-\alpha-\beta) \frac{D_{\text {out }}^{(t-1)}\left(v_{t}^{(1)}\right)+\delta_{\text {out }}}{t-1+\delta_{\text {out }} N(t-1)}\right)^{\mathbf{1}_{\left\{J_{t}=3\right\}}}
\end{aligned}
$$

Theorem

The MLE estimator

$$
\hat{\boldsymbol{\theta}}:=\left(\hat{\alpha}, \hat{\beta}, \hat{\delta}_{\text {in }}, \hat{\delta}_{\text {out }}\right)=\arg \max L\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right)
$$

is unique, strongly consistent, and asymptotically normal, i.e.

$$
\hat{\boldsymbol{\theta}} \xrightarrow{\text { a.s. }}\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right)=: \boldsymbol{\theta},
$$

and

$$
\sqrt{n}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \xrightarrow{d} N\left(\mathbf{0}, I^{-1}(\boldsymbol{\theta})\right)
$$

where $I(\boldsymbol{\theta})$ is the asymptotic Fisher information matrix for the parameters.

One-snapshot estimation for parameters $\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right)$

- If only a snapshot of the network with n edges is observed,

$$
G(n)=(V(n), E(n))
$$

One-snapshot estimation for parameters $\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right)$

- approximate the score functions using law of large numbers

$$
\begin{aligned}
& \frac{1}{n} \frac{\partial \log L}{\partial \delta_{\text {in }}} \approx \sum_{i=0}^{\infty} \frac{N_{>i}^{\text {in }}(n) / n}{i+\delta_{\text {in }}}-\frac{1-\alpha-\beta}{\delta_{\text {in }}}-\frac{1-\beta}{1+\delta_{\text {in }}(1-\beta)}(\alpha+\beta)=0, \\
& \frac{1}{n} \frac{\partial \log L}{\partial \delta_{\text {out }}} \approx \sum_{j=0}^{\infty} \frac{N_{>j}^{\text {out }}(n) / n}{j+\delta_{\text {out }}}-\frac{\alpha}{\delta_{\text {out }}}-\frac{1-\beta}{1+\delta_{\text {in }}(1-\beta)}(1-\alpha)=0 .
\end{aligned}
$$

One-snapshot estimation for parameters $\left(\alpha, \beta, \delta_{\text {in }}, \delta_{\text {out }}\right)$

- approximate the score functions using law of large numbers

$$
\begin{aligned}
& \frac{1}{n} \frac{\partial \log L}{\partial \delta_{\text {in }}} \approx \sum_{i=0}^{\infty} \frac{N_{>i}^{\text {in }}(n) / n}{i+\delta_{\text {in }}}-\frac{1-\alpha-\beta}{\delta_{\text {in }}}-\frac{1-\beta}{1+\delta_{\text {in }}(1-\beta)}(\alpha+\beta)=0, \\
& \frac{1}{n} \frac{\partial \log L}{\partial \delta_{\text {out }}} \approx \sum_{j=0}^{\infty} \frac{N_{>j}^{\text {out }}(n) / n}{j+\delta_{\text {out }}}-\frac{\alpha}{\delta_{\text {out }}}-\frac{1-\beta}{1+\delta_{\text {in }}(1-\beta)}(1-\alpha)=0 .
\end{aligned}
$$

- moment matching

$$
\begin{aligned}
\frac{N_{0}^{\mathrm{in}}(n)}{n} & \rightarrow p_{0}^{\text {in }}=\frac{\alpha}{\left(1+\frac{\alpha+\beta}{1+\delta_{\text {in }}(1-\beta)} \delta_{\text {in }}\right)} \\
\frac{N_{0}^{\text {out }}(n)}{n} \rightarrow p_{0}^{\text {in }} & =\frac{1-\alpha-\beta}{\left(1+\frac{1-\alpha}{1+\delta_{\text {out }}(1-\beta)} \delta_{\text {out }}\right)}
\end{aligned}
$$

- Solve the above equations to obtain $\tilde{\boldsymbol{\theta}}=\left(\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}_{\text {in }}, \tilde{\delta}_{\text {out }}\right)$

Theorem: strong consistency of the one-snapshot estimation
The estimator $\tilde{\boldsymbol{\theta}}:=\left(\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}_{\text {in }}, \tilde{\delta}_{\text {out }}\right)$ is unique and strongly consistent, i.e.

$$
\tilde{\theta} \xrightarrow{\text { a.s. }} \boldsymbol{\theta} .
$$

- Asymptotic normality is implied from simulations but yet to be proved (Tiandong?)
- From the simulations, $\tilde{\boldsymbol{\theta}}$ can achieve $\sim 20 \%$ efficiency compared to MLE, since less information is provided.

Dutch Wiki talk network

- $A \rightarrow B$: user A writing a message on the talk page of user B
- 225,749 nodes (users) and 1,554,699 edges (messages)
- full history available

Dutch Wiki talk network

- Goodness-of-fit of degree distributions

Dutch Wiki talk network

- Separate the network into ~ 150 time intervals
- Fit the model in each interval

Linear preferential attachment model $\left(\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}\right)$

With probability α

$\operatorname{Pr}($ node w is chosen $) \propto D_{\text {in }}(w)+\delta_{\text {in }}$

- Small $\delta_{\text {in }}$ - popular nodes get more attention
- Very large $\delta_{\text {in }}$ - all node get (almost) equal attention

Dutch Wiki talk network

- Discover the existence of accounts with broadcasting feature
- Remove 37 administrative accounts

Dutch Wiki talk network

- Re-fit the linear preferential attachment model

Part II - Threshold selection for multivariate heavy-tailed data

Multivariate regular variation

Let $(R, \boldsymbol{\Theta})=\left(\|\mathbf{X}\|, \frac{\mathbf{x}}{\|\mathbf{X}\|}\right), \mathbf{X} \sim \mathbf{R V}(\alpha)$ if and only if $R \sim R V(\alpha)$ and

$$
P(\Theta \in \cdot \mid R>r) \rightarrow S(\cdot), \quad r \rightarrow \infty .
$$

Given $\left(R_{1}, \boldsymbol{\Theta}_{1}\right), \ldots,\left(R_{n}, \boldsymbol{\Theta}_{n}\right)$, how to model $S(\cdot)$?

- Take $\left\{\boldsymbol{\Theta}_{i}\right\}$ for r_{0} large

How to choose r_{0} ?

- Choose r_{0} s.t. when conditional on $R>r_{0}, \boldsymbol{\Theta}$ and R are approximately independent

How to measure the dependence between Θ and R ?

- Distance covariance

A simulated example

Figure: Simulated \mathbf{X} where R is independent of Θ only when conditioning on $R>r_{0.9}$.

A simulated example (cont.)

Figure: Simulated \mathbf{X} where R is independent of Θ only when conditioning on $R>r_{0.9}$.

A simulated example (cont.)

Figure: Simulated \mathbf{X} where R is independent of Θ only when conditioning on $R>r_{0.9}$.

A simulated example (cont.)

Figure: Simulated \mathbf{X} where R is independent of Θ only when conditioning on $R>r_{0.9}$.

A simulated example (cont.)

Figure: Simulated \mathbf{X} where R is independent of Θ only when conditional on $R>r_{0.9}$.

A simulated example (cont.)

Figure: Simulated \mathbf{X} where R is independent of Θ only when conditional on $R>r_{0.9}$.

A simulated example (cont.)

Figure: P -value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: P -value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: P -value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: P -value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: P -value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: Mean p-value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: Mean p-value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

A simulated example (cont.)

Figure: Mean p-value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

How to choose the change point?

Figure: Mean p-value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

Idea 1: CUSUM algorithm (Page (1954))

For each k,

- Consider $\sum_{i=j}^{k}\left(0.5-p v_{i}\right)$ for $j=1, \ldots, k$
- Calculate

$$
H=\max _{j}\left[\sum_{i=j}^{k}\left(0.5-p v_{i}\right)\right]
$$

- Detect change point when H exceed a certain threshold h_{0}

Idea 1: CUSUM algorithm

Figure: CUSUM plot for the previous p-value path.

Idea 1: CUSUM algorithm

Figure: Mean p-value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

Idea 2: Wild binary segmentation (Fryzlewicz (2014))

- Based on the CUSUM idea
- Fit a piecewise constant spline to the data

Idea 2: Wild binary segmentation

Figure: Mean p-value of test of independence of truncated R and Θ vs. the truncation level. The true independence level is 0.1 .

