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Abstract Regular variation is often used as the starting point for modeling multivari-
ate heavy-tailed data. A random vector is regularly varying if and only if its radial part 
R is regularly varying and is asymptotically independent of the angular part � as R 
goes to infinity. The conditional limiting distribution of � given R is large character-
izes the tail dependence of the random vector and hence its estimation is the primary 
goal of applications. A typical strategy is to look at the angular components of the 
data for which the radial parts exceed some threshold. While a large class of meth-
ods has been proposed to model the angular distribution from these exceedances, the 
choice of threshold has been scarcely discussed in the literature. In this paper, we 
describe a procedure for choosing the threshold by formally testing the independence 
of R and � using a measure of dependence called distance covariance. We gener-
alize the limit theorem for distance covariance to our unique setting and propose an 
algorithm which selects the threshold for R. This algorithm incorporates a subsam-
pling scheme that is also applicable to weakly dependent data. Moreover, it avoids 
the heavy computation in the calculation of the distance covariance, a typical limita-
tion for this measure. The performance of our method is illustrated on both simulated 
and real data. 

Keywords Heavy-tailed data · Multivariate regular variation · Threshold 
selection · Distance covariance 

This research was supported in part by MURI ARO (grant no. W911NF-12-10385). 

• Phyllis Wan 
phyllis@stat.columbia.edu 

Richard A. Davis 
rdavis@stat.columbia.edu 

Department of Statistics, Columbia University, 1255 Amsterdam Avenue, MC 4690, New York, 
NY 10027, USA 

1 

http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-018-0316-x&domain=pdf
http://orcid.org/0000-0002-9825-3422
mailto:phyllis@stat.columbia.edu
mailto:rdavis@stat.columbia.edu
https://doi.org/10.1007/s10687-018-0316-x


P. Wan, R. A. Davis 

AMS 2000 Subject Classifications 62G32 · 60G70 

1 Introduction 

For multivariate heavy-tailed data, the principal objective is often to study depen-
dence in the ‘tail’ of the distribution. To achieve this goal, the assumption of 
multivariate regular variation is typically used as a starting point. A random vec-
tor X ∈ Rd is said to be multivariate regularly varying if the polar coordinates 
(R, �) = (�X�, X/�X�), where  � · � is some norm, satisfy the conditions 

(a) R is univariate regularly varying, i.e., P(R > r) = L(r)r−α , where  L(·) is a 
slowly varying function at infinity; 

(b) P(� ∈ ·|R >  r)  converges weakly to a measure S(·) as r →∞. 

The α is referred to as the index of the regular variation, while the S is called the 
angular distribution and characterizes the limiting tail dependence. There are other 
equivalent definitions of regular variation (Resnick 2002), but this one is the most 
convenient for our purposes. 

nGiven observations {Xi }i=1 and their corresponding polar coordinates 
n{(Ri,�i)} 1, a straightforward procedure for estimating S is to look at angulari= 

components of the data for which the radii are greater than a large threshold r0, that  
is, �i for which Ri > r0. In most studies, one takes r0 to be a large empirical quan-
tile of R. While there has been extensive research on choosing a threshold for which 
the distribution of R is regularly varying (i.e., limit condition (a)), little research 
has been devoted to ensuring the threshold is large enough for the independence of 
� and R to be reasonable (i.e., limit condition (b)). To this end, de Haan and de 
Ronde (1998) fit a parametric extreme value distribution model to each marginal and 
examined the parameter stability plot of each coordinate. The Stˇ a plot (Stˇ aaricˇ aricˇ 
1999) looked at the joint tail empirical measure, but was, in some way, equivalent to 
only examining the extremal behavior of R. Resnick (2007) suggested an automatic 
threshold selection from the Stˇ a plot but observed that the thresholds were some-aricˇ 
times systematically underestimated. In their study of the threshold based inference 
for parametric max-stable processes, Jeon and Smith (2014) suggested choosing the 
threshold by minimizing the MSE of the estimated parameters. 

In this paper, we propose an algorithm which selects the threshold for modeling S. 
Our motivation is the implied property that R and � given R > r  become indepen-
dent as r → ∞. Given a sequence of candidate threshold levels, we test the degree 
of dependence between R and � for the truncated data above each level. The depen-
dence measure we use is the distance covariance introduced by Székely et al. (2007). 
This measure has the ability to account for various types of dependence and to be 
applicable to data in higher dimensions. The resulting test statistics are given in the 
form of p-values and are compared across all levels through a subsampling scheme. 
This enables us to extract more accurate information from the test statistics while not 
overloading the computational burden. 

The remainder of this paper is organized as follows. We first provide some the-
oretical backgrounds on multivariate regular variation in Section 2. The distance 
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covariance and its theoretical properties are introduced in Section 3. Applying this 
dependence measure in our conditioning setting, we propose a test statistic and prove 
relevant theoretical results in Section 4. Our proposed algorithm for threshold selec-
tion is presented in Section 5, and illustrated on simulated and real examples in 
Section 6. The paper concludes with a discussion. 

2 Multivariate regular variation and problem set-up 

One way to approach multivariate heavy-tailed data is through the notion of multi-
variate regular variation. For a detailed review, see, for example, Chapter 6 of Resnick 
(2007). Let X = (X1, . . . , Xd) be a d-dimensional random variable defined on the 
cone Rd + = [0,∞)\{0}. Define the polar coordinate transformation 

T (X) = (�X�,X/�X�) =: (R,�), (1) 

where � · � denotes some norm. Then X is regularly varying if and only if there exists 
a probability measure S(·) on Sd−1, the unit sphere in Rd , and a function b(t) →∞, 
such that 

v 
tP [(R/b(t),�) ∈ ·] → να × S, t →∞, (2) 

v
where → denotes vague convergence, and να is a measure defined on (0,∞] such 
that 

−ανα(x,∞] = x , x > 0. 

Here b(t) can be chosen as the 1 − t−1-quantile, i.e., 

b(t) = inf{s|P(R ≤ s)  1 − t−1}. 
The convergence (2) implies that � �� � � 

R � w �P ,�  ∈ · R > r  → να × S, r →∞, on [1,∞)× S
d−1 , (3) � r 

w
where → denotes weak convergence. In other words, given that R > r for r large, the 
conditional distribution of R/r and � are independent in the limit. In view of Eq. 3, 
we restrict the measure να to [1,∞) throughout the remainder of the paper. The angu-
lar measure S characterizes the tail dependence structure of X. If  S is concentrated 
on {ei, i  = 1, . . . d}, where  ei = (0, . . . , 0, 1, 0, . . . , 0), then the components of X 
are asymptotically independent in the tail, a case known as asymptotic independence. 
If S has mass lying in the subspace {(t1, . . . , td) ∈ Sd−1|ti > 0, tj > 0, i  �= j}, 
then an extreme observation in the Xi direction implicates a positive probability of 
an extreme observation in the Xj direction, a case known as asymptotic dependence. 
Hence the estimation of S from observations is an important problem, and often the 
primary goal, in multivariate heavy-tailed modeling. 

The following convergence is implied from Eq. 3: 
w 

P(� ∈ ·|R > r)→ S(·), r →∞. (4) 

This suggests estimating S using the angular data (�i) whose radial parts satisfy 
Ri > r0 for r0 large. The motivation behind our method is to seek r0 such that when 
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R > r0, R and � are virtually independent. Given a candidate threshold sequence 
{rk}, we formally test the independence between (Ri,�i) on the index set {i|Ri > 
rk}. The use of Pearson’s correlation as the dependence measure is unsuitable in 
this case, for two reasons. First, correlation is only applicable to univariate random 
variables, whereas � lies on the sphere of dimension d − 1. Second, correlation only 
describes the linear relationship between two random variables, thus having zero 
correlation is not a sufficient condition for independence. Instead, we use a more 
powerful dependence measure, the distance covariance, which is introduced in the 
next section. 

3 Distance covariance 

In this section, we briefly review the definition and some properties of the distance 
covariance. More detailed descriptions and proofs can be found in Székely et al. 
(2007) and Davis et al. (2017). 

Let X ∈ Rp and Y ∈ Rq be two random vectors, then the distance covariance 
between X and Y is defined as � � �2 �T (X,  Y  ;μ) = �ϕX,Y (s, t) − ϕX(s) ϕY (t) μ(ds, dt) ,  (s, t)  ∈ R

p+q (5) 
Rp+q 

where ϕX,Y (s, t), ϕX(s), ϕY (t) denote the joint and marginal characteristic functions 
of (X, Y ) and μ is a suitable measure on Rp+q . In order to ensure that T (X,  Y  ;μ) is 
well-defined, one of the following conditions is assumed to be satisfied throughout 
the paper (Davis et al. 2017): 

1. μ is a finite measure on Rp+q ; 
2. μ is an infinite measure on Rp+q such that � 

α α(1 ∧ |s| )(1 ∧ |t | )μ(ds, dt) < ∞ 
Rp+q 

and 

E[|XY |α + |X|α + |Y |α] < ∞ 

for some α ∈ (0, 2]. 
One advantage of distance covariance over, say, Pearson’s covariance, is that, if μ 
has a positive Lebesgue density on Rp+q , then  X and Y are independent if and only 
if T (X,  Y  ;μ) = 0. Another attractive property of this dependence measure is that it 
readily applies to random vectors of different dimensions. 

To estimate T (X,  Y  ;μ) from observations (X1, Y1),  . . . , (Xn, Yn), define the  
empirical distance covariance � � �2 � �Tn(X, Y ;μ) = ϕ̂X,Y (s, t) − ϕ̂X(s) ϕ̂Y (t) μ(ds, dt) , 

Rp+q 

1 � n s,Xj + i t,Yjwhere ϕ̂X,Y (s, t) = j=1 e i and ϕ̂X(s) = ϕ̂X,Y (s, 0), ϕ̂Y (t) = 
n 

ϕ̂X,Y (0, t)  are the respective empirical characteristic functions. If we assume that 
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μ = μ1 × μ2 and is symmetric about the origin, then under the conditions where 
T (X,  Y  ;μ) exists, Tn(X, Y ;μ) also has the computable form 

n
1 

Tn(X, Y ;μ) = μ̃1(Xi −Xj ) μ̃2(Yi − Yj )2n 
i,j=1 

n
1 + 
4 

μ̃1(Xi −Xj )μ̃2(Yk − Yl) 
n 

i,j,k,l=1 

n
2 − 
3 

μ̃1(Xi −Xj )μ̃2(Yi − Yk), 
n 

i,j,k=1 

where ˜ (1 − cos s, x ) μ(ds)  (Davis et al. 2017).μ(x) = 
The most popular choice of μ, first mentioned by Feuerverger (1993) and  then  

more extensively studied by Székely et al. (2007), is 

μ(ds, dt) = cp,q |s|−κ−p|t |−κ−qds dt  .  (6) 

where cp,q is as defined in Lemma 1 of Székely et al. (2007). This choice of μ gives 
κμ(x)˜ μ(y)˜ = |x|κ |y| . Moreover, this is the only choice of μ for which the distance 

covariance is invariant relative to scale and orthogonal transformations. Note that in 
order for the integral (5) to exist, it is required that 

E[|X|κ |Y |κ + |X|κ + |Y |κ ] < ∞. 

We will utilize the described weight measure (6) with κ = 1 in our simulations and 
data analyzes in Section 6, but applied to the log transformation on R to ensure that 
the moment condition is satisfied. 

As detailed in Davis et al. (2017), if the sequence {(Xi, Yi)} is stationary and 
ergodic, then 

a.s. 
Tn(X, Y ;μ) → T (X,  Y  ;μ). (7) 

Further, if X and Y are independent, then under an α-mixing condition, � 
d 

n Tn(X, Y ;μ) → |G(s, t)|2μ(s, t) (8) 
Rp+q 

for some centered Gaussian field G. On the other hand, if X and Y are dependent, 
then √ d 

n(Tn(X, Y ;μ) − T (X,  Y  ;μ)) → Gμ 

for some non-trivial limit Gμ, implying that n Tn(X, Y ;μ) diverges as n → ∞. 
Naturally one can devise a test of independence between X and Y using the statis-
tic n Tn(X, Y ;μ): the null hypothesis of independence is rejected at level   if 
n Tn(X, Y ;μ) > c, where  c is the upper  -quantile of 

Rp+q |G(s, t)|2μ(s, t). 
In practice, the distribution 

Rp+q |G(s, t)|2μ(s, t) is intractable and is typically 
approximated through bootstrap. Hence the main drawback of using distance covari-
ance is the computation burden it brings for large sample size: the computation of a 
single distance covariance statistic requires O(n2) operations, while finding the cut-
off values via resampling requires much more additional computation. Our method, 
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however, overcomes this problem through subsampling the data, as will be described 
in Section 5. 

4 Theoretical results 

Let {Xi }ni=1 be iid observations in Rd from a multivariate regularly varying dis-
tribution X satisfying Eqs. 1 and 3, and  {(Ri,�i)}ni=1 be their polar coordinate 
transformations. Given a threshold rn, we measure the dependence between R/rn 
and � conditional on R >  rn by the empirical distance covariance of (R/rn,�)  on 
the set {R >  rn}: � 

Tn := |Cn(s, t)|2μ(ds, dt), (9) 
Rd+1 

with 
Cn(s, t) := ϕ̂ R ,�|rn(s, t) − ϕ̂ R |rn(s)ϕ̂�|rn(t), rn rn 

where ϕ̂ R is the conditional empirical characteristic function of (R/rn,�),,�|rnrn 

n
1 isRj /rnϕ̂ R ,�|rn (s, t) = � n e +itT �j 1{Rj >rn}, s  ∈ R, t  = (t1, . . . , td )

T ∈ Rd , 
=1 1{Rj >rn}rn j j=1 

and ϕ̂ R |rn , ϕ̂�|rn are the corresponding empirical conditional marginal characteristic 
rn 

functions, 

ϕ̂ R |rn(s) = ϕ̂ R ,�|rn(s, 0), ϕ̂�|rn(t) = ϕ̂ R ,�|rn(0, t).  rn rn rn 

In this section, we establish the limiting results (7) and  (8) adapted to the 
conditional distance covariance. For ease of notation, let 

n
1 

pn := P(R > rn) ,  p̂n := 1{Rj >rn}n 
j=1 

be the theoretical and empirical probability of exceedance, and let 

isR/rnE e +itT �1R>rn
isR/rn+itT �|R >  rnϕ R (s, t) := E e = ,

,�|rnrn pn 

and 
ϕ R |rn(s) := ϕ R ,�|rn(s, 0), ϕ�|rn(t) := ϕ R ,�|rn(0, t),  
rn rn rn 

be the theoretical conditional joint and marginal characteristic functions. 
Recall from Eq. 3 that as n → ∞, R/rn and � become asymptotically indepen-

dent and converge to να and S respectively. Denote the characteristic functions of the 
corresponding limit distributions by � ∞ 

ϕR(s) := exp(isr)αr−α−1dr  = lim ϕ R (s), (10) 
n→∞ rn 

|rn
1 � 

ϕ�(t) := exp(itθ)S(dθ) = lim ϕ�|rn(t). (11) 
Sd−1 n→∞ 

We have the following results. 
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Theorem 1 1. Let X1, . . . ,  Xn be iid observations generated from X, where  X is 
multivariate regularly varying with index α >  1. Let  Tn be the conditional empir-
ical distance covariance between the angular and radial component defined in 
Eq. 9. Further assume that npn →∞ and the weight measure μ satisfies 

� 
(1 ∧ |s|β)(1 ∧ |t |2)μ(ds, dt) < ∞, (12) 

Rd+1 

for some 1 < β <  2 ∧ α. Then  

p
Tn → 0. 

2. In addition, if {rn} satisfies � 
npn |ϕ R ,�|rn(s, t) − ϕ R |rn(s)ϕ�| (t)|2μ(ds, dt) → 0, (13)rn 

Rd+1 rn rn 

then � 
d 

np̂nTn → |Q(s, t)|2μ(ds, dt), (14) 
Rd+1 

where Q is a centered Gaussian process with covariance function 

cov(Q(s, t),Q(s , t  )) = (ϕR(s − s ) − ϕR(s)ϕR(−s ))(ϕ�(t − t ) − ϕ�(t)ϕ�(−t )) (15) 

with ϕR, ϕ� as defined in Eqs. 10 and 11. 

Remark 1 In the case where X is regularly varying with index α ≤ 1, similar results 
hold if we replace R/rn with log(R/rn) for which all moments exist. 

The proof of the theorem is delayed to Appendix A. In the following remark, we 
discuss certain sufficient conditions for assumption (13). 

Remark 2 Assume that μ = μ1 × μ2, where  μ1, μ2 are measures on R and Rd , 
respectively, and symmetric about the origin. From Section 2.2 of Davis et al. (2017), 
condition (13) is equivalent to 

� 
R R 

npn E[μ̃1( − ) μ̃2(� −� )|R,R > rn]
rn rn 

R R +E[μ̃1( − )|R,R > rn]E[μ̃2(� −� )|R,R > rn]
rn rn � 

R R −2 E[μ̃1( − )μ̃2(� −� )|R,R > rn] → 0, (16) 
rn rn 

where � 
μ̃i(x) = (1 − cos(xT s)) μi(ds), i = 1, 2. 
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Let P R denote the conditional joint distribution of (R/rn,�)  given R >  rn and
,�|rnrn 

P R , P�|rn be the respective conditional marginals. Then Eq. 16 can be expressed |rnrn as 

� � 
npn μ̃ 1(T − T ) μ̃ 2(� − � ) 

(1,∞)×Sd−1 (1,∞)×Sd−1 

P R (dT , d�)P R (dT , d�  ) 
,�|rn ,�|rnrn rn 

+P R (dT )P�|rn(d�)P R (dT )P�|rn(d� ) |rn |rnrn rn � 
−2P R ,�|rn(dT , d�)P R |rn(dT )P�|rn(d� ) 

rn rn � � 
= μ̃ 1(T − T ) μ̃ 2(� − � ) 

(1,∞)×Sd−1 (1,∞)×Sd−1 �√ 
npn P R ,�|rn(dT , d�) − P R |rn(dT )P�|rn(d�) 

rn rn �√ 
npn P R ,�|rn(dT , d�  ) − P R |rn(dT )P�|rn(d� ) → 0, (17) 

rn rn 

where (R ,�  ), (R ,�  ) are iid copies of (R, �).  One  way to verify (17) is to  
assume a second-order like condition on the distribution of (R, �). For example, 
assume that 

P R − να × S
,�|rn wrn →  ,  
A(rn) 

where   is a signed measure such that  ([r, ∞]×B) is finite for all r   1 and  B Borel 
set in Sd−1, the unit sphere in Rd , and the scalar function A(t) → 0 as  t →∞. When  
the components of X are asymptotically independent, this is equivalent to the second 
order condition for multivariate regular variation (Resnick 2002). If we choose the √ √ 
sequence rn such that npn →∞  and npnA(rn) → 0, then 

√ P 
r
R
n 
,�|rn((·, ·)) − P 

r
R
n 
|rn(·) × P�|rn(·) 

npnA(rn) 
A(rn) � � 

P R ,�|rn((·, ·)) − να × S((·, ·)) P R (·) − να(·) × P�|rn(·)√ rn 
|rn = npnA(rn) − rn 

A(rn) A(rn) � 
να(·) × (P�|rn(·) − S(·)) w− → 0 

A(rn) 
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on [1, ∞]× S
d−1. In the case where μ1, μ2 are finite measures, μ̃1, μ̃2 are bounded 

and Eq. 17 is satisfied since the integrand can be written as � � � 
npnA

2(rn) μ̃1(T − T ) μ̃2(� −� ) 
(1,∞)×Sd−1 (1,∞)×Sd−1 � 

P R ,�|rn(dT , d�) − P R |rn(dT )P�| (d�) rn 
rn rn 

A(rn) 

P R ,�|rn(dT , d�  ) − P R |rn(dT )P�| (d� ) rn 
rn rn → 0. 

A(rn) 

In the special case that |A| ∈  RVρ for ρ <  0, Eq. 17 is met provided rn is chosen 
such that 

1 1 
O(n α+2|ρ| + 

) ≤ rn ≤ o(n α ), for some > 0. 

When the measures μ1, μ2 are infinite, Eq. 13 can be verified in specific cases. 
This is illustrated in the following example. 

Example 1 Let X follow a bivariate logistic distribution, i.e., X has cdf 

−1/γ −1/γ
P(X1 < x1, X2 < x2) = exp(−(x1 + x2 )γ ), γ ∈ (0, 1). (18) 

Then X has asymptotically independent components if and only if γ = 1. It can be 
shown that X is regularly varying with index α = 1, i.e., pn = P(R > rn) ∼ r −1 asn 
rn →∞. Using the L1-norm, �(x1, x2)� = |x1| + |x2|, the pseudo-polar coordinate 
transform is (R, �) = (X1 + X2, X1/(X1 + X2))∈ (0, ∞) × [0, 1] and the pdf of 
(R, �) is 

� �γ − 1 − 1 

−2 − γ +1 − 1 − 1 �γ −2 −r −1 θ γ +(1−θ)  γ 
γ γ γfR,�(r, θ) = r (θ(1 − θ)) θ + (1 − θ)  e � � �γ− 1 − 1 γ − 1−1 γ γr θ + (1 − θ)  − . 

γ 

We now consider the case of the infinite weight measure μ given in Eq. 6 with κ = 1 
and derive the condition on the sequence {rk} for which the conditions of Theorem 1 
hold. First observe that � �γ − 1−1 −1 − γ 

1 

− γ +1 − 1 − 1 �γ −2 −rn t θ γ +(1−θ)  
f R (t, θ) = t (θ(1 − θ)) θ + (1 − θ)  e −2 γ γ γ 

,�|rnrn � � �γ− 1 − 1 γ − 1 
r −1t−1 θ γ + (1 − θ)  γ − n γ �γ −2−2 1 − γ − γ +1 − 1 − 1 

γ γ γ→ t (θ(1 − θ)) θ + (1 − θ)  , as n →∞, (19) 
γ 

=: fT (t)f�(θ), 
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and � � � � 
rn � f R (t, θ) − fT (t)f�(θ)�,�|rnrn ⎛ � � �γ 

� � − 1 − 1 � � −r −1t−1 θ γ +(1−θ)  γ � � �≤ fT (t)f�(θ) ⎝rn e 
n − 1 � � � � 

� �γ ⎞ 
− 1 − 1−1 −1 γ �γ−rn t θ γ +(1−θ)  − 1 − 1 γ−1 γ ⎠ γ+e t θ + (1 − θ)  

1 − γ 
� � �γ �γ− 1 − 1 − 1 − 1 γ−1 γ −1 γγ γ≤ fT (t)f�(θ) t θ + (1 − θ)  + t θ + (1 − θ)  

1 − γ �2γ −2− 1 − 1 1 
γ≤ t−3 θ γ + (1 − θ)  

1 − γ 
−3≤ ct , for t   1 and  θ ∈ [0, 1], 

where c denotes a generic a constant whose value may change from line to line 
throughout the paper, and the last inequality comes from the facts that 

� � 2−2γ �2γ −2 γ1 − 1 − 1 1 
γ γθ(1 − θ)  ≤ and θ + (1 − θ)  ≤ < ∞. 

4 2 

Letting 

f R ,�|rn(t, θ) − f R |rn(t)f�|rn(θ) rn rnhn(t, θ) := ,−1 rn 

we have � � � � � �1 ∞ 1 ∞ 

max |hn(t, θ)|dtdθ,  | log(t)hn(t, θ)|dtdθ  
0 1 0 1 � �1 ∞ 

≤ |thn(t, θ)|dtdθ  
0 1 � � � �1 ∞ �f R (t, θ) − fT (t)f�(θ) �,�|rn � rn �≤ � � dtdθ  � t−1 −1 �0 1 rn � � � �1 ∞ � f�|rn(θ) − f�(θ) � � �+ fT (t) dtdθ  � 

t−1 −1 � 
0 1 rn � � � �1 ∞ � f R (t) − fT (t) �|rn � rn �+ � f�|rn(θ) � dtdθ,  � t−1 −1 �0 1 rn 

where the first term can be bounded by 
� �1 ∞ 

ct−2dtdθ  <  ∞, 
0 1 
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and the other terms can be bounded in the same way. Since R has infinite first 
moment, we apply the distance correlation to log R and �. The integral in Eq. 17 is 
bounded by � � � �1 ∞ 1 ∞ npn | log t − log t ||θ − θ ||hn(t, θ)||hn(t , θ  )|dtdθdt  dθ

2rn 0 1 0 1 � � � �1 ∞ 1 ∞ n ≤ c (| log t | + |  log t |)|hn(t, θ)||hn(t , θ  )|dtdθdt  dθ
3rn 0 1 0 1 � �� � � � � �1 ∞ 1 ∞ n n ≤ c | log(t)hn(t, θ)|dtdθ  |hn(t, θ)|dtdθ  ≤ c ,
3 3r r n 0 1 0 1 n 

which converges to zero if n = o(r3). Therefore if {rn} is chosen such that rn = o(n) n 
and n = o(r3), then Theorem 1 holds. n 

The result in Theorem 1 can be generalized from iid to a regularly varying time 
series setting, which we present in the next theorem. For a multivariate stationary 
time series {Xt } and h   1, set Yh = (X0, . . . ,  Xh). Then  {Xt } is regularly varying if 

P(x−1Yh ∈ ·) v ∗→ μh(·), x →∞, 
P(x−1�X0� > 1) 

(h+1)d (h+1)d
for some non-null measure μ ∗ on R = R \{0}, R = R ∪ {±∞}, with the h 0 

(h+1)d
property that μ ∗ (tC) = t−αμ ∗ (C) for any t >  0 and  Borel set  C ⊂ R . See, h h 0 
for example, page 979 of Davis and Mikosch (2009). It follows easily that 

P(x−1(X0, Xh) ∈ ·) v→ μh(·), (20)
P(�X0� > x)  

where 
(h+1)d∗ μh(D) = C · μ ({s ∈ R : (s1, sh) ∈ D}).h 

Assume that {Xt } is α-mixing. We assume the following conditions between {Xt } and 
the sequence of threshold {rn}, which can be verified for various time series models 
(Davis and Mikosch 2009). 

−1(M) Assume p = P−1(�X1� > rn) = o(n1/3) and that there exists a sequence n 
{ln} such that ln →∞, lnpn → 0, and 
i) � � ∞

1 δ 

αδ → 0 for  some  δ ∈ (0, 1); (21) h pn 
h=ln 

ii) 
ln1 

lim lim sup P(�X0� > rn, �Xj � > rn) = 0; (22) 
h→∞ n→∞ pn 

j=h 

iii) 
npnαln → 0. (23) 
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Theorem 2 Let {Xt } be a multivariate regularly varying time series with tail index 
α >  1 and α-mixing with coefficients {αh}h 0. Assume the same conditions for the 
weight measure μ and the sequence of thresholds {rn} in Theorem 1, i.e., Eqs. 12, 13 
hold, and that condition (M) holds. Then � 

d 
np̂nTn → |Q (s, t)|2μ(ds, dt), 

Rd+1 

where Q is a centered Gaussian process. In particular, 

Tn →p 
0. 

The proof of Theorem 2 is given in Appendix B. 
Note that the limiting distributions Q in Theorem 1 and Q in Theorem 2 are both 

intractable. In practice, quantiles of the distributions are calculated using resampling 
methods. While in the iid case this can be done straightforwardly, in the weakly 
dependent case one needs to apply the block bootstrap or stationary bootstrap to 
obtain the desired result (see Davis et al. (2012)). In the following section, we present 
a threshold selection framework with a subsampling scheme that does not require 
independence between the observations. 

5 Threshold selection 

In this section, we propose a procedure to select the threshold for estimating the spec-
tral measure S from observations X1, · · ·  , Xn. Let us first consider the case where a 
specific threshold rn is given. Then Eq. 9 specifies the empirical distance covariance 
between R/rn and � conditional on R > rn. Under the assumption (13), we have 
from Theorem 1, � 

np̂nTn → |Q(s, t)|2μ(ds, dt), 
Rd+1 

where np̂n is the number of observations such that Ri > rn. In practice, the limit 
distribution |Q|2μ(s, t) is intractable, but one can resort to bootstrapping. Consider 
the hypothesis testing framework: 

H0 : R/rn and � are independent given R >  rn 

H1 : R/rn and � are not independent given R >  rn. 

Define the p-value for testing H0 versus H1 to be � � � � � �pv = P |Q(s, t)|2μ(ds, dt) > u . (24) � 
Rd+1 u=np̂nTn 

Then under H0, pv follows U(0, 1), while under H1, pv should be sufficiently small. 
Now consider a decreasing sequence of candidate thresholds {rk}. From Eq.  24, a  

sequence of p-values {pvk}, each corresponding to a threshold rk , can be obtained. 
∗Our goal is to find the smallest threshold r ∗ such that conditional on R > r  , � can 

reasonably be considered independent of R. Note that the pvk’s are not independent 
for each k since they are computed from the same set of data. Conventional multiple 
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testing procedures, such as Bonferroni correction, are problematic to implement for 
dependent p-values. To counter these limitations, we propose an intuitive and direct 
method based on subsampling. 

The idea is outlined as follows: For a fixed level rk , we choose a subsample of 
size nk from the conditional empirical cdf F̂ R of (Ri/rk,�i) with Ri > rk , i = 

,�|rkrn 
1, . . . , n. For this subsample, we compute the distance covariance Tn,k . To compute 
a p-value of Tn,k under the assumption that the conditional empirical distribution is 
a product of the conditional marginals, we take a large number (L) of subsamples of 
size nk from 

F̃ R ,�|rk (dθ, dr) = F̂�|rk (dθ)F̂ R |rk (dr), rn rn 

(l) and calculate the value T̃ , l  = 1, . . . , L  for each subsample. The p-value of Tn,k ,n,k 
(l) 

pvk , is then the empirical p-value of Tn,k relative the {T̃ }l=1,...,L. This process, n,k 

starting with an initial subsample of nk from F̂ R is repeated m times, which 
,�|rkrn 

(j) produces m estimates {pv }j=1,...,m of the pvk , which are independent conditional k 
on the original sample. These are then averaged 

m
1 (j) 

pvk = pvk . m 
j=1 

So for the sequence of levels {rk}, we produce a sequence of independent p-values 
{pvk}. 

Our choice of threshold r at which (�, R)|R > r  are independent (and dependent 
otherwise) will be based on an examination of the path of the mean p-values, {pvk}. 
Note the following two observations: 

(1) (m)– If  R and � are independent given R > rk , then the pv , . . . , pv  will be iid k k 
and approximately U(0, 1)-distributed, so that pvk should center around 0.5. 

– If  R and � are dependent given R > rk , then the pv(j)’s will be well below 0.5 k 
(closer to 0),  and so will  pvk . 

By studying the sequence {pvk}, which we call the mean p-value path, we choose 
the threshold to be the smallest rk such that pvl is around 0.5 for l < k. A well-suited 
change-point method for our situation is the CUSUM algorithm, by Page (1954), 
which detects the changes in mean in a sequence by looking at mean-corrected partial 
sums. In our algorithm, we use a spline fitting method that is based on the CUSUM 
approach called wild binary segmentation (WBS), proposed by Fryzlewicz (2014). 
The WBS procedure uses the CUSUM statistics of subsamples and fits a piecewise 
constant spline to {pvk}. In our setting, we may choose rk to be the knot of the spline 
after which the fitted value is comfortably below 0.5. 

There are several advantages to using the subsampling scheme. First, recall that 
the p-value path {pvk}, which is obtained from the whole data set, has complicated 
serial structure and varies greatly from each realization. In contrast, the mean p-
values pvk from subsampling are conditionally independent and will center around 
0.5 with small variance when the total sample size n and the number of subsample 
m is large. This, in turns, helps to present a justifiable estimation for the threshold. 
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Second, the calculation of distance covariance can be extremely slow for moderate 
sample size. Using smaller sample sizes for the subsamples, our computational bur-
den is greatly reduced. In addition, this procedure is amenable to parallel computing, 
reducing the computation time even further. Third, the subsampling makes it possi-
ble to accommodate stationary but dependent data, waiving the stringent independent 
assumption. 

The idea of looking at the mean p-value path is inspired by Mallik et al. (2011), 
which used the mean of p-values from multiple independent tests to detect change 
points in population means. 

6 Data illustration 

In this section, we demonstrate our threshold selection method through simulated and 
real data examples. 

In practice, we set the sequence of thresholds {rk} to be the corresponding upper 
quantiles to {qk}, a pre-specified sequence of quantile levels. The subsample size nk 
at each threshold rk is set as nk = n0 · qk for some n0 << n. This is designed 
such that for any rk , each subsample is a n0/n fraction of all the eligible data points 
with R > rk . Then the choice of {nk} boils down to the choice of n0, which should 
reflect the following considerations: i) n0 should be large enough to ensure good 
resolution of p-values at all levels; ii) n0/n should be sufficient small such that the 
subsamples do not contain too much overlap in observations; iii) larger n0 requires 
heavier computation for the distance correlation. In our examples, where the total 
sample size n ranges from 3000 to 20000, we find n0 between 500 and 1000 to be 
a suitable choice. The number of subsamples m can be set as large as computation 
capacity allows. In our examples, we take m = 60. 

For all the examples, we choose the weight function μ for distance covariance to 
be Eq. 6 with κ = 1, and the number of replications used to calculate each p-value 
is L = 200. To ensure that the moment conditions are met, the distance correlation 
is applied to the log of the radial part R in all examples. 

6.1 Simulated data with known threshold 

To illustrate our methodology, we simulate observations from a distribution with a 
known threshold for which R and � become independent. 

Let R be the absolute value of a t-distribution with 2 degrees of freedom and 
�1,�2 be independent random variables such that �1 ∼ U(0, 1), �2 ∼ Beta(3, 3). 
Set � 

�1, if R > r0.2,
�|R = 

�2, if R ≤ r0.2, 

where r0.2 is the upper 20%-quantile of R. Then  R and � are independent given 
R > r  if and only if r   r0.2. Let  (Xi1, Xi2) = (Ri�i, Ri(1 − �i)), i = 1, . . . , n, 
be the simulated observations. We generate n = 10000 iid observations from this 
distribution. Figure 1a, b and c show the data in Cartesian and polar coordinates. Our 
goal is to recover the tail angular distribution by choosing the appropriate threshold. 
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Fig. 1 Example 6.1. a scatterplot of (Xi1, Xi2); b scatterplot of (Xi1, Xi2) in log-log scale; c scatterplot 
of (Ri,�i); d mean p-value path (black triangles), fitted WBS spline (blue line), and the chosen threshold 
quantile (red vertical line); e estimated cdf of � using the threshold chosen, compared with the truth (black 
dotted) 

A sequence of candidate thresholds {rk} is selected to be the empirical upper quan-
tiles of R corresponding to {qk}, 150 equidistant points between 0.01 and 0.4. We 
apply the procedure described in Section 5 to the data. For each rk , the mean p-value 
pvk is calculated using m = 60 random subsamples, each of size nk = 500 · qk , from 
the observations with Ri > rk . Figure 1d shows the mean p-value path. For the WBS 
algorithm, we set the threshold to be the largest rk such that for all thresholds r (quan-
tile level q) such that r < rk (q > qk), the fitted spline of the p-value stays below 
0.451. The threshold levels chosen is 20.4%, which are in good agreement with the 
true independence level 0.2. The empirical cdfs of the truncated �i’s corresponding 
to the chosen thresholds is shown in Fig. 1e. We can see that the true tail angular cdf 
(i.e., U(0, 1)) is accurately recovered. 

6.2 Simulated logistic data 

We simulate data from a bivariate logistic distribution, which is bivariate regularly 
varying. Recall from Example 1 that (X1, X2) follows a bivariate logistic distribution 

1Of course, other selection rules can be used. For example, a more conservative approach would be choos-
ing the threshold as the largest rk such that for r > rk , the fitted spline of the p-value stays above 
0.45. 
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Fig. 2 Example 6.2. a scatterplot of (Xi1, Xi2); b scatterplot of (Xi1, Xi2) in log-log scale; c scatterplot
of (Ri,�i); d mean p-value path (black triangles), fitted WBS spline (blue line), and the chosen threshold
quantile (red vertical line); e estimated cdf of � using the threshold chosen, compared with the theoretical
limiting cdf (black dotted)

if it has cdf (18). In this example, we set γ = 0.8 and generate n = 10000 iid obser-
vations from this distribution. Similar to the previous example, for each threshold rk
corresponding to the upper qk quantile, where {qk} is chosen to be the 150 equidis-
tant points between 0.01 and 0.3. The mean p-value pvk is calculated using m = 60
random subsamples of size nk = 500 · qk from the observations with Ri > rk .

Figure 2a , b and c show the scatterplots of the data. Here the L1-norm is used to
transform the data into polar coordinates. Our algorithms suggests using 7.4% of the
data to estimate the angular distribution. The estimated cdf of the angular distribution
is shown with the theoretical limiting cdf, derived from Eq. 19, in Fig. 2e. So even
though R and � are not independent for any threshold rk , our procedures produce
good estimates of the limiting distribution of �.

6.3 Real data

In this example, we look at the following exchange rate returns relative to the US dol-
lar: Deutsche mark (DEM), British pound (GBP), Canadian dollar (CAD), and Swiss
franc (CHF). The time spans for the data are 1990-01-01 to 1998-12-31 with a total of
3287 days of observations. We examine the pairs GBP/CHF, CAD/CHF, DEM/CHF
and estimate the angular density in the tail for each pair. Figure 3a–c present the scat-
ter plots of the data. The marginals of the observations are standardized using the
rank transformation proposed in Joe et al. (1992):

Zi = 1/ log{n/(Rank(Xi)− .5)}, i = 1, . . . , n.
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Fig. 3 Example 6.3. Analysis of the paired exchange rate returns: CHF/DEM, CHF/GBP, CHF/CAD with 
respect to USD between 1990-01-01 to 1998-12-31. a–c: Scatter plots of the standardized paired exchange 
rate returns; d–f: Estimated angular densities using the estimated thresholds chosen 

Again {qk} is chosen to be the 150 equidistant points between 0.01 and 0.3, and the 
mean p-value pvk is calculated using m = 60 random subsamples of size nk = 
500 · qk from the observations with Ri > rk . Note that while it may not be reasonable 
to view the observations as iid, the subsampling scheme can still be applied to choose 
the threshold of independence between R and �. 

The mean p-value paths are shown in Fig. 4a–c. The threshold levels selected for 
the three pairs are 9.6%, 7.4%, 16%, respectively. Figure 3d–f show the shape of the 
estimated angular densities for each pairs. As expected, the tails of the two central 
European exchange rates, DEM and CHF, are highly dependent. In contrast, that of 
CAD and CHF are almost independent. 

6.4 Simulated non-regularly varying data 

In this example, we generate data from a model which is not regularly varying. Let 
R be a random variable from the standard Pareto distribution: 

P(R > r) = r −1 , r    1. 

Let �1,�2 be independent random variables such that �1 ∼ U(0, 0.5), �2 ∼ 
U(0.5, 1). Set  � 

�1, if log R ∈ (2k, 2k + 1] for some integer k,
�|R ∼ 

�2, if log R ∈ (2k + 1, 2k + 2] for some integer k. 
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Fig. 4 Example 6.3 (cont.). Analysis of the paired exchange rate returns: CHF/DEM, CHF/GBP, 
CHF/CAD with respect to USD between 1990-01-01 to 1998-12-31. a–c: mean p-value paths (black 
triangles), fitted WBS splines (blue lines) and the chosen threshold quantiles (red vertical line) 

For any positive integer k, it can be verify that 

−11 − e2k
P(� ∈ (0, 0.5)|R > e  ) = −2 

,
1 − e 
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Fig. 5 Example 6.4. a scatterplot of (Xi1, Xi2); b scatterplot of (Xi1, Xi2) in log-log scale; c scatterplot 
of (Ri,�i); d mean p-value path (black triangles), fitted WBS spline (blue line), and the chosen threshold 
quantile (red vertical line) 

while 
−1 − e −2 e2k+1

P(� ∈ (0, 0.5)|R > e  ) = .−21 − e 

Hence P(� ∈ ·|R > r) does not convergence as r →∞ and X = (R�,R(1 −�)) 
is not regularly varying. 

Let (Xi1, Xi2) = (Ri�i, Ri(1 −�i)), i = 1, . . . , n, be iid observations from this 
distribution, where n = 20000. Figure 5a, b and c show the data in Cartesian and 
polar coordinates. We apply our threshold selection algorithm to the data, with the 
threshold upper quantile levels qk chosen as the 150 equidistant points between 0.01 
and 0.2. The mean p-value pvk is calculated using m = 60 random subsamples of 
size nk = 500 · qk from the observations with Ri > rk . This is shown in Fig. 5d. 

In this model, the radial part R is regularly varying, but � and R are dependent 
given R > r  for any r . We expect the mean p-values to be well below 0.5, as are 
observed. No threshold is selected by the algorithm. This suggests that our tech-
nique can potentially be used to detect misspecified models from the regular variation 
assumption, especially in the scenario where the heavy-tailedness of R is observed 
but dependence between R and � is suspected. 

7 Discussion 

In this paper, we propose a threshold selection procedure for multivariate regular vari-
ation, for which R and � are approximately independent for R beyond the threshold. 
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While our problem is set in the multivariate heavy-tailed setting and we utilize dis-
tance covariance as our measure of dependence, our algorithm is essentially a change 
point detection method based on p-values generated through subsampling schemes. 
Hence this may be generalized to other problem settings and potentially incorpo-
rates other dependence measures. Though we have proposed an automatic selection 
for the threshold based on the fitted mean p-value path, we would like to emphasize 
that, like the Hill plot, this should be viewed as a visual tool rather than an optimal 
selection criterion. The final threshold should be based on the automatic procedure 
in conjunction with visual inspection of the p-value path. 
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Fig. 6 Simulated logistic data of sample size n = 10000 with γ = 0.95. Threshold selection algorithm 
applied under the L0.2-, L1- and  L5-norms: mean p-value paths (black triangles), fitted WBS splines (blue 
lines) and the chosen threshold quantiles (red vertical line) 
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We note that the choice of norm in the polar coordinate transformation (1) may  
result in significant differences in the choice of thresholds, which indicates the 
rate of convergence to the limit spectral density. This is especially evident in the 
near ‘asymptotic independence’ case, where the mass of the angular distribution 
concentrates on the axes. 

As an illustration, we simulated iid observations {(Xi1, Xi2)}i=1,...,n from the 
bivariate logistic distribution, where the cdf is given in Eq. 18, with γ = 0.95 and 
n = 10000. We apply the polar coordinate transformation with respect to the Lp -
norm for p = 0.2, 1, 5. Note that in the case of p = 0.2, Lp is only a quasi-norm 
as it does not satisfy the triangular inequality. However, it can be shown that Eq. 4 
holds and the limiting angular distribution exists for bivariate logistic distribution. 
We compare the threshold selection results in Fig. 6. Note that in the cases of the 
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L1 and L5-norms, the threshold levels are chosen to be upper 5% and 12%, respec-
tively, while in the case of the L0.2-norm, it is not possible to select the threshold as 
the dependence between R and � at all levels were shown to be significant. Indeed, 

p p pthis can be seen in Fig. 7, where we compare the histogram of X1 /(X1 + X2 ) given 
�X�p is large across three levels of truncations, 2%, 5% and 12%, together with the 
theoretical limiting density curve. For the L0.2-norm, the limiting angular density is 
poorly approximated by the truncated data for all levels. For the other two norms, the 
truncated observations according to the selected threshold provide decent approxima-
tions to the true limiting density of the angular component. One possible explanation 
for this is that under the L0.2-norm, the threshold is concave and hence observations 
on the diagonal are much easier to be classified as “extremes” than those near the 
axis. As a result, the estimator of the angular density uses more observations near the 
diagonal, which may not be, in fact, close enough to the limit. This choice of norm is 
an interesting topic and is the subject of ongoing research. 
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Appendix A: Proof of Theorem 1 

Note from the definition of the empirical distance covariance in Eq. 9, the integrand 
can be expressed as 

n
1 isRj /rnCn(s, t) = e +itT �j 1{Rj >rn}np̂n 

j=1 

n n
1 1isRj /rn 1{Rj >rn − e } eit

T �k 1{Rk>rn}np̂n np̂n
j=1 k=1 

n �
 �1 = eisRj /rn − ϕ R |rn (s) eit
T �j − ϕ�|rn (t) 1{Rj >rn}np̂n rn 

j=1 

n � n �1 1isRj /rn itT �k− e − ϕ R |rn (s) 1{Rj >rn} e − ϕ�|rn (t) 1{Rk>rn}. np̂n rn np̂n
j=1 k=1 

� � 
Writing Ujn  = eisRj /rn − ϕ R |rn(s) 1{Rj >rn}, Vjn  = eit

T �j − ϕ�|rn(t) 1{Rj >rn}, 
rn 

we have 

n � �2 n n 
pn 1 UjnVjn  pn 1 Ujn  1 Vkn 

Cn(s, t) = − . 
p̂n n pn p̂n n pn n pn

j=1 j=1 k=1 
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Since EUjn  = EVjn  = 0 and  EUjnVjn/pn = ϕ R ,�|rn(s, t) − ϕ R |rn(s)ϕ�|rn(t), it is  
rn rn 

convenient to mean correct the summands and obtain 
n � �� pn 1 UjnVjn

Cn(s, t) = − ϕ R ,�|rn(s, t) − ϕ R |rn(s)ϕ�|rn(t) p̂n n pn rn rn 
j=1 � �2 n n 

pn 1 Ujn  1 Vkn− 
p̂n n pn n pn

j=1 k=1 

pn+ (ϕ R ,�|rn(s, t) − ϕ R |rn(s)ϕ�|rn(t)) p̂n rn rn � � � �2 � � 
pn pn pn˜ ˜ ˜ ˜ 
p̂n p̂n p̂n 

=: E1 − E21E22 + E3 

� � � �2 � � 
pn pn pn˜ ˜ ˜ 
p̂n p̂n p̂n 

=: E1 − E2 + E3 

Note that Ẽ1, Ẽ21, Ẽ22 are averages of iid zero-mean random variables and Ẽ3 is 
non-random. We first prove the second part of Theorem 1. The first part of Theorem 
1 follows easily in a similar fashion. 

Proof (Proof of Theorem 1(2)) 
In order to show (14), it suffices to establish that � � �2 � 

pn d 
np̂n |Ẽ1|2μ(ds, dt) → |Q(s, t)|2μ(ds, dt), (25) 

Rd+1 p̂n Rd+1 

and � � � � �2� � � pn � p � np̂nTn − np̂n |Ẽ1|2μ(ds, dt)� → 0, (26) � Rd+1 p̂n � 
where Eq. 26 can be implied by � � �2 � � �2 

pn pn p 
np̂n |Ẽ2|2μ(ds, dt) + np̂n |Ẽ3|2μ(ds, dt) → 0. (27) 

Rd+1 p̂n Rd+1 p̂n 

Notice that � �2 � � � � � � � �2 n 2 � p̂n � �1 1{Rj >rn} � 1 �1{R1>rn} � � � � � � �E − 1 = E − 1 = E − 1 � � � � � � pn � n pn � n pn
j=1 

1 1 ≤ O(1) + O(1) → 0. 
npn n 

p
Hence p̂n/pn → 1 and for Eqs. 25 and 27, it is equivalent to prove that � � 

d 
npn |Ẽ1|2μ(ds, dt) → |Q(s, t)|2μ(ds, dt) (28) 

Rd+1 Rd+1 
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and � � 
p 

npn |Ẽ2|2μ(ds, dt) + npn |Ẽ3|2μ(ds, dt) → 0. (29) 
Rd+1 Rd+1 

We will show the convergence (28) in Proposition 1. By Eq. 13, � 
npn |Ẽ3|2μ(ds, dt) → 0. 

Rd+1 

So that Eq. 29 holds provided � 
p 

npn |Ẽ2|2μ(ds, dt) → 0, (30) 
Rd+1 

which follows in a similar fashion as Proposition 1. 

Proposition 1 Assume μ satisfies � 
β(1 ∧ |s| )(1 ∧ |t |2)μ(ds, dt) < ∞, 

Rd+1 

and that npn →∞ as n →∞, then  � � 
d 

npn |Ẽ1|2μ(ds, dt) → |Q(s, t)|2μ(ds, dt), 
Rd+1 Rd+1 

where Q is a centered Gaussian process with covariance function (15). 

Proof (Proof of Proposition 1) 
We first show that 

√ 
npnẼ1 →d 

Q(s, t), on C(Rd+1) (31) 

which can be implied by the finite distributional convergence of 
√ 
npnẼ1(s, t) and 

its tightness on C(Rd+1). 
Write 

n � � n√ 1 UjnVjn  √ 1˜npnE1 = √ √ − pn(ϕ R ,�|rn (s, t) − ϕ R |rn (s)ϕ�|rn (t)) =: √ Yjn, 
n pn rn rn n 
j=1 j=1 

where Yjn’s are iid random variables with mean 0. For fixed (s, t), note that 

Var(Y1n) = E|Y1n|2 = 
E|U1nV1n|2 

(1 + o(1)) = 
E1{R1>rn}O(1) <  ∞. 

pn pn 

On the other hand, any δ >  0, 

E|U1n |2+δ 
E|Y1n|2+δ = 

V1n
(1 + o(1)) ≤ c 

E1{R1>rn} (1 + o(1)) = O(pn 
−δ/2

)
1+δ/2 1+δ/2 

pn pn 

Then we can apply the central limit theorem for triangular arrays by checking the 
Lyapounov condition (see, e.g., Billingsley (1995)) for the Yjn’s: 

� − δ n 2 
j=1 E|Yjn|2+δ O(npn ) − δ = = O((npn) 2 ) → 0. �� 2+δ 1+ δ1+ δ � n 2 )n 2 Var(Y1n 2

Var j=1 Yjn  
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It follows easily that for fixed (s, t), 

√ d 
npnẼ1 → Q(s, t). 

The finite-dimensional distribution can be obtained using the Cramér-Wold device 
and the covariance function can be verified through calculations. 

We now show the tightness of 
√ 
npnẼ1. Note that 

Ẽ1(s, t) = 

= 

1 

n 

⎛ 
⎝ 

�
 � 
isRj /rn itT �jn e − ϕ R (s) e − ϕ�|rn (t) |rnrn 

pn 
j=1 � 
− ϕ R (s, t) − ϕ R (s)ϕ�|rn (t) ,�|rn |rnrn rn ⎞ 

n isRj /rn1 e +itT �j 1{Rj >rn} − ϕ R (s, t) ⎠ 
,�|rnn pn rn =

1{Rj >rn} 

j 1 ⎛ ⎞ 
n isRj /rn 1{Rj >rn1 e }⎝ ⎠− − ϕ R |rn(s) ϕ�|rn(t) n pn rn 

j=1 ⎛ ⎞ 
n

1 eit
T �j 1{Rj >rn} p̂n ⎝ ⎠− − ϕ�|rn(t) ϕ R |rn(s) n pn pn rn 

j=1 

=: Ẽ11 + Ẽ12 + Ẽ13. 
√ √

Without loss of generality, we show the tightness for npnẼ11 and that of npnẼ12 

and 
√ 
npnẼ13 follows from the same argument. 

First we introduce some notation following that from Bickel and Wichura (1971). 
Fix (s, t), (s , t  ) ∈ Rd+1 where s < s  and t < t  . Let  B be the subset of Rd+1 of 
the form 

d � � � 
B := (s, t), (s , t  ) = (s, s ] ×  (tk, tk] ⊂ R

d+1 . 
k=1 

For ease of notation, we suppress the dependence of B on (s, t), (s , t  ). Define the  
increment of the stochastic process Ẽ11 on B to be 

n �1 d+1− j zjẼ11(B) := · · ·  (−1) 
n 
j=1 z0=0,1 z1=0,1 zd =0,1 � � 
Ẽ11 s + z0(s − s), t1 + z1(t1 − t1),  . . . , td + zd(td − td ) . 

From a sufficient condition of Theorem 3 of Bickel and Wichura (1971), the tightness 
of 
√ 
npnẼ1 is implied if the following statement holds for any (s, t), (s , t  ) and 

corresponding B, 

�√ 
d 

E| npnẼ11(B)|2 ≤ c|s − s |β |tk − tk|β, for some β >  1. 
k=1 
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It follows that 

� � � � √ � 2˜E � npn E11(B) � � � n d � � � � d+1− j zj 
1 i(s+z0(s −s))Rj /r i(tk+zk(tk−tk ))�jk  

1{Rj >rn}= npnE · · ·  (−1) e e � n pn � z0=0,1 zd =0,1 j=1 k=1 � � � 2 � � � d � � 
d+1− i(s+z0(s −s))R/r i(tk+zk(t −tk ))�k 

1{R>rn}j zj E k �− · · ·  (−1) e e � pn � z0=0,1 zd =0,1 k=1 � � n d � 
= npnE 

�� 1 
(eisRj /rj − eis Rj /rj ) (eitk�jk  − eitk�jk  ) 

1{Rj >rn} � n pn � j=1 k=1 � ��2d � � 
(eisR/r − eis R/r (eitk�k it �k ) 

1{R>rn} �−E ) − e k � 
pn � 

k=1 � � 
d � 

(eisR/rj is R/rj ) (eitk�k itk�k ) 
1{R>rn}= pnVar − e − e (32) 
pn

k=1 � ⎡ ⎤ � �2 � � d � � � ⎣� (eisR/r − eis R/r (eitk�k itk�k ) � � ⎦≤ E � ) − e � R > rn . � � � �k=1 

From a Taylor series argument, 

ix − e|e ix |2 ≤ c1 ∧ |x − x |2 ≤ c1 ∧ |x − x |β ≤ c|x − x |β, for any β ∈ (0, 2]. 

Hence for any β ∈ (1, 2 ∧ α), 
� � � � d d � � � √ � 2 

E � npnẼ11(B)� ≤ c|s − s |β |ti − ti |βE (R/rn)
β |�k|β |R >  rn 

k=1 k=1 

d � 
< c|s − s |β |ti − ti |β, 

k=1 

since |�k|β ’s are bounded and sup E[(R/rn)β |R >  rn] < ∞ by the regular variation n 
assumption. This proves the tightness. 

Define the bounded set 

Kδ = {(s, t)| δ <  |s| < 1/δ, δ < |t | < 1/δ}, for δ < .5. 

Then, using (31), we have from the continuous mapping theorem, 

� � 
d 

npn |Ẽ1|2μ(ds, dt) → |Q(s, t)|2μ(ds, dt). (33) 
Kδ Kδ 
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On the other hand, for any β <  2 ∧ α, we have  
√ ˜E| npnE1|2 

� �2 � �n � � �� � 1 �UjnVjn  UjnVjn  � � = npnE − E � � n pn pn � �j=1 

E|UjnVjn  − EUjnVjn|2 

≤ 
pn 

c E|UjnVjn|2 

≤ (34) 
pn � � � �2 � � � � � �isRj /rn itT �j 

2 
c E � e − ϕ R |rn (s)� � e − ϕ�|rn (t)� 1{Rj >rn} 

= 
rn 

pn �� �� � � � � � � � � 2 2 � �2 � � � � 
c E �eisRj /rn − 1� + � ϕ R |rn 

(s) − 1� � eitT �j − 1� + �ϕ�|rn (t) − 1� 2 1{Rj >rn}
≤ 

rn 

pn �� � �� � � � � � �2 2 � sRj � � sRj � c E 1 ∧ � � + E 1 ∧ � � | R > 1 1 ∧ |t�j |2 + E 1 ∧ |t�j |2| R > 1 1{Rj >rn}rn rn rn rn ≤ 
pn �� � �� � � � � � � � sRj � β � sRj � β 

c E 1 ∧ � � + E 1 ∧ � � | R > 1 1 ∧ |t�j |2 + E 1 ∧ |t�j |2| R > 1 1{Rj >rn}rn rn rn rn ≤ 
pn � � � �� � � � � � � � β β � � 

β �Rj � � R � c E 1 ∧ |s| � � + E � � | R > 1 1 ∧ |t |2 1{Rj >rn}rn rn rn ≤ 
pn � � �

β≤ c E 1 ∧ |s| (|Rj /rn|β + E[|R/rn|β |R > rn]) 1 ∧ |t |2 |R > rn 

β≤ c(1 ∧ |s| )(1 ∧ |t |2). 
Therefore for any > 0, � � � �

1 √ ˜ 
δ→0 n→∞ Kc δ→0 n→∞ Kc 
lim lim sup P npn |Ẽ1|2μ(ds, dt) > ≤ lim lim sup E| npnE1|2μ(ds, dt) 

δ δ � 
≤ 

1 
lim lim sup c(1 ∧ |s|β)(1 ∧ |t |2)μ(ds, dt) → 0 
δ→0 n→∞ Kc 

δ 

by the dominated convergence theorem. This combined with Eq. 33 shows the con-
vergence of npn |Ẽ1|2μ(ds, dt) to |Q(s, t)|2μ(ds, dt), and hence completes the 
proof of the proposition. 

Proof (Proof of Theorem 1(2) (cont.)) 
Now it remains to show (30). Similar to the proof of Proposition 1, we can show 

that √ d 
npnẼ21 → Q 

for a centered Gaussian process Q , and  

Ẽ22 →p 
0. 

Hence √ √ p 
npnẼ2 = npnẼ21Ẽ22 → 0. 
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The argument then follows similarly from the continuous mapping theorem and 
bounding the tail integrals. 

Proof (Proof of Theorem 1(1)) 
Similar to the proof of Theorem 1(2), it suffices to show that � 

p|Ẽi |2μ(ds, dt) → 0, i  = 1, 2, 3. (35) 

The convergence (35) for  i = 1, 2 follows trivially from the more general results (28) 
and (30) in the proof of Theorem 1(2). Hence it suffices to show � 

|Ẽ3|2μ(ds, dt) → 0, (36) 

where we s recall that Ẽ3 := ϕ R ,�|rn(s, t) − ϕ R |rn(s)ϕ�|rn(t) is non-random. 
rn rn � 

RLet P R ,�|rn(·) = P 
rn
,�  ∈ ·|

r
R

n 
> 1 and P R |rn , P�|rn be the corresponding 

rn rn 
marginal measures. Then from Eq. 3, 

v = 0,P R ,�|rn 
− P R |rnP�|rn → να × S − να × S 

rn rn 

and hence for fixed (s, t), � 
isT +itT �Ẽ3(s, t) = e (P R ,�|rn 

− P R |rnP�|rn)(dT , d�) → 0. 
rn rn 

For any β <  2 ∧ α, using the same argument in Eq. 34, � �2
E|UjnVjn| β|Ẽ3|2 = ≤ c(1 ∧ |s| )(1 ∧ |t |2). 

pn 

Then Eq. 36 follows from Eq. 12 and dominated convergence. This concludes the 
proof. 

Appendix B: Proof of Theorem 2 

Following the same notation and steps as the proof of Theorem 1 in Appendix, it  
suffices to prove the following convergences for the mixing case: 

p̂n →p 
1, (37) 

pn � � 
d 

npn |Ẽ1|2μ(ds, dt) → |Q (s, t)|2μ(ds, dt) (38) 
Rd+1 Rd+1 

and � 
p 

npn |Ẽ2|2μ(ds, dt) → 0. (39) 
Rd+1 

We prove (37) and  (38) in Propositions 2 and 3, respectively. The proof of Eq. 39 
follows in a similar fashion. The proofs of both propositions rely on the following 
lemma. 
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Throughout this proof we make use of the results that if {Zt } is stationary and 
α-mixing with coefficient {αh}, then  

�1−δ |cov(Z0, Zh)| ≤  cαδ E|Z0|2/(1−δ) , for any δ ∈ (0, 1), (40)h 

see Section 1.2.2, Theorem 3(a) of Doukhan (1994). 

Lemma 1 Let {Xt } be a multivariate stationary time series that is regularly vary-
ing and α-mixing with mixing coefficient {αh}. For a sequence rn → ∞, set  pn = 

d 
P(�X0� > rn). Let  f1, f2 be bounded functions which vanish outside R \B1(0), 
where B1(0) is the unit open ball {x|�x� < 1}, with sets of discontinuity of measure 
zero. Set, 

n � � � � �� 
S(i) 

Xt X0 = fi − Efi , i  = 1, 2. n rn rn 
t=1 

Assume that condition (M) holds for {αh} and {rn}. Then  
1 d √ (S(1), S(2))T → N(0, �),  (41)n n npn 

where the covariance matrix [�ij ]i,j=1,2 = [σ 2(fi, fj )]i,j=1,2 with 

∞ 

σ 2(f1, f2) := σ0
2(f1, f2) + 2 σ 2(f1, f2) (42)h 

h=1 

and � 
σ 2(f1, f2) = f1f2dμh, h    0. (43)h 

In particular, 
1 p
(S(1), S(2))T → 0. n n npn 

The proof of Lemma 1 is provided after the proofs of the propositions. 

Proposition 2 Assume that condition (M) holds, then 

p̂n p→ 1, 
pn 

Proof We have 

n � � n 
p̂n 1 1{Rj >rn} 1 − 1 = − 1 = (1{Rj >rn} − pn). 
pn n pn npn 

j=1 j=1 

Apply Lemma  1 to  f (x) = 1{�x�>1} and the result follows. 
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Proposition 3 Assume that condition (M) holds, and that μ and {rn} satisfies (12) 
and (13), respectively, then � � 

d 
npn |Ẽ1|2μ(ds, dt) → |Q (s, t)|2μ(ds, dt), 

Rd+1 Rd+1 

where Q is a centered Gaussian process. 

Proof Let us first establish the convergence of 
√ 
npnẼ1(s, t) for fixed (s, t). Take  

�
 � ! 
f1(x) = Re eis�x� − E[eis�x�|�x� > 1] eitx/�x� − E[eitx/�x�|�x� > 1] 1�x�>1 �
 � ! 

is�x� − E[eis�x�|�x� > 1] itx/�x� − E[eitx/�x�|�x� > 1]f2(x) = Im e e 1�x�>1 . 

Then from Lemma 1, 

1 √ d √ (S(1), S(2))T = npn(Re{Ẽ1(s, t)}, Im{Ẽ1(s, t)}) → N(0, �),  n n npn 

where the covariance structure � can be derived from Eqs. 42 and 43. This implies 
that √ d 

npnẼ1(s, t) → Q (s, t), 

where Q (s, t) is a zero-mean complex normal process with covariance matrix �11 + 
�22 and relation matrix �11 − �22 + i(�12 + �21). " 

The finite-dimensional distributional convergence of np̂nẼ1 to a Q (s, t) can be 
generalized using the Cramér-Wold device and we omit the calculation of the covari-
ance structure. The tightness condition for the functional convergence follows the 
same arguments in the proof of Proposition 1 from Bickel and Wichura (1971), with 
equality (32) replaced by a variance calculation of the sum of α-mixing components 
using the inequality (40) and condition (33) is verified through the same argument. 
This completes the proof of Proposition 3. 

Proof (of Lemma 1) The proof follows from that of Theorem 3.2 in Davis and 
Mikosch (2009). Here we outline the sketch of the proof and detail only the parts that 
differ from their proof. 

By the vague convergence in Eq. 20, we have  

i) � � �� � � �� � �
1 1X0 2 X0 2
E fi → fidμ0 and E f → f dμ0;i i pn rn pn rn 

ii) 
� � �� � � �� � � � ���2 �

1 1 1X0 2 X0 X0 2 2Var fi = E fi −pn E fi → fi dμ0 = σ0 (fi , fi );pn rn pn rn pn rn 

iii) � � � � �� �
1 X0 Xh 2cov , fj → fifj dμh = σ (fi, fj ).fi h pn rn rn 
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√1 (i) Let us first consider the marginal convergence of Sn for i = 1, 2. Without loss 
npn 

of generality, we suppress the dependency on i and set � � � �
Xt X0 

Ytn  := f − Ef . 
rn rn 

Then 

1 1 � � 
Var [Y1n] → σ0

2(f, f ) and cov Y1n, Y(h+1)n → σ 2(f, f ). h pn pn 

We also have the following two results for |cov(Y1n, Y(h+1)n)|: 
ln 1 

lim lim sup |cov(Y1n, Y(j+1)n)|
h→∞ n→∞ pn

j=h 

ln � � � � �� ln �� � ���21 � X0 Xj � 1 � X0 � � � � �≤ lim lim sup E f f + E f � � � �h→∞ n→∞ pn rn rn pn rn
j=h j=h 

ln ln 
c � � �  � c � �2≤ lim lim sup E 1{�X0�>rn} 1{�Xj �>rn} + E1{�X0�>rn}

h→∞ n→∞ pn pn
j=h j=h 

ln 
c � � ≤ lim lim sup P �X0� > rn, �Xj � > rn + clnpn 

h→∞ n→∞ pn
j=h 

= 0 (44) 

from condition (22), and 
� �∞ ∞ � � � � �� 

1 1 � X0 Xj � � �lim |cov(Y1n, Y(j+1)n)| ≤  lim cov f , f  � �n→∞ n→∞pn pn rn rn
j=ln j=ln �∞ � � �� �1−δ2/(1−δ)1 � �X0 

αδ � �≤ lim E fj � �n→∞ pn rn
j=ln 

∞ � �1−δc �2/(1−δ)≤ lim αj
δ 

E 1{�X0�>rn}n→∞ pn
j=ln 

∞ 
−δ≤ lim cαj

δp 
n→∞ n 

j=ln 

= 0 (45) 

from condition (21). 
We apply the same technique of small/large blocks as used in Davis and Mikosch 

(2009). Let mn and ln be the sizes of big and small blocks, respectively, where ln � 
mn � n. Let  Ikn = {(k − 1)mn + 1, . . . , kmn} and Jkn = {(k − 1)mn + 1, . . . , (k  − 
1)mn + ln}, k = 1, . . . , n/mn, be the index sets of big and small blocks respectively. 
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Set Ĩkn = Ikn\Jkn, i.e., Ĩkn are the big blocks with the first ln observations removed. 
For simplicity, we set mn := 1/pn and assume that the number of big blocks n/mn = 
npn is integer-valued. The non-integer case can be generalized without additional 
difficulties. 

Denote 

Sn(B) := Ytn, 
t∈B 

then 

n npn npn npn 

Ytn  = Sn(1 : n) = Sn(Ikn) = Sn(Ĩkn) + Sn(Jkn). 
t=1 k=1 k=1 k=1 

˜ 
√1 
Let {S̃ 

n(Ĩkn)}k=1,...,npn be iid copies of Sn(Ĩ1n). To prove the convergence of 
Sn(1 : n), it suffices to show the following: 

npn 

npn npn 

˜√ 
1 

Sn(Ĩkn) and √ 
1 

Sn(Ĩkn) has the same limiting distribution, (46) 
npn npn

k=1 k=1 

npn1 p√ Sn(Jkn) → 0, (47) 
npn 

k=1 

and 

1 
npn 

d 2√ S̃ 
n(Ĩkn) → N(0, σ  (f, f )). (48) 

npn 
k=1 

The statement (46) holds if 

npnαln → 0, as n →∞. (49) 

This follows from the same argument in equation (6.2) in Davis and Mikosch (2009). 
For condition (47), it suffices to show that 

� � 
1 

npn 

Var Sn(Jkn) → 0. 
npn 

k=1 

Note that 
� � 
npn npn −1

1 h 
Var Sn(Jkn) ≤ Var(Sn(J1n)) + 2 (1 − )|cov(Sn(J1n), Sn(J(h+1)n))| =:  P1 + P2. 

npn npn
k=1 h=1 
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We have ⎛ ⎞ 
ln ⎝ ⎠lim sup P1 = lim sup Var Yjn  

n→∞ n→∞ 
j=1 ⎛ ⎞ 

ln−1
Var(Y1n) j |cov(Y1n, Y(j+1)n)|⎝ ⎠≤ lim sup lnpn + 2 (1 − ) 

n→∞ pn ln pn
j=1 

h−1
Var(Y1n) |cov(Y1n, Y(j+1)n)|≤ lim sup lnpn + lim lim sup 2lnpn 

n→∞ pn h→∞ n→∞ pn 
j=1 

ln−1 |cov(Y1n, Y(j+1)n)|+ lim lim sup 2lnpn 
h→∞ n→∞ pn

j=h 

= 0 

where the last step follows from dominated convergence and Eq. 44. And for the 
other term, 

npn−1 

P2 ≤ 2 |cov(Ysn, Ytn)|
h=1 s∈J1n t∈J(h+1)n 

npn−1 h/pn � � �≤ 2 ln �cov(Y1n, Y(k+1)n) 
h=1 k=h/pn−ln+1 � �∞ ��cov(Y1n, Y(k+1)n)≤ 2lnpn 

pn
k=1/pn−ln+1 � �∞ ��cov(Y1n, Y(k+1)n)≤ 2lnpn → 0. 

pn
k=ln+1 

Note that 1/pn = mn is the size of big blocks Ikn’s and 1/pn − ln +1 = mn − ln +1 is  
the distance between consecutive small blocks (Jkn, J(k+1)n)’s. The last limit follows 
from Eq. 45. 

To finish the proof, we need to establish the central limit theorem in Eq. 48. Note  
the S̃ 

n(Ĩln)’s are iid with ES̃ 
n(Ĩln) = 0. We now calculate its variance. Recall that 

1/pn − ln is the size of Ĩ1n, the big block with small block removed. Then 

⎛ ⎞ � 1/pn−ln 

Var S̃ 
n(Ĩ1n) = Var ⎝ Yjn⎠ 

j=1 

1/pn−ln−1
1 = ( − ln)Var(Yjn) + 2 (1/pn − ln − k)cov(Y1n, Y(k+1)n) 
pn 

k=1 ⎛ ⎞ 
h ln 1/pn−ln−1 � � 

1 ln + k 1 ⎝ ⎠ = ( − ln)Var(Yjn) + 2 + + 1 − cov(Y1n, Y(k+1)n) 
pn 1/pn pn

k=1 k=h+1 k=ln+1 

:= I0 + I1 + I2 + I3. 
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Here 

1 
lim I0 = lim (1 − lnpn) Var(Yjn) = σ0

2(f, f ), 
n→∞ n→∞ pn 

and 

h h 
cov(Y1n, Y(k+1)n)lim I1 = lim 2 (1 − pn(ln + k)) = 2 σ 2(f, f ). k n→∞ n→∞ pn 

k=1 k=1 

We also have 

ln |cov(Y1n, Y(k+1)n)|lim lim sup |I2| ≤  lim lim sup = 0 
h→∞ n→∞ h→∞ n→∞ pn

k=h+1 

from Eq. 44, and  

∞ |cov(Y1n, Y(k+1)n)|lim |I3| ≤  lim = 0 
n→∞ n→∞ pn

k=ln 

from Eq. 45. Therefore 

� ∞ 
2 2 2lim Var S̃ 

n(Ĩ1n) = lim I0 + lim lim I1 = σ0 (f, f ) + 2 σ (f, f ) =: σ (f, f ) 
n→∞ n→∞ h→∞ n→∞ k 

k=1 

as defined. To show that this infinite sum converges, it suffices to show that 

∞ # $ 
μh( (x, x )|�x� > 1, �x � > 1 ) <  ∞. 

h=1 

This follows from Eq. 22 in condition (M), for if 

∞ # $ 
μh( (x, x )|�x� > 1, �x � > 1 ) = ∞, 

h=1 

then 
ln ln1 

lim sup P(�X0� > rn, �Xj � > rn)   lim inf P(�X0� > rn, �Xj � > rn|�X0� > rn) 
n→∞ pn n→∞ 

j=h j=h 

∞ # $   μj ( (x, x )|�x� > 1, �x � > 1 ) = ∞, 
j=h 

which leads to a contradiction. 



� � 	

� �
� �
� �
�
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To apply the central limit theorem, we verify the Lindeberg’s condition, ⎡ ⎤ ⎛ ⎞2
1/pn−ln ⎢ ⎥ 

E (S̃ 
n(Ĩ1n))

21{|S̃ 
n(Ĩ1n)|>� √ 

npn} ≤ E ⎣⎝ Yjn⎠ 1{|S̃ 
n(Ĩ1n)|>� √ 

npn}⎦ 
j=1 

≤ E c(1/pn − ln) √21{|S̃ 
n(Ĩ1n)|>� npn} 

1 √≤ c P |S̃ 
n(Ĩ1n)| >� npn2pn 

Var S̃ 
n(Ĩ1n)1 1 ≤ c 

2 2 
= O( 

3 
) → 0. 

p npn npn n 

√1This completes the proof for the convergence of Sn(1 : n). 
npn 

(1) (2)The joint convergence of √ 
np 
1 

n
(Sn , Sn )

T follows from the same line of argu-

ment together with the Crámer-Wold device. In particular, 

1 � 
cov S(i) (j) 

, Sn n 
2= σ (fi , fj ), i, j = 1, 2. 

npn 

This completes the proof of the lemma. 

Remark 3 Lemma 1 itself is a more general result of independent interest. The result 
d 

can be generalized for functions fi defined on R \{0} with compact support. In this 
case, condition (22) should be modified to 

ln1 
lim lim sup P(�X0� >� rn, �Xj � >� rn) = 0 
h→∞ n→∞ pn 

j=h 

d
for some > 0, where support(f ) ⊆ R \B (0). Also, as seen during the proof of 
the lemma, the conditions on pn, ln, and  αt can be further relaxed. 

References 

Bickel, P.J., Wichura, M.J.: Convergence criteria for multiparameter stochastic processes and some 
applications. Ann. Statist. 42, 1656–1670 (1971) 

Billingsley, P. Probability and Measure, 3rd edition. Wiley, New York (1995) 
Davis, R.A., Mikosch, T.: The extremogram: a correlogram for extreme events. Bernoulli 15(4), 977–1009 

(2009) 
Davis, R.A., Mikosch, T., Cribben, I.: Towards estimating extremal serial dependence via the bootstrapped 

extremogram. J Econometrics 170(1), 142–152 (2012) 
Davis, R.A., Matsui, M., Mikosch, T., Wan, P.: Applications of distance covariance to time series. 

arXiv:1606.05481 (2017) 
de Haan, L., de Ronde, J.: Sea and wind: multivariate extremes at work. Extremes 1, 7–46 (1998) 
Doukhan, P.: Mixing: Properties and Examples. Springer, New York (1994) 
Feuerverger, A.: A consistent test for bivariate dependence. Internat. Statis. Rev. 61(3), 419–433 (1993) 
Fryzlewicz, P.: Wild binary segmentation for multiple change-point detection. Ann. Statist. 42(6), 2243– 

2281 (2014) 

http://arxiv.org/abs/1606.05481


P. Wan, R. A. Davis 

Jeon, S., Smith, R.L.: Dependence structure of spatial extremes using threshold approach. 
arXiv:1209.6344v1 (2014) 

Joe, H., Smith, R.L., Weissman, I.: Bivariate threshold methods for extremes. JRSS B. 54(1), 171–183 
(1992) 

Mallik, A., Sen, B., Banerjee, M., Michailidis, G.: Threshold estimation based on a p-value framework in 
dose-response and regression settings. Biometrika 98(4), 887–900 (2011) 

Page, E.S.: Continuous inspection schemes. Biometrika 41(1), 100–115 (1954) 
Resnick, S.I.: Hidden regular variation, second order regular variation and asymptotic independence. 

Extremes 5, 303–336 (2002) 
Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York (2007) 
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