r-largest jump or observation; trimming; PA models

Sidney Resnick
School of Operations Research and Industrial Engineering
Rhodes Hall, Cornell University
Ithaca NY 14853 USA

http://people.orie.cornell.edu/sid sir1@cornell.edu

May 10, 2017

Outline

rth largest

Trim subordinator

Quit

Work with: Tiandong Wang, R. Maller, B. Buchmann, Y. Fan Ipsen

1. Outline

- Preferential attachment models
 - Fitting the directed linear PA model (Wan, Wang, Davis, and Resnick (2017)).
 - * MLE vs asymptotic EVT methods.
 - \ast MLE superior on simulated data.
 - * Model simplistic for real data but can alert you to interventions and deviations from the model.
 - Tiandong: Embedding undirected (and hopefully directed)
 PA model in birth (Birth-Immigration, Markov branching)
 processes. Goals:
 - * Seek methodology more robust to changes in PA assumptions.
 - * Seek justifications for using EVT methods on data that is far from iid.
- rth largest of an iid sequence or rth highest point in a Poisson random measure or rth largest jump of a Lévy process; trim a Lévy process; joint distribution of

(trimmed Lévy, r-th largest jump).

Full Screen

Close

2. The rth largest of an iid sequence

Buchmann, Maller, and Resnick (2016)

- Let $\{X_n, n \geq 1\}$ be iid random variables with common distribution function F(x)
- Set $R(x) = -\log(1 F(x))$, the integrated hazard function.
- \bullet Suppose F and R are continuous.
- Let $M_n^{(r)}$ be the rth largest among X_1, \ldots, X_n and set

$$\mathbf{M}^{(r)} = \{ M_n^{(r)}, n \ge r \}. \tag{1}$$

2.1. Facts

- By Ignatov's theorem (Engelen et al., 1988, Goldie and Rogers, 1984, Ignatov, 1976/77, Resnick, 2008, Stam, 1985), \mathcal{R}_r , the range of $\mathbf{M}^{(r)}$ is a sum of r independent PRM(R) processes and therefore the range of $\mathbf{M}^{(r)}$ is PRM(rR).
- \mathcal{R}_r , the range of $M^{(r)}$, converges as a random closed set in the Fell topology to \mathcal{R} , the support of the measure R or F:

$$\mathcal{R}_r \Rightarrow \mathcal{R},$$
 (2)

as $r \to \infty$.

Outline

rth largest

Trim subordinator

Title Page

Page 3 of 12

Go Back

Full Screen

Close

• How to get a random limit? Domain of attraction for minimum condition: Assume

$$rR(a_rx - b_r) \to g(x), \qquad (r \to \infty)$$

or equivalently

$$(\bar{F}(a_r x - b_r))^r = \exp\{-rR(a_r x - b_r)\} \to e^{-g(x)}$$

where

$$e^{-g(x)} = G_{\gamma}(-x)$$

and

$$G_{\gamma}(x) = \exp\{-(1+\gamma x)^{-1/\gamma}\}, 1+\gamma x > 0$$

is the shape parameter family of extreme value distributions for maxima (de Haan and Ferreira, 2006, Resnick, 2008).

• Then

$$(\mathcal{R}_r + b_r)/a_r \Rightarrow PRM(m_\gamma).$$

where $m_{\gamma}(\cdot)$ is the measure with density

$$\frac{d}{dx}\Big(-\log G_{\gamma}(-x)\Big).$$

• Under the same domain of attraction condition for minima: in \mathbb{R}^{∞} , as $r \to \infty$,

$$\frac{\boldsymbol{M}^{(r)} + b_r}{a_r} = \left(\frac{M_{r+j}^{(r)} + b_r}{a_r}, j \ge 0\right) \Rightarrow \left(g_{\gamma}^{\leftarrow}(\Gamma_l), l \ge 1\right),$$

Outline

rth largest

Trim subordinator

Title Page

Page **4** of **12**

Go Back

Full Screen

Close

where $\{\Gamma_l, l \geq 1\}$ are the points of a homogeneous Poisson process on \mathbb{R}_+ .

• Defining $\{M^{(r)}, r \geq 1\}$ slightly differently yields that this family indexed by r is Markov on the space \mathbb{R}^{∞} . Set,

$$\boldsymbol{X}^{(r)} = (\underbrace{-\infty, \dots, -\infty}_{r-1 \text{ entries}}, M_n^{(r)}, n \ge r).$$

Then in \mathbb{R}^{∞} ,

$$\left(\boldsymbol{X}^{(r+1)}|\boldsymbol{X}^{(r)}\ldots\boldsymbol{X}^{(1)}\right)\stackrel{d}{=}\left(\boldsymbol{X}^{(r+1)}|\boldsymbol{X}^{(r)}\right).$$

- Use?
- \bullet Similar but not identical results for rth order extremal processes: Let

$$N = \sum_{k} \epsilon_{(t_k, j_k)},$$

be Poisson random measure on $[0, \infty) \times (x_l, x_r)$, with mean measure $ds \times \Pi$. Set

$$Q(x) = \Pi(x, x_r) < \infty, \quad x_l < x < x_r$$

and assume $Q(x_l) = \Pi(x_l, x_r) = \infty$. Define

$$Y^{(r)}(t) := \inf\{x > x_l : N([0, t] \times (x, x_r)) < r\}, \quad t > 0.$$

Outline

rth largest

Trim subordinator

Title Page

Page 5 of 12

Go Back

Full Screen

Close

Set t = 1.

- Q?: When does a limit law exist for $Y^{(r)}(1)$ as $r \to \infty$.
- A: N&S condition: $\exists a(r) > 0, b(r)$

$$\lim_{r \to \infty} \frac{r - Q(a(r)x + b(r))}{\sqrt{r}} = h(x),$$

for a non-decreasing limit function $h(x) \in \mathbb{R}$ with at least two points of increase. Requires

$$G(x) = e^{-Q^{1/2}(x)}$$

to be in a domain of attraction for minima.

Outline

rth largest

Trim subordinator

Title Page

Page 6 of 12

Go Back

Full Screen

Close

3. Trimming a Lévy subordinator

Setup: Let $X = X(1) \ge 0$ be a Lévy subordinator, Lévy measure $\nu(\cdot)$ with $Q(x) = \nu(x, \infty)$. Define $N = \sum_k \epsilon_{j_k}(\cdot) = \text{PRM}(\nu)$ and

$$X = \int_0^\infty u N(du) = \sum_{l=1}^\infty Q^{\leftarrow}(\Gamma_l)$$

=sum of Poisson jumps written in decreasing order,

$$^{(r)}X = \sum_{l=r+1}^{\infty} Q^{\leftarrow}(\Gamma_l),$$

=r-largest jumps peeled off the Lévy process at t=1;

$$Y^{(r)} = Q^{\leftarrow}(\Gamma_r) = r$$
th largest jump of Lévy process.

When does

$$(^{(r)}X, Y^{(r)})$$

have a limit distribution (with appropriate centering and scaling)?

Outline

rth largest

Trim subordinator

Title Page

Go Back

Full Screen

Close

3.1. Joint limits.

Note: We always have

$$\frac{{}^{(r)}X - \mu(Y^{(r)})}{\sigma(Y^{(r)})} = \frac{{}^{(r)}X - \int_0^{Y^{(r)}} u\nu(du)}{\int_0^{Y^{(r)}} u^2\nu(du)} \Rightarrow N_X = N(0, 1)$$

since $r \to \infty$ means we mash down the size of the jumps.

Assuming $Y^{(r)}$ has a limit law we get jointly

$$\left(\frac{{}^{(r)}X - \mu(Y^{(r)})}{\sigma(Y^{(r)})}, \frac{Y^{(r)} - b(r))}{a(r)}\right) \Rightarrow \left(N_X, h^{\leftarrow}(N_\Gamma)\right),$$

where (N_X, N_{Γ}) are independent standard normal random variables. Proceed conditionally on $Y^{(r)}$ and then uncondition.

Can we get deterministic centering and scaling for X?

Outline

rth largest

Trim subordinator

Title Page

Page 8 of 12

Go Back

Full Screen

Close

ullet Yes if X is stable or if Q is regularly varying at 0 and then the limit is of the form

$$\left(\frac{{}^{(r)}X - \mu(b(r))}{\sigma(b(r))}, \frac{Y^{(r)} - b(r)}{a(r)}\right) \Rightarrow \left(N_X + \frac{N_\Gamma}{\sqrt{2c}}, N_\Gamma\right)$$

=dependent normal rv's,

where (N_X, N_{Γ}) are independent standard normal random variables.

• In general the answer depends on γ , the EV parameter for

$$G = e^{-Q^{1/2}(x)}.$$

• Limit may not be normal but it will be a function of independent normals.

Outline

rth largest

Trim subordinator

Title Page

Page 9 of 12

Go Back

Full Screen

Close

Contents

Outline

rth largest

Trim subordinator

Title Page

Page 10 of 12

Go Back

Full Screen

Close

References

- B. Buchmann, R. Maller, and S. Resnick. Processes of rth Largest. *ArXiv e-prints*, July 2016. http://adsabs.harvard.edu/abs/2016arXiv160708674B.
- L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer-Verlag, New York, 2006.
- R. Engelen, P. Tommassen, and W. Vervaat. Ignatov's theorem: a new and short proof. *J. Appl. Probab.*, Special Vol. 25A:229–236, 1988. ISSN 0021-9002. A celebration of applied probability.
- C. M. Goldie and L. C. G. Rogers. The k-record processes are i.i.d. Z.~Wahrsch.~Verw.~Gebiete,~67(2):197-211,~1984.~ISSN~0044-3719.~doi:~10.1007/BF00535268.~URL~http://dx.doi.org/10.1007/BF00535268.
- Z. Ignatov. Ein von der Variationsreihe erzeugter Poissonscher Punktprozeß. Annuaire Univ. Sofia Fac. Math. Méc., 71(2):79–94 (1986), 1976/77. ISSN 0205-0811.
- S.I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer, New York, 2008. ISBN 978-0-387-75952-4. Reprint of the 1987 original.

Title Page

Page 11 of 12

Go Back

Full Screen

Close

- A. J. Stam. Independent Poisson processes generated by record values and inter-record times. *Stochastic Process. Appl.*, 19(2):315–325, 1985. ISSN 0304-4149. doi: 10.1016/0304-4149(85)90033-X. URL http://dx.doi.org/10.1016/0304-4149(85)90033-X.
- P. Wan, T. Wang, R. A. Davis, and S. I. Resnick. Fitting the Linear Preferential Attachment Model. *ArXiv e-prints*, 1703.03095, March 2017. URL https://arxiv.org/abs/1703.03095. Submitted: Electronic J. Statistics.

