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Abstract. For the directed edge preferential attachment network growth model studied by Bol-
lobás et al. (2003) and Krapivsky and Redner (2001), we prove that the joint distribution of in-degree
and out-degree has jointly regularly varying tails. Typically the marginal tails of the in-degree dis-
tribution and the out-degree distribution have different regular variation indices and so the joint
regular variation is non-standard. Only marginal regular variation has been previously established
for this distribution in the cases where the marginal tail indices are different.

1. Introduction

The directed edge preferential attachment model studied by Bollobás et al. (2003) and Krapivsky
and Redner (2001) is a model for a growing directed random graph. The dynamics of the model
are as follows. Choose as parameters nonnegative real numbers α, β, γ, δin and δout, such that
α + β + γ = 1. To avoid degenerate situations we will assume that each of the numbers α, β, γ is
strictly smaller than 1.

At each step of the growth algorithm we obtain a new graph by adding one edge to an existing
graph. We will enumerate the obtained graphs by the number of edges they contain. We start with
an arbitrary initial finite directed graph, with at least one node and n0 edges, denoted G(n0). For
n = n0 + 1, n0 + 2, . . ., G(n) will be a graph with n edges and a random number N(n) of nodes. If
u is a node in G(n − 1), Din(u) and Dout(u) denote the in and out degree of u respectively. The
graph G(n) is obtained from G(n− 1) as follows.

• With probability α we append to G(n− 1) a new node v and an edge leading from v to an
existing node w in G(n − 1) (denoted v 7→ w). The existing node w in G(n − 1) is chosen
with probability depending on its in-degree:

p(w is chosen) =
Din(w) + δin

n− 1 + δinN(n− 1)
.

• With probability β we only append to G(n−1) a directed edge v 7→ w between two existing
nodes v and w of G(n − 1). The existing nodes v, w are chosen independently from the
nodes of G(n− 1) with probabilities

p(v is chosen) =
Dout(v) + δout

n− 1 + δoutN(n− 1)
, p(w is chosen) =

Din(w) + δin
n− 1 + δinN(n− 1)

.

• With probability γ we append to G(n− 1) a new node w and an edge v 7→ w leading from
the existing node v in G(n − 1) to the new node w. The existing node v in G(n − 1) is
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chosen with probability

p(v is chosen) =
Dout(v) + δout

n− 1 + δoutN(n− 1)
.

If either δin = 0, or δout = 0, we must have n0 > 1 for the initial steps of the algorithm to make
sense.

For i, j = 0, 1, 2, . . . and n ≥ n0, let Nij(n) be the (random) number of nodes in G(n) with
in-degree i and out-degree j. Theorem 3.2 in Bollobás et al. (2003) shows that there are nonrandom
constants (fij) such that

(1.1) lim
n→∞

Nij(n)

n
= fij a.s. for i, j = 0, 1, 2, . . ..

Clearly, f00 = 0. Since we obviously have

lim
n→∞

N(n)

n
= 1− β a.s.,

we see that the empirical joint in- and out-degree distribution in the sequence (G(n)) of growing
random graphs has as a nonrandom limit the probability distribution

(1.2) lim
n→∞

Nij(n)

N(n)
=

fij
1− β

=: pij a.s. for i, j = 0, 1, 2, . . ..

In Bollobás et al. (2003) it was shown that the limiting degree distribution (pij) has, marginally,
regularly varying (in fact, power-like) tails. Specifically, Theorem 3.1 ibid. shows that for some
finite positive constants Cin and Cout we have

(1.3) pi(in) :=
∞∑
j=0

pij ∼ Cini
−αin as i→∞, as long as αδin + γ > 0,

pj(out) :=

∞∑
i=0

pij ∼ Coutj
−αout as j →∞, as long as γδout + α > 0.

Here

(1.4) αin = 1 +
1 + δin(α+ γ)

α+ β
, αout = 1 +

1 + δout(α+ γ)

γ + β
.

We will prove that the limiting degree distribution (pij) in (1.2) has jointly regularly varying tails
and obtain the corresponding tail measure.

This paper is organized as follows. We start with a summary of multivariate regular variation
in Section 2. In Section 3 we show that the joint generating function of in-degree and out-degree
satisfies a partial differential equation. We solve the differential equation and obtain an expression
for the generating function. In Section 4 we represent the distribution corresponding to the gener-
ating function as a mixture of negative binomial random variables where the mixing distribution is
Pareto. This allows direct computation of the tail measure of the non-standard regular variation
of in- and out-degree without using transform methods. The tail measure is absolutely continuous
with respect to two dimensional Lebesgue measure, and we exhibit its density. We also present in
Section 4.1 graphical evidence of the variety of dependence structures possible for the tail measure
based on explicit formulae, simulation and iteration of the defining difference equation for limiting
frequencies.
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Using the joint generating function of {pij}, an alternate route for studing heavy tail behavior of
in- and out-degree is to use transform methods and Tauberian theory. The multivariate Tauberian
theory has been developed and we will report this elsewhere.

2. Multivariate regular variation

We briefly review the basic concepts of multivariate regular variation (Resnick, 2007) which forms
the mathematical framework for multivariate heavy tails. We restrict attention to two dimensions
since this is the context for the rest of the paper.

A random vector (X,Y ) ≥ 0 has a distribution that is non-standard regularly varying if there
exist scaling functions a(h) ↑ ∞ and b(h) ↑ ∞ and a non-zero limit measure ν(·) called the limit or
tail measure such that as h→∞,

(2.1) hP
[(
X/a(h), Y/b(h)

)
∈ ·
] v→ ν(·)

where “ v→ ” denotes vague convergence of measures in M+([0,∞]2 \ {0}) = M+(E), the space of
Radon measures on E. The scaling functions will be regularly varying and we assume their indices
are positive and therefore, without loss of generality, we may suppose a(h) and b(h) are continuous
and strictly increasing. The phrasing in (2.1) implies the marginal distributions have regularly
varying tails.

In case a(h) = b(h), (X,Y ) has a distribution with standard regularly varying tails (Resnick,
2007, Section 6.5.6). Given a vector with a distribution which is non-standard regularly varying,
there are at least two methods (Resnick, 2007, Section 9.2.3) for standardizing the vector so that
the transformed vector has standard regular variation. The simplest is the power method which is
justified when the scaling functions are power functions:

a(h) = hγ1 , b(h) = hγ2 , γi > 0, i = 1, 2.

For instance with c = γ2/γ1,

(2.2) hP
[(
Xc/hγ2 , Y/hγ2

)
∈ · ] v→ ν̃(·),

where if T (x, y) = (xc, y), then ν̃ = ν◦T−1. Since the two scaling functions in (2.2) are the same, the
regular variation is now standard. The measure ν̃ will have a scaling property and for an appropriate
change of coordinate system, the correspondingly transformed ν̃ can be factored into a product; for
example the polar coordinate transform is one such coordinate system change which factors ν̃ into a
product of a Pareto measure and an angular measure and this is one way to describe the asymptotic
dependence structure of the standardized (X,Y ) (Resnick, 2007, Section 6.1.4). Another suitable
transformation is given in Section 4 based on ratios.

3. The joint generating function of in-degree and out-degree

Define the joint generating function of the limit distribution {pij} of in-degree and out-degree in
(1.2) by

(3.1) ϕ(x, y) =
∞∑
i=0

∞∑
j=0

xiyjpij , 0 ≤ x, y ≤ 1 .

The following lemma shows that the generating function satisfies a partial differential equation.
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Lemma 3.1. The function ϕ is continuous on the square [0, 1]2 and is infinitely continuously dif-
ferentiable in the interior of the square. In this interior it satisfies the equation

(3.2)
[
c1δin(1− x) + c2δout(1− y) + 1

]
ϕ+ c1x(1− x)

∂ϕ

∂x
+ c2y(1− y)

∂ϕ

∂y

=
α

α+ γ
y +

γ

α+ γ
x ,

where

(3.3) c1 =
α+ β

1 + δin(α+ γ)
, c2 =

β + γ

1 + δout(α+ γ)
.

Proof. Only the form of the partial differential equation in (3.2) requires justification. The following
recursive relation connecting the limiting probabilities (pij) was established in Bollobás et al. (2003),

pij =c1(i− 1 + δin)pi−1,j − c1(i+ δin)pij + c2(j − 1 + δout)pi,j−1(3.4)

− c2(j + δout) +
α

α+ γ
1(i = 0, j = 1) +

γ

α+ γ
1(i = 1, j = 0)

for i, j = 0, 1, 2, . . ., with the understanding that any p with a negative subscript is equal to zero.
Rearranging the terms, multiplying both sides by xiyj and summing up, we see that for 0 < x, y < 1,

∞∑
i=0

∞∑
j=0

(c1δin+c2δout + 1 + c1i+ c2j)x
iyjpij =

α

α+ γ
y +

γ

α+ γ
x(3.5)

+ c1

∞∑
i=1

∞∑
j=0

(i− 1 + δin)xiyjpi−1,j + c2

∞∑
i=0

∞∑
j=1

(j − 1 + δout)x
iyjpi,j−1 .

Since
∂ϕ

∂x
(x, y) =

∞∑
i=1

∞∑
j=0

ixi−1yjpij ,
∂ϕ

∂y
(x, y) =

∞∑
i=0

∞∑
j=1

jxiyj−1pij ,

we can rearrange the terms in (3.5) to obtain (3.2). �

The next theorem gives an explicit formula for the joint generating function ϕ in (3.1).

Theorem 1. Let

(3.6) a = c2/c1 ,

where c1 and c2 are given in (3.3). Then for 0 ≤ x, y ≤ 1,

ϕ(x, y) =
α

α+ γ
c−1

1 y

∫ ∞
1

z−(1+1/c1)
(
x+ (1− x)z

)−δin(y + (1− y)za
)−(δout+1)

dz(3.7)

+
γ

α+ γ
c−1

1 x

∫ ∞
1

z−(1+1/c1)
(
x+ (1− x)z

)−(δin+1)(
y + (1− y)za

)−δout dz.
Proof. The partial differential equation in (3.2) is a linear equation of the form (2), p.6 in Jones
(1971), and to solve it we follow the procedure suggested ibid.. Specifically, we write the equation
(3.2) in the form

(3.8) a(x, y)
∂ϕ

∂x
+ b(x, y)

∂ϕ

∂y
= c(x, y)ϕ+ d(x, y) ,

with
a(x, y) = c1x(1− x), b(x, y) = c2y(1− y) ,
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c(x, y) = c1δinx+ c2δouty − ρ, d(x, y) = α(α+ γ)−1y + γ(α+ γ)−1x ,

where
ρ = c1δin + c2δout + 1 .

Consider the family of characteristic curves for the differential equation (3.8) defined by the ordinary
differential equation

dy

dx
=
b(x, y)

a(x, y)
.

It is elementary to check that the characteristic curves form a one-parameter family, {Cθ, θ > 0},
with the curve Cθ given by

(3.9) y =
1

1 + θx−a(1− x)a
, 0 < x < 1 .

Along each characteristic curve Cθ the function u(x) = ϕ
(
x, y(x)

)
, 0 < x < 1, satisfies the ordinary

differential equation

(3.10)
du

dx
=
c(x, y)u+ d(x, y)

a(x, y)
= uψ1(x) + ψ2(x) ,

where

ψ1(x) =
c1δinx+ c2δout

(
1 + θx−a(1− x)a

)−1 − ρ
c1x(1− x)

,

ψ2(x) =
γx+ α

(
1 + θx−a(1− x)a

)−1

(α+ γ)c1x(1− x)
.

Let H be a function satisfying

(3.11) H ′(x) = ψ1(x), 0 < x < 1 ,

and define
A(x) = u(x)e−H(x), 0 < x < 1 .

It follows from (3.10) that

(3.12) A′(x) = ψ2(x)e−H(x), 0 < x < 1 .

We compute the function u by solving the differential equations (3.11) and (3.12).
To solve (3.11), write it first in the form

H ′(x) =
δin

1− x
− ρ/c1

x(1− x)
+

c2δout/c1

1 + θx−a(1− x)a
1

x(1− x)
.

It is elementary to check by differentiation that∫
1

1 + θx−a(1− x)a
1

x(1− x)
dx = − log(1− x) + a−1 log

(
xa + θ(1− x)a

)
+ C1

with C1 ∈ R. Therefore, for 0 < x < 1,

(3.13) H(x) = c−1
1 log(1− x)− ρc−1

1 log x+ δout log
(
xa + θ(1− x)a

)
+ C1 ,

implying that

A′(x) =e−C1
γx+ α

(
1 + θx−a(1− x)a

)−1

(α+ γ)c1x(1− x)
(1− x)−1/c1xρ/c1

(
xa + θ(1− x)a

)−δout
=

e−C1

(α+ γ)c1
γ(1− x)−(1+1/c1)xδin+1/c1

(
1 + θx−a(1− x)a

)−δout
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+
e−C1

(α+ γ)c1
(1− x)−(1+1/c1)xδin−1+1/c1

(
1 + θx−a(1− x)a

)−(1+δout) .

We can now write

A(x) =e−C1
γ

(α+ γ)c1

∫ x

0
(1− t)−(1+1/c1)tδin+1/c1

(
1 + θt−a(1− t)a

)−δout dt(3.14)

+ e−C1
α

(α+ γ)c1

∫ x

0
(1− t)−(1+1/c1)tδin−1+1/c1

(
1 + θt−a(1− t)a

)−(1+δout) dt+ C2

with C2 ∈ R. Using (3.13) and (3.14) we obtain the following expression for the the function
u(x) = ϕ

(
x, y(x)

)
, 0 < x < 1 along the characteristic curve Cθ.

u(x) =A(x)eH(x) =
γ

α+ γ
c−1

1 (1− x)1/c1x−ρ/c1
(
1 + θx−a(1− x)a

)δout
·
∫ x

0
(1− t)−(1+1/c1)tδin+1/c1

(
1 + θt−a(1− t)a

)−δout dt
+

α

α+ γ
c−1

1 (1− x)1/c1x−ρ/c1
(
1 + θx−a(1− x)a

)δout
·
∫ x

0
(1− t)−(1+1/c1)tδin−1+1/c1

(
1 + θt−a(1− t)a

)−(1+δout) dt

+ C3(1− x)1/c1x−ρ/c1
(
1 + θx−a(1− x)a

)δout
with C3 = C3(θ) ∈ R. Multiply both sides of this equation by xaδout+ρ/c1 and let x→ 0. Using the
fact that the generating function is bounded, we see that C3 = 0. We can now obtain an expression
for the joint generating function ϕ everywhere in (0, 1)2 by noticing that a point (x, y), 0 < x, y < 1,
lies on the characteristic curve Cθ with

θ =
(1− y)/y(
(1− x)/x

)a .
We conclude that

ϕ(x, y) =
γ

α+ γ
c−1

1 (1− x)1/c1x−ρ/c1
(
1 + θx−a(1− x)a

)δout
·
∫ x

0
(1− t)−(1+1/c1)tδin+1/c1

(
1 +

(1− y)/y(
(1− x)/x

)a t−a(1− t)a
)−δout

dt

+
α

α+ γ
c−1

1 (1− x)1/c1x−ρ/c1
(
1 + θx−a(1− x)a

)δout
·
∫ x

0
(1− t)−(1+1/c1)tδin−1+1/c1

(
1 +

(1− y)/y(
(1− x)/x

)a t−a(1− t)a
)−(1+δout)

dt .

Changing the variable in both integrals to

z =
x(1− t)
t(1− x)

and rearranging the terms, we obtain (3.7) for 0 < x, y < 1. Now we can extend this formula for
the joint generating function to the boundary of the square [0, 1]2 by continuity. �
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4. Joint regular variation of the distribution of in-degree and out-degree

In this section we analyze the explicit form (3.7) of the joint generating function of the limiting
distribution of in-degree and out-degree obtained in Theorem 1 to prove the nonstandard joint
regular variation of in-degree and out-degree. We also obtain an expression for the density of the
tail measure.

We start by writing the joint generating function in (3.7) as

(4.1) ϕ(x, y) =
γ

α+ γ
xϕ1(x, y) +

α

α+ γ
yϕ2(x, y) ,

with

ϕ1(x, y) =c−1
1

∫ ∞
1

z−(1+1/c1)
(
x+ (1− x)z

)−(δin+1)(
y + (1− y)za

)−δout dz ,(4.2)

ϕ2(x, y) =c−1
1

∫ ∞
1

z−(1+1/c1)
(
x+ (1− x)z

)−δin(y + (1− y)za
)−(δout+1)

dz(4.3)

for 0 ≤ x, y ≤ 1. Each of these functions ϕi is a mixture of a product of negative binomial generating
functions of possibly fractional order. On some probability space we can find nonnegative integer-
valued random variables Xj , Yj , j = 1, 2 such that

ϕj(x, y) = E
(
xXjyYj

)
, 0 ≤ x, y ≤ 1, j = 1, 2 .

If (I,O) is a random vector with generating function given in (4.1), then we can represent in
distribution (I,O) as

(4.4) (I, 0)
d
= B(1 +X1, Y1) + (1−B)(X2, 1 + Y2),

where B is a Bernoulli switching variable independent of Xj , Yj , j = 1, 2 with

P [B = 1] = 1− P [B = 0] =
γ

α+ γ
.

Theorem 2 below shows that each of the random vectors
(
Xj , Yj

)
, j = 1, 2, has a bivariate

regularly varying distribution. The decomposition (4.1) then gives the joint regular variation of
in-degree and out-degree.

Theorem 2. Let αin and αout be given by (1.4). Then for each j = 1, 2 there is a Radon measure
Vj on [0,∞]2 \ {0} such that

(4.5) hP
((
h−1/(αin−1)Xj , h

−1/(αout−1)Yj
)
∈ ·
)

v→Vj(·),

as h→∞ vaguely in [0,∞]2 \ {0}. Furthermore, V1 and V2 concentrate on (0,∞)2 where they have
Lebesgue densities given, respectively, by

f1(x, y) =c−1
1

(
Γ(δin + 1)Γ(δout)

)−1
xδinyδout−1

∫ ∞
0

z−(2+1/c1+δin+aδout)e−(x/z+y/za) dz(4.6)

and

f2(x, y) =c−1
1

(
Γ(δin)Γ(δout + 1)

)−1
xδin−1yδout

∫ ∞
0

z−(1+a+1/c1+δin+aδout)e−(x/z+y/za) dz .(4.7)

Therefore, a random vector
(
I,O) with the joint probabilities given by (pij) in (1.2) satisfies

(4.8) hP
((
h−1/(αin−1)I, h−1/(αout−1)O

)
∈ ·
)

v→ γ

α+ γ
V1(·) +

α

α+ γ
V2(·)

as h→∞ vaguely in [0,∞]2 \ {0}.
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Proof. It is enough to prove (4.5) and (4.6). We treat the case j = 1. The case j = 2 is analogous
and is omitted.

Let Tδ(p) be a negative binomial integer valued random variable with parameters δ > 0 and
p ∈ (0, 1). We abbreviate this as NB(δ, p). The generating function of Tδ(p) is

EsTδ(p) = (s+ (1− s)p−1)−δ.

It is well known and elementary to prove by switching to Laplace transforms that as p ↓ 0,

pTδ(p)⇒ Γδ

where Γδ is a Gamma random variable with distribution Fδ(x) and density

F ′δ(x) =
e−xxδ−1

Γ(δ)
, x > 0.

Now suppose {Tδ1(p), p ∈ (0, 1)} and {T̃δ2(p), p ∈ (0, 1)} are two independent families of NB
random variables. We can represent the mixture in (4.2) as

(X1, Y1) =
(
Tδin+1(Z−1), T̃δout(Z

−a)
)
,

where Z is a Pareto random variable on [1,∞) with index c−1
1 , independent of the NB random

variables. To ease writing, we set δ1 = δin + 1 and δ2 = δout.
Define the measure νc on (0,∞] by νc(x,∞] = x−c, x > 0. We now claim, as h → ∞, in

M+((0,∞]× [0,∞]2),

(4.9) hP
[( Z
hc1

,
(
Z−1Tδ1(Z−1), Z−aT̃δ2(Z−a)

))
∈ ·
]

v→ νc−1
1
× P [Γδ1 ∈ · ]× P [Γδ2 ∈ · ].

To prove this, suppose x > 0 and let g(u, v) be a function bounded and continuous on [0,∞]2 and
it suffices to show,

(4.10) hE
(

1[Z/hc1>x]g
(
Z−1Tδ1(Z−1), Z−aTδ2(Z−a)

))
→ x−c

−1
1 E

(
g(Γδ1 , Γ̃δ2)

)
where Γδ1 ⊥⊥ Γ̃δ2 .

Observe as p ↓ 0,
E
(
g
(
pTδ1(p), paT̃δ2(pa)

))
→ E

(
g(Γδ1 , Γ̃δ2)

)
and so, given ε > 0, there exists η > 0 such that

(4.11) sup
p<η

∣∣E(g(pTδ1(p), paT̃δ2(pa)
))
− E

(
g(Γδ1 , Γ̃δ2)

)∣∣ < ε.

Bound the difference between the LHS and RHS of (4.10) by∣∣∣hE(1[Z/hc1>x]g
(
Z−1Tδ1(Z−1), Z−aT̃δ2(Z−a)

))
− hE(1[Z/hc1>x]E

(
g(Γδ1 , Γ̃δ2)

)∣∣∣
+
∣∣∣hE(1[Z/hc1>x]E

(
g(Γδ1 , Γ̃δ2)

)
− x−c

−1
1 E

(
g(Γδ1 , Γ̃δ2)

)∣∣∣ = A+B,

where B = o(1) and is henceforth neglected. Write EZ(·) = E(·|Z) for the conditional expectation
and bound A by

(4.12) E
(
h1[Z/hc1>x]

∣∣EZg(Z−1Tδ1(Z−1), Z−aT̃δ2(Z−a)
)
− E

(
g(Γδ1 , Γ̃δ2)

)∣∣).
As soon as h is large enough so that h−c1x−1 < η, (4.12) bounded by

E
(
h1[Z/hc1>x]

)
ε→ εx−c

−1
1 .
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Let ε→ 0 and we have verified (4.10) and therefore (4.9).
The next step is to apply a mapping to the convergence in (4.9). Define χ : (0,∞] × [0,∞]2 7→

(0,∞]× [0,∞]2 by
χ
(
x, (y1, y2)

)
=
(
x, (xy1, x

ay2)
)
.

This transformation satisfies the compactness condition in (Resnick, 2007, Proposition 5.5, page
141) or the bounded away condition in (Lindskog et al., 2013, Section 2.2). Following the product
discussion of Example 3.3 in Lindskog et al. (2013) or (Maulik et al., 2002, Corollary 2.1, page 682),
we apply χ to the convergence in (4.9) which yields in M+((0,∞]× [0,∞]2), as h→∞,

(4.13) hP
[( Z
hc1

,
(Tδ1(Z−1)

hc1
,
T̃δ2(Z−a)

hc2

))
∈ ·
]

v→
(
νc−1

1
× P [Γδ1 ∈ · ]× P [Γδ2 ∈ · ]

)
◦ χ−1(·),

where we used the fact that ac1 = c2.
We must extract from (4.13) the desired convergence in M+([0,∞]2 \ {0}),

(4.14) hP
[(Tδ1(Z−1)

hc1
,
T̃δ2(Z−a)

hc2

)
∈ ·
]

v→
(
νc−1

1
× P [Γδ1 ∈ · ]× P [Γδ2 ∈ · ]

)
◦ χ−1((0,∞]× (·)).

Assuming (4.14), we evaluate the convergence in (4.14) on a set of the form (x,∞] × (y,∞] for
x > 0, y > 0 to get

hP
[Tδ1(Z−1)

hc1
> x,

T̃δ2(Z−a)

hc2
> y
]
→
∫∫∫

(u,v,w):uv>x,uaw>y
νc−1

1
(du)Fδ1(dv)Fδ2(dw)

=

∫ ∞
0

F̄δ1(x/u)F̄δ1(y/ua)νc−1
1

(du).

The right side is the limit measure of the distribution of (X1, Y1) evaluated on (x,∞] × (y,∞] for
x > 0, y > 0. Differentiating first with respect to x and then with respect to y yields after some
algebra the limit measure’s density f1(x, y) in (4.6).

To prove that (4.14) can be obtained from (4.13), we need the following result about negative
binomial random variables whose proof is deferred. Suppose Tδ(p) is NB(δ, p). For any δ > 0,
k = 1, 2, . . . there is c(δ, k) ∈ (0,∞) such that

(4.15) E
(
Tδ(p)

)k ≤ c(δ, k)p−k for all 0 < p < 1.

Suppose g : [0,∞]2 \ {0} 7→ [0,∞) is continuous, bounded by ‖g‖ with compact support in
([0, ε]× [0, ε])c for some ε > 0. Using a Slutsky style argument, (4.13) implies (4.14) if

0 = lim
x→0

lim sup
h→∞

∣∣∣hE1[Z/hc1≥x]g
(
Tδ1(Z−1)/hc1 , T̃δ2(Z−a)/hc2

)
− hEg

(
Tδ1(Z−1)/hc1 , T̃δ2(Z−a)/hc2

)∣∣∣
= lim
x→0

lim sup
h→∞

hE1[Z/hc1≤x]g
(
Tδ1(Z−1)/hc1 , T̃δ2(Z−a)/hc2

)
.

Keeping in mind the support of g, the previous expectation is bounded by

‖g‖hP
[
Z ≤ hc1x, [Tδ1(Z−1)/hc1 > ε] ∪ [Tδ2(Z−a)/hc2 > ε]

]
.

Bounding the probability of the union by the sum of two probabilities, we show how to deal with
the first since the second is analogous. Then neglecting the factor ‖g‖ we have

hP
[
Z ≤ hc1x,Tδ1(Z−1)/hc1 > ε] = hE

(
1[Z≤hc1x]P

[
Tδ1(Z−1)/hc1 > ε

∣∣∣Z])
and picking k > c−1

1 and using (4.15) we get the bound

≤hE
(
1[Z≤hc1x]c(δ1, k)(Z/hc1)kε−k
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=c(δ1, k)ε−k
∫ x

0
ukhP [Z/hc1 ∈ du]

and by Karamata’s theorem or direct calculation, as h→∞ we get the limit

=c(δ1, k)ε−k
c−1

1

k − c−1
1

xk−c1
−1

which converges to 0 as x→ 0 as desired.
Finally we verify (4.15). Begin with δ = 1 so T1(p) is geometric with success probability p. It is

enough to prove that for some constant C(k) ∈ (0,∞),

(4.16) E
(k−1∏
j=0

(T1(p)− j)
)
≤ C(k)p−k.

Differentiating the generating function, we obtain,

(4.17) E
(k−1∏
j=0

(T1(p)− j)
)

= k!(1− p)kp−k ≤ k!p−k.

Next, for integer δ = 1, 2, . . . , and independent copies T̃1,1(p), T̃1,2(p), . . . , of T1(p) random vari-
ables, we have

E
(
Tδ(p)

)k
=E
(
T̃1,1(p) + T̃1,2(p) + . . .+ T̃1,δ(p)

)k
and applying the cr inequality in (Loève, 1977, p. 177) gives

≤δk−1E
(
T1(p)k

)
≤ δk−1C(k)p−k.

Finally, for any δ > 0,

E
(
Tδ(p)

)k ≤ E(Tdδe(p))k ≤ dδek−1C(k)p−k,

proving (4.15) and completing the proof. �

Remark 3. A change of variables in the integrals in (4.6) and (4.7) shows that the random vector
(I,O) is bivariate regular varying with marginal exponents αin − 1 and αout − 1 accordingly, and
with tail measure having density of the form

f(x, y) = c−1
1

γ/(α+ γ)

Γ(δin + 1)Γ(δout)
xδinyδout−1

∫ ∞
0

t1/c1+δin+aδoute−(xt+yta) dt

(4.18) +c−1
1

α/(α+ γ)

Γ(δin)Γ(δout + 1)
xδin−1yδout

∫ ∞
0

ta−1+1/c1+δin+aδoute−(xt+yta) dt

for 0 < x, y < 1.

The powers of h used in the scaling functions in (4.5) are, in general, not equal and thus the regular
variation in (4.8) is non-standard. However, as the scaling functions are pure powers, the vector
(Ia, O) is standard regularly varying. One can then transform to the familiar polar coordinates. We
consider the alternative transformation (Ia, O) 7→ (O/Ia, I) which gives the immediate conclusion
by Theorem 2 that out-degree is roughly proportional to a power of the in-degree when either degree
is large. We calculate the limiting density of ratio R := O/Ia given I is large.
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Corollary 4. As m→∞, the conditional distribution of the ratio O/Ia given that I > m converges
to a distribution FR on (0,∞) with density

(4.19) fR(r) = θ1r
δout−1I1(r) + θ2r

δoutI2(r), r > 0 ,

where

I1(r) =

∫ ∞
0

t1/c1+δin+aδoute−(t+rta) dt , I2(r) =

∫ ∞
0

ta−1+1/c1+δin+aδoute−(t+rta) dt ,

and
θ1 =

γ

Γ(δin + 1)Γ(δout)D
, θ2 =

α

Γ(δin)Γ(δout + 1)D
,

with
D = γ

Γ(1/c1 + δin + 1)

Γ(δin + 1)
+ α

Γ(1/c1 + δin)

Γ(δin)
.

Proof. Let hm = mαin−1. Notice that for every λ > 0,

P
(
O/Ia ≤ λ

∣∣∣I > m
)

=
hmP

(
h
−1/(αin−1)
m I > 1, h

−1/(αout−1)
m O/

(
h
−1/(αin−1)
m I

)a ≤ λ)
hmP

(
h
−1/(αin−1)
m I > 1

)
→

(γV1 + αV2)
({

(x, y) : x > 1, y/xa ≤ λ
})

(γV1 + αV2)
({

(x, y) : x > 1
})

as m→∞ by Theorem 2. The numerator of this ratio can be rewritten as∫ ∫
x>1, y/xa≤λ

f(x, y) dxdy ,

and the same can be done to the denominator in this ratio. Using the density f in (4.18) and
performing an elementary change of variable shows that the ratio can be written in the form∫ λ

0
fR(r) dr ,

with fR as in (4.19). This completes the proof. �

4.1. Plots, simulation, iteration. For fixed values of (αin, αout), we investigate how the depen-
dence structure of (I,O) in (4.4) depends on the remaining parameters. We generate plots of fR(r)
and the spectral density for various values of the input parameters using the explicit formulae and
compare such plots to histograms obtained by network simulation and iteration of (3.4).

4.1.1. The distribution of R. We fix two values of (αin, αout), namely (7, 5) and (5, 7), and then plot
fR(r) for several values of the remaining parameters to see the variety of possible shapes. Since
α + β + γ = 1, fixing values for (α, γ) also determines β and because of (1.4), assuming values for
αin, αout, α, γ determine values for δin, δout. The density plots are in Figure 1.

Additionally, we employ two numerical strategies based on the convergence of the conditional
distribution of O/Ia given I > m as m → ∞. Strategy 1 simulates a network of 106 nodes using
software provided by James Atwood (University of Massachusetts, Amherst) and then computes the
histogram of O/Ia for nodes whose in-degree I exceeds some large threshold m. For the network
simulation illustration, we chose m to be the 99.95% quantile of the in-degrees. Strategy 2 computes
pij on a grid (i, j) using the recursion given in (3.4) and then estimates the density of O/Ia using
only the grid points with i larger than m, the m chosen to be the same value as used for the network
simulation.
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Figure 1. The density fR(r) for (αin, αout) = (7, 5) (left) and (αin, αout) = (5, 7)
(right) for various values of α, γ.

We observe from Figure 1 that the mode of fR(r) can drift away from the origin depending on
parameter values. So we transform R using the arctan function which gives all plots the same
compact support [0, π/2], instead of an infinite domain as in Figure 1. We compare the density
of R with the histogram based on network simulation and the density approximation provided by
iteration across varying sets of parameter values. The density of arctanR with the plots from
the alternative strategies based on simulation and iteration are displayed in Figure 2 for various
choices of (δin, δout), with α = β = 0.5 and γ = 0. For these parameter choices, the plots of the
theoretical density with those resulting from network simulation and probability iteration are in
good agreement.

4.1.2. Density of the angular measure. A traditional way to describe the asymptotic dependence
structure of a standardized heavy tailed vector is by using the angular measure. We transform
the standardized vector (Ia, O) 7→

(
arctan(O/Ia),

√
O2 + I2a

)
to polar coordinates and then the

distribution of arctan(O/Ia) given O2 + I2a > m, converges as m → ∞ to the distribution to a
random variable Θ. The distribution of Θ is called the angular measure. The density of Θ can be
calculated from Theorem 2 in a similar fashion as in Corollory 4 and is given by

fΘ(θ) ∝ γ

δin
(cos θ)

δin
a

+ 1
a
−1(sin θ)δout−1

∫ ∞
0

tc
−1
1 +δin+aδoute−t(cos θ)

1
a−ta sin θ dt

+
α

δout
(cos θ)

δin
a
−1(sin θ)δout

∫ ∞
0

ta−1+c−1
1 +δin+aδoute−t(cos θ)

1
a−ta sin θ dt .

Two density approximations for the spectral density using network simulation and numerical
iteration of the pij are obtained in the same way as in Section 4.1.1. Using the same sets of
parameters values as in Figure 2, we overlay the density approximations with the theoretical density
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Figure 2. Comparison of the true density with the estimated densities of arctanR
over various values of (αin, αout).

in Figure 3. The truncation level was the 99.95% percentile of O2 + I2a. The agreement between
the theoretical and estimated densities is quite good across the range of parameter values used.

The main difference between Figures 2 and 3 is the choice of conditioning set. In the first, Ia was
conditioned to be large, while in the second the sum of squares of the in- and out-degrees (I2a+O2)
was conditioned to be large. Since the latter conditioning set is bigger and allows for the case that
the in-degree is small relative to the out-degree, the density function in a neighborhood 0 will have
less weight in Figure 3 than Figure 2.
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