
	

��� 	 	
����� 	 ��



Biometrika (2018), xx, x, pp. 1–4 
Printed in Great Britain 

Supplementary Material for Discrete Extremes 

The following auxiliary lemma is elementary (as the sum can be sandwiched between two 
integrals). 

LEMMA 1. If ξ > 0, then 

u 1/ξH1+1/ξ,u → ξ, P∞as u →∞, where Hs,q = (q + i)−s is the Hurwitz-Zeta function. i=0 

Proof of Proposition 1. Suppose frst that ξ > 0. Then 5 � �−1/ξ � �−1/ξ
1 + ξ k − 1 + ξ k+1 pD-GPD(k; σ, ξ) σ σ = 

fGPD(k; σ, ξ) 1 
� �−1/ξ−1 

σ 1 + ξ σ
k ( )� �−1/ξξ 

= 1 − 1 + (σ + ξk) → 1,
σ + ξk 

uniformly in k = 0, 1, 2, . . . as σ →∞. Furthermore, 
∞XfGPD(k; σ, ξ) 

sup = σ−1 (1 + ξi/σ)−1/ξ−1 → 1, 
k=0,1,2,... pGZD(k; σ, ξ) i=0 

as σ →∞ by Lemma 1. In the case ξ = 0, 

−1/σ) → 1.pD-GPD(k; σ, 0)/fGPD(k; σ, 0) = pGZD(k; σ, 0)/fGPD(k; σ, 0) = σ(1 − e 

Proof of Proposition 2. By assumption, there exists a random variable Y ∈ MDAξ for ξ ≥ 0 10 

and a positive function (ãu, u > 0) such that X = bY c in distribution and the sequence of func-� −1tions pr ã (Y − u) ≥ x | Y ≥ u , x ≥ 0, converges uniformly, as u →∞, to the functionu 
F̄GPD(x; σ, ξ), x ≥ 0, for some σ > 0 and ξ ≥ 0. For a positive integer u we let au = ãuσ. Then 

sup | pr(X = u + k | X ≥ u) − pD-GPD(k; au, ξ) |
k=0,1,2,... � �−1 −1 −1 −1 = sup pr ã (Y − u) ≥ ã k | Y ≥ u − pr ˜ (Y − u) ≥ ã (k + 1) | Y ≥ ua 15u u u u 
k=0,1,2,... 

¯ ¯− FGPD(k; au, ξ) + FGPD(k + 1; au, ξ) � −1 ¯≤ 2 sup pr ã (Y − u) ≥ x | Y ≥ u − FGPD(x; σ, ξ) → 0u 
x≥0 

as u →∞ over the integers. � 

The proof of Theorem 1 relies on properties of regularly varying functions. Recall that a 
positive and measurable function f on [1, ∞) is regularly varying if there exists α ∈ R such that 

f(ux) αlim → x , x ≥ 1, 
u→∞ f(u) 
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and we write f ∈ RVα (see e.g. Bingham et al. (1989)). If f ∈ RV−α for α ≥ 0, then 

f(ux) −αlim sup − x → 0, (S.1) 
u→∞ f(u)x∈[1,b] 

for b = ∞ if α > 0, and for any b < ∞ if α = 0. If f ∈ RV−α for α > 0, then by Potter’s bounds 
(see e.g. Resnick (1987)) for any � > 0 there is u� ∈ (0, ∞) such that 

f(ux)−� −α−� ≤ � −α+� e x ≤ e x , x ≥ 1, (S.2)
f(u) 

¯for u ≥ u�. We say that X is regularly varying if FX ∈ RV−α for some α > 0, a necessary and 
suffcient condition for X ∈ MDA1/α. 

Proof of Theorem 1. We start by proving the frst part of the theorem. By assumption, there 
¯ ¯ ¯exists a survival function F such that F (k) = c pX (k) for c > 0, k large enough and F ∈ 

¯RV−1/ξ−1. The last condition is equivalent to F (b·c) ∈ RV−1/ξ−1 (Shimura, 2012). It fol-
lows from results on integrals of monotone regularly functions in Bingham et al. (1989) that 
F̄X ∈ RV−1/ξ, and thus X ∈ MDAξ. We now show that (8) holds. Thanks to Proposition 1, it 
suffces to provide a proof for q = pGZD. We have 

¯ pr(X = ku + u | X ≥ u) F (u + ku)/F̄ (u) 
P∞ (1 + i/u)−1/ξ−1 

i=0= P∞ . 
pGZD(ku; ξu, ξ) (1 + ku/u)−1/ξ−1 F̄ (u + i)/F̄ (u)i=0 

First, by the uniform convergence (S.1) and the the fact that ku grows at most linearly fast, we 
conclude that 

F̄ (u + ku)/F̄ (u) → 1,
(1 + ku/u)−1/ξ−1 

as u →∞ over the integers. Second, Lemma 1 yields 
∞X 

−1 u (1 + i/u)−1/ξ−1 → ξ. 
i=0 

Third, it follows from (S.2) that for � ∈ (0, 1/ξ), there exists u� > 0 such that for u ≥ u�, 
∞ ∞ � �−1−1/ξ+�X X i ξe� −1 −1 �¯ u F (u + i)/F̄ (u) ≤ u e 1 + → , 

u 1 − ξ� 
i=0 i=0 

using Lemma 1 once again. A similar lower bound can be found in the same manner. Now letting 
� → 0, this completes the proof of (8). 

Let us now prove the second part of the theorem. For large integers u, 

F̄ (k + u)/F̄ (u)
pr(X = k + u | X ≥ u) = P∞ .¯ 

i=0 F (i + u)/F̄ (u) 

We have for every i = 0, 1, 2, . . ., � Z i � 
c(i + u)¯ −i/σF (i + u)/F̄ (u) = exp − 1/a(u + y)dy → e 
c(u) 0 

as u →∞. Since σ > 0, the dominated convergence theorem gives us 
∞ ∞X X 
¯ −i/σ −1/σ) ,F (i + u)/F̄ (u) → e = 1/(1 − e 

i=0 i=0 
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Fig. 1: Frequency plot of the number of extreme tornadoes per outbreak for the 435 outbreaks with 12 or more extreme 
tornadoes in the United States between 1965 and 2015. 

showing (9). Finally, it follows from � Z � n 1 
pX (n) = c(n) exp − dy 

a(y)0 

for all n and a(y) → σ ∈ (0, ∞) that 

pX (n)
lim = 1 − e −1/σ ∈ (0, ∞) , 
n→∞ pr(X ≥ n) 

which immediately implies that X ∈ D-MDA0 as well. � 

Example 2. The probability mass function pX of a Poisson distribution with rate λ > 0 coin-
cides on k = 0, 1, 2, . . . with the function 

λx −λe 
g(x) = ,

Γ(x + 1) 

a continuous function on R+ satisfying limx→∞ g(x) = 0. Moreover, 

d 
log g(x) = −ψ0(x + 1) + log λ , 

dx 

where ψ0 is the polygamma function of order 0. Since ψ0(x) →∞ as x →∞, we see that 
g0(x) < 0 for x suffciently large. Therefore, F̄  

Y (x) = g(x)/g(d) is a survival function on [d, ∞) 
for some d ≥ 0. Furthermore,� � 

d 1 ψ1(x + 1) − = − ,
dx g0(x) {ψ0(x + 1) − log λ}2 

where ψ1 = ψ0 is is the polygamma function of order 1. Since ψ1(x) → 0 as x →∞, we con-0 
clude that FY satisfes the von Mises condition, with the auxiliary function a(x) = {ψ0(x + 
1) − log λ}−1 → 0 as x →∞. Therefore, the Poisson probability mass function is in D-MDA0. 
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Similarly, the probability mass function of the negative binomial distribution with probability 
of success p ∈ (0, 1) and number of successes r > 0 is also in D-MDA0 because it coincides on 
{0, 1, 2, . . .} with the function 

rp Γ(x + r) 
g(x) = (1 − p)x ,

Γ(r) Γ(x + 1) 

a continuous function on R+. It is simple to check that limx→∞ g(x) = 0, and g0(x) < 0 for 
¯ x large enough, so that FY (x) = g(x)/g(d) is a survival function on [d, ∞) for some d ≥ 0. 

¯Furthermore, g(x) ∼ cxr−1(1 − p)x for large x, where c is a positive constant. Therefore, FY is 
of the form (7) with the auxiliary function 

1 
a(x) = , x large, 

− log(1 − p) − (r − 1)/x 

and so it converges to −1/ log(1 − p) as x →∞. 

REFERENCES 

BINGHAM, N. H., GOLDIE, C. M. & TEUGLES, J. L. (1989). Regular Variation. Cambridge University Press. 
40 RESNICK, S. I. (1987). Extreme values, regular variation, and point processes. Springer, New York. 

SHIMURA, T. (2012). Discretization of distributions in the maximum domain of attraction. Extremes 15, 299–317. 


