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Moving averages of heavy tailed innovations

Let Z;, i =1,2,3,... bei.i.d. heavy tailed and regular varying:

PZI>x) = x°L(x)
P(Z; > x) )
PUZT> %)

P(Z; < —x) B
Pz =y — 9717P

where L(+) is slowly varying and p € [0, 1].
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Moving averages of heavy tailed innovations

Let Z;, i =1,2,3,... bei.i.d. heavy tailed and regular varying:

PZI>x) = x°L(x)
P(Z; > x) )
PUZT> %)

P(Z; < —x) B
Pz =y — 9717P

where L(+) is slowly varying and p € [0, 1].
Consider the moving average

oo
Xe= Y gZ
j=—o0

Cline (1983) showed this exists if > 22 __|cj|° < 0 for some 0 < § < «,
d<1L
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Davis and Resnick (1986)

For simplicity, assume 1 < oo < 2 and EZ; = 0. Correlations of lag h

> GiCith
p(h) = J J2
i
A(h) 2 XiXj+h
2
2%
Then ) s s
as N d 1 d
o (5(1),...,7(d A ,
O O)CY L R
where S;'s are independent, Sg positive /2 stable and Sy, ..., 5y) are
i.i.d. « stable.
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Testing for independence

To test p(1) = 0 with correct significance level, need to compute quantiles

of R = 51/So, the ratio of two independent stable terms. The cdf and pdf
of R are given by

Fr(x) = P(R < x) = / " R(b)h(t)dt,
) = Fr0) = [ eh(edf(e)d

where F; is the cdf of S; and f; is the pdf of ;.

These can be evaluated numerically using existing algorithms for Fi(-) and
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Quantiles F5'(p) of R = S1/So when S; ~ S(a,0,1,0) and

So ~ S(a/2,1,1,0).

p
al| 09 0.95 0.975 0.99
1.0 | 2.491 6.187 13.987 43.810
1.1 | 1867 4.111 8.181 19.968
1.2 | 1452 2914 5326 11.541
1.3 | 1.142 2116 3.595 7.069
1.4 0.901 1.557 2483 4.541
15| 0.704 1.143 1723 2921
16| 0537 0825 1.178 1.866
170391 0570 0.774 1.141
1.8 |0.258 0.359 0.465 0.634
19]0.131 0.175 0.217 0.274
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To test simultaneously that d correlations are 0, need to know the
distribution of

M = max(Sl/So, 50/50, ceey Sd/SO),

where Sg, S1,..., Sy are independent stable and 51, Sp, ..., Sy i.i.d. Using
conditional independence given Sp, M has cdf and pdf

Fu(t) = P(M<t)=P(S/S < t,)) = /Oo P(S; < ts,V))fo(s)ds
0
- /0 T IRu(t9))fo(s)ds, (1)

fn(t) = F,/w(t):d/OOO[Fl(ts)]d—lfl(ts)sfo(s)ds.
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To test simultaneously that d correlations are 0, need to know the
distribution of

M = max(Sl/So, 50/50, ceey Sd/SO),

where Sg, S1,..., Sy are independent stable and 51, Sp, ..., Sy i.i.d. Using
conditional independence given Sp, M has cdf and pdf

Fu(t) = P(M<t)=P(S;/So < t,V)) = /OO P(S; < ts,V))fo(s)ds
0
= [ 1R ) (1)
fm(t) = Fiy(t) = d/Oo[Fl(ts)]d_lfl(ts)sfo(s)ds.
0

Also have code to numerically compute the cdf and pdf of the product
P = X1 X; of independent stable terms.

£
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Robust PCA and ICA

Principal components analysis (PCA) is a popular technique for analyzing
data, tries to extract the directions with maximum dispersion. Traditional
PCA can behave poorly when the data is heavy tailed; we propose a robust
PCA.

When there is no elliptical structure, we propose using an modified version
of Independent Component Analysis (ICA).
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Traditional PCA
Let X1, Xo,..., X, be a d-dim. sample
Compute the sample covariance matrix S.

Perform an eigenvalue decomposition of S: eigenvalue A; with associated
eigenvector v;, j = 1,...,d. Assume eigenvalues are ranked:

A1 > X > -+ Ay > 0. Then vy is the first principal component, v; is the
second, etc.

S|
v T T T T
-10 -5 o 5 10

J. Nolan Ratios of Stable & Robust PCA/ICA MURI Meeting 10 / 35



One application - dimension reduction

In regression, principal component regression is used to reduce the number
of variables. In engineering and computer science, high dimensional data
use PCA to find a small number of directions that explain most of the
variability.

Example: image processing. V. Hlavac at Czech Technical University in
Prague applied PCA to images with 321 x 261 = 83781 pixels. Stack the
columns of a picture to get a 83781 dimensional vector. Started with 32
photos of a boy with different facial expressions. So data matrix has

n = 32 samples in a d = 83781 dimensional space.

He found the first four (1?) principal components and then ‘reconstructed’
each of the 83781 dim. photos as a linear combination: image =
gib1 + gobo + g3bs + q4bs, where by, ... bs are the eigenvectors
associated with the 4 largest eigenvalues.

£
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What if we have 32 instances of images?

i [ [
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@
Approximation by 4 principal components only

20/26

¢ Reconstruction of the image from four basis vectors b;, i = 1,...,4 which
can be displayed as images.

@ The linear combination was computed as g1b1 + gabo + g3bs + q4bs =
0.078 by + 0.062bs — 0.182b3 + 0.179 by.

taq,
1
Note: most change is around the eyes and mouth. . e
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What happens when data is heavy tailed?

Computing the sample covariance requires calculating the means of all the
components and second moments. The mean is heavily influenced by
outliers, and second moments are even more heavily influenced by outliers.

Next slide shows 2-dimensional simulations with elliptical stable data and

a = 1.5. Solid lines show exact “principal components”, dashed lines show
estimates from traditional PCA.
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Robust PCA in the elliptical stable case

When X is elliptical stable, there is a corresponding shape matrix R, a
d x d positive definite matrix that determines the shape. Two
representations:

X =R 1Y2Z+5,
where Z is isotropic/radially symmetric a-stable.
X = AY/2G + 4,

where A > 0 is a positive (a/2)-stable univariate stable r.v. and
G ~N(0, R).

Robust PCA: estimate center § and shape matrix R by a method that takes

into account the heavy tails in the data. Then do an eigen-decomposition
on R (instead of sample covariance) to get principal values from the
B
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Projection approach

If X is multivariate a-stable, then for any vector (direction) u, the inner
product (u, X) is univariate stable, with parameters S (a, S()u),y(u), 5(u).

For PCA, we will assume elliptical symmetry, in which case,
(u,X) ~ S (a,0,7(u),0)), where v(u) = (u” Ru)'/? completely
determines the joint distribution.

Given a data set, estimate « and pick a sequence of directions uy, ..., un
and estimate scale function 4(u;), j =1,..., m. (Can use any univariate
estimation method: quantile, fractional moments, characteristic function
method, maximum likelihood, etc.) Use these estimated scale functions to
estimate shape matrix R. (Extra step: guarantee that R is non-negative
definite.)

d = 2 dimensional examples with varying a.

£
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Estimating direction of first eigenvector

sample covar
angle between exact & estimated first eigenvector 2
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Estimating eigenvalues

sample covar

eigenvalue ratio, exact= 5.667 §
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Higher dimensions

Method works for dimension d up to 100.

To assess how well the methods works in moderate dimensions, we
consider a model with d = 10 dimensional elliptical stable model with
a = 1.5 and shape matrix R a diagonal matrix with diagonal
(3,3,3,3,3,0.1,0.1,0.1,0.1,0.1). This is essentially a 5 dimensional model
embedded in 10 dimensional space. We examine two issues:
@ how well normal PCA estimates the eigenvalues vs how well stable
PCA estimates them

@ how well the two methods estimate the span of the eigenvalues
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For the first question, we simulated a large data set (n = 10000) and
estimated the principal components using both methods. Following figures
shows that normal PCA gives extremely large estimates of the first 5
eigenvalues, and they vary noticeably. In contrast, stable PCA (second
page) gives a correct estimate of the first 5 eigenvalues and a clear, abrupt
change for the remaining 5 eigenvalues.
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Eigenvalues for normal PCA

normal PCA eigenvalues
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Eigenvalues for stable PCA

stable PCA eigenvalues
n=10000 alpha=1.487
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Span of eigenvalues

Crone and Crosby (1995) define a distance between subspaces, which we
use to measure the distance between exact and estimated span of k =5

principal components for same simulation (o = 1.5, d = 10, most of
dispersion in first 5 components) for sample sizes n = 100 and = 1000:

Distance between exact m=5 dim. subspace
and estimated subspace, d=10, n=100, alpha=1.5

Distance between exact m=5 dim. subspace
and estimated subspace, d=10, n=1000, alpha=1.5

< [

==

s

T
normal.PCA
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Non-elliptical stable case - Independent Component
Analysis (ICA)
Here it can be meaningless to use PCA, even the robust PCA described

above: there are very non-elliptical dependence structures. One interesting
case is when there are independent components:

X = AZ,

where A is a d x m matrix of coefficients and Z = (Z3,...,Z,) are i.i.d.
stable. (Equivalently, the spectral measure of X is discrete.)

Want an robust [CA.
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Non-elliptical stable case - Independent Component
Analysis (ICA)

Here it can be meaningless to use PCA, even the robust PCA described
above: there are very non-elliptical dependence structures. One interesting
case is when there are independent components:

X = AZ,

where A is a d x m matrix of coefficients and Z = (Zy, ..., Zy) are i.i.d.
stable. (Equivalently, the spectral measure of X is discrete.)

Want an robust [CA.

Note that we can have m< d, m=d, or m > d. When m=d and A is
invertible, we can recover the source Z = A~1X. When m < d, can reduce
to lower dimensional problem and recover Z. When m > d, it is not
generally possible to recover Z in this way. Maybe some other way? Herg
we are trying to discover the multivariate structure.
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Simulation with m = 3 components ind = 2 dimensions

32 gridpoints
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ICA in the stable case: m known

Let X;, i =1,...,n be a sample from a multivariate stable distribution.
Use the fact that linear combinations of a multivariate stable r.v. are
univariate stable.

Pick a grid uy, up, ..., Uygiq. For each j =1,... ngrid, calculate the
univariate data set: y;j; = (u;, X;), i =1,...,n. Let 3; and j; be the
univariate scale and skewness of this projection in direction u;.

m m

. ) ~ 2 3.2 . 2
A" :=arg m/{n ;('Yja - 'VﬁA) + 2(6171?6 - BJ:APYJ?:A) ’
i= J=

where 7 4 and (3; 4 are the exact scale and skewness for the projection in
direction u; for the ICA model given by X = AZ.
Above objective function isn't always convex - can be numerical problems

minimizing. @
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ICA in the stable case: m unknown

Stepwise approach: vary m and look for point where larger values of m
don't add much to the fit.

AlICc seems to do a good job selecting correct m.

2m(m+1)

AlCc =2 21 bjF _
Ce = 2m + 2log(Ob; Il)—i_ngrid—m—l’

where ObjFn is the optimal value of the objective function on previous
page.

This AlCc penalty uses the number of TERMS m, not the number of
PARAMETERS= md. Do not know how to justify this? Richard

suggested using a lasso-type penalty using lengths of new column vectors.
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Varying m
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Determining m using AlCc

determining m

10
I

AlCc

m @
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3 dim example, m = 4 points

alpha= 1.5, n= 5000
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Recovered vs exact point masses and locations

Red lines are exact, blue lines are estimated with stable ICA. @
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Future work

@ X only in the domain of attraction, not itself stable OR elliptical, not
as heavy tails, e.g. multivariate elliptical t-distibutions.

o ICA with different independent terms having different distributions.
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