
Semiparametric Estimation for Non-Gaussian Non-minimum 
Phase ARMA models 

Richard A. Davis and Jing Zhang 
Columbia University 

Abstract 

We consider inference for the parameters of general autoregressive moving aver-
age (ARMA) models which are possibly noncausal/noninvertible (also referred to as 
non-minimum phase) and driven by a non-Gaussian distribution. For non-minimum 
phase models, the observations can depend on both the past and future shocks in the 
system. The non-Gaussianity constraint is necessary to distinguish between causal-
invertible and non-causal/noninvertible models. Many of the existing estimation pro-
cedures adopt quasi-likelihood methods by assuming a non-Gaussian density function 
for the noise distribution that is fully known up to a scalar parameter. To relax such 
distributional restrictions, we borrow ideas from nonparametric density estimation and 
propose a semiparametric maximum likelihood estimation procedure, in which the noise 
distribution is projected onto to the space of log-concave measures. We show the max-
imum likelihood estimators in this semiparametric setting are consistent. In fact, the 
MLE is robust to the misspecification of log-concavity in cases where the true distri-
bution of the noise is close to it’s log-concave projection (Cule and Samworth, 2010; 
Dümbgen et al., 2011). We derive a a lower bound for the best asymptotic variance of 

− 1 
2regular estimators at rate n for AR models and construct a semiparametric efficient 

one-step estimator. The estimation procedure is illustrated via a simulation study and 
an empirical example illustrating the methodology is also provided. 

Keywords: semiparametric; ARMA; non-causal/noninvertible; log-concave 

1 Introduction 

The ARMA model is perhaps the most successful and well studied class of models 
for the analysis of univariate time series. In the cases where the noise distribution is 
Gaussian, they are easy to fit by maximizing the resulting Gaussian likelihood. One 
often resorts to maximizing the Gaussian likelihood even if the noise is non-Gaussian. 
The parameter estimated in this fashion have the same asymptotic behavior as in the 
“Gaussian” case. A univariate time series Xt is called an ARMA(p, q) process if it is 
stationary and satisfies the difference equations 

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q, (1) 
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where {Zt} is a sequence of independent and identically distributed (i.i.d) random 
variables with zero mean. Define the AR and MA polynomials by φ(z) = 1 − φ1z − 

q· · · − φpz
p and θ(z) = 1+ θ1z + · · · + θqz , respectively. Then (1) can be written in the 

compact form 
φ(B)Xt = θ(B)Zt, 

where B is the backward-shift operator. We assume φ(z) and θ(z) have no common 
roots and satisfy the constraint that φ(z)θ(z) 6= 0 for any |z| = 1. Thus there exists a 
unique strictly stationary solution {Xt} to (1). An ARMA (p, q) process Xt is said to 
be causal-invertible if 

φ(z)θ(z) 6= 0 for all z ∈ C with |z| 6 1, 

that is, both the AR and MA polynomials have no roots inside the unit circle, for which 
Xt (Zt) can be expressed as a function of only the present and past noise {Zs : s 6 t}
(observations {Xs, s 6 t}). It turns out that any noncausal/noninvertible ARMA 
process admits an equivalent causal-invertible representation for which 

φ ∗ (B)Xt = θ ∗ (B)Zt 
∗ . 

However, the sequence {Z∗} is i.i.d if and only if Zt is Gaussian, otherwise, {Z∗} is only t t 
uncorrelated, see Breidt and Davis (1991). Thus in the Gaussian case, one requires 
causality and invertibility to ensure identifiability of the model parameters. In the non-
Gaussian case, ARMA models are allowed to be noncausal/noninvertible. As a result, 
the Gaussian noise must be excluded in order to study noncausal/noninvertible models. 
On the other hand, it is common to observe non-Gaussian sequences in the real world. 
The non-minimum phase ARMA models are useful in a variety of applications. The 
Wal-Mart stock volume data in (Andrews et al., 2009), the U.S. inflation data in (Lanne 
and Saikkonen, 2008) and the Microsoft stock volume data in (Breidt et al., 2001) are all 
such examples. Allowing noncausality/noninvertibility can enlarge the pool of ARMA 
models, eliminate more of the serial dependence and enhance our understanding of the 
data. 
Any second-order based estimation procedure, including maxmizing the Gaussian 

likelihood, are not efficient unless the noise distribution is Gaussian. Moreover, since 
second order estimation procedures cannot distinguish between causal-invertible and 
noncausal/noninvertible models, they are not applicable for estimating non-minimum 
phase models. In fact, statistical inference for non-minimum phase models are com-
paratively limited due to the complicated dependence structure of the process itself 
(Breidt et al., 2001; Lii and Rosenblatt, 1996; Wu and Davis, 2010). Approximations 
of the likelihood functions for the non-causal/noninvertible ARMA process are derived 
in (Breidt et al., 2001; Lii and Rosenblatt, 1996). Many of the existing estimation pro-
cedures are then based on the idea of maximum likelihood estimation by assuming a 
common pre-specified noise distribution. In (Breidt et al., 2001; Wu and Davis, 2010), 
a least absolute deviation (LAD) criterion is proposed, which is frequently used for 
modeling time series in the non-Gaussian setting. While the LAD method is derived 
by using the Laplace distribution, it can produce consistent estimators even when the 
noise distribution is not Laplace under mild conditions. To relax the strong parametric 
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assumption about the innovation distribution, we have to extend the maximum like-
lihood principle to a nonparametric framework and consider semiparametric models. 
(Kreiss, 1987) proposes one-step adaptive estimators for ARMA models where the error 
density is estimated by a kernel density estimator.(Chen and Samworth, 2015) stud-
ies semiparametric time series models including causal-invertible ARMA processes, in 
which the distribution of the noise satisfies minor conditions and it has been shown that 
the semiparametric estimation procedure produces consistent estimators of the ARMA 
parameters. In addition, the estimate of the noise distribution consistently estimates 
the log-concave projection of the true density. In particular, if the noise density is log 
concave, then the density estimator is consistent. Inspired by (Chen and Samworth, 
2015), we apply the log-concave projection method to the non-causal/noninvertible 
ARMA models. We show the consistency of the estimators for both the coefficients 
and the density under mild conditions. We also obtain a lower bound for the asymptotic 
variances of regular estimators at rate n−

1 
2 for the semiparametric AR models. 

The rest of the paper is organized as follows. Section 2 provides a quick review of 
the definitions and basic properties of log-concave densities and log-concave projection. 
Section 3 applies log-concave projection to general ARMA models and derives the 
objective function. Section 4 shows the consistency of the estimators and derives a 
lower bound for the asymptotic variances of regular estimators at rate n−

1 
2 for general 

AR models. Section 5 presents a simulation study and a real data application to further 
illustrate the results in Section 4. Technical details are given in the Appendix. 

2 The Log-Concave Projection 

A probability density function f is said to be log-concave if log f is a concave function. 
The family of log-concave densities has some attractive properties and behaves to some 
extent as a parametric family, see (Bagnoli and Bergstrom, 2006; Walther, 2009). It 
has been shown that for a given probability measure P on R, there exists a unique 
log-concave density f that maximizes the log-likelihood type functional Z 

log fdP, 
R 

when the maximum is with respect to log-concave densities under mild conditions 
(Cule and Samworth, 2010; Dümbgen et al., 2011). The log-concave maximum likeli-
hood estimator of P based on iid observations from P can be viewed as a projection 
of the empirical measure onto the space of distributions with log-concave densities. 
This estimation procedure possesses good properties and sheds light on the area of 
nonparametric density estimation. To apply this nonparametric estimation procedure 
to ARMA models, it is helpful to review the properties of such projections first (see 
Cule and Samworth (2010); Dümbgen et al. (2011); Walther (2009) for more details). 
Let P denote the class of all non-degenerate probability measures P on R with finite 

first moment. Let F be the set of log concave densities on R. Then the functional 
mapping Π : P → F Z 

Π(P ) = arg max log fdP 
f ∈F R 
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is well-defined if and only if P ∈ P. The quantity Π(P ) is referred to as the log-
concave projection of P onto F . The maximal function L : P → R is defined as Z 

L(P ) = max log fdP, 
f∈F R 

and is finite if and only if P ∈ P (If the first moment of P does not exist, L(P ) = −∞, 
while if P is a dirac measure, L(P ) = ∞). For convenience, we also use L(X) and Π(X) 
to denote L(P ) and Π(P ) respectively when X is some random variable distributed as 
P . The key properties of L(·) and Π(·) are summarized below. 

1. Affine equivariance: 

L(a + CX) = L(X) − log|C| for any a ∈ R and nonzero constant C 

2. Non-increasing under convolution: 

L(X + Y ) 6 L(X) (2) 

if X is independent of Y and X ∈ P. The equal sign holds if and only if Y is a 
constant. 

3. Mean preservation: Z Z 
xdP = xΠ(P )(x)dx. 

R R 

Further interesting properties of Π(·) and L(·) have been well presented by (Dümbgen 
et al., 2011). Here we state the main results in (Dümbgen et al., 2011) for completeness. 
First we introduce two useful measures of distance between probability distribu-

tions: the first moment Mallows distance (Mallows, 1972) and the bounded Lipschitz 
metric. Suppose P and Q are any two probability measures in P, the first moment 
Mallows distance between P and Q is defined by � � 

M1(P, Q) := inf E|X − Y | : (X, Y ) ∼ F, X ∼ P, Y ∼ Q , 
F 

where X and Y are any integrable random variables distributed as P and Q respec-
tively, and F is the joint probability distribution of (X, Y ) satisfying the marginal 
distribution constraint. M1(·, ·) is also known as the Wasserstein, Monge-Kantorovich 
or Earth Mover’s distance (Levina and Bickel, 2001). Kantorovich and Rubinstein 
(1958) established a useful duality formula for Mallow’s distance: Z 

M1(P, Q) := sup gd(P − Q) (3) 
kgk 61L 

with kgk = sup g(x) − g(y) /|x − y|, and the supremum is over all Lipschitz func-L x=6 y 
tions with Lipschitz constant bounded by one. It’s also known that for any sequence 
of probability measures Qn and Q, Z Z 

w
M1(Qn, Q) −→ 0 if and only if Qn −→ Q and |x| dQn −→ |x| dQ. (4) 
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More detailed information about the first moment Mallows distance can be found in 
Villani (2009). 
The bounded Lipschitz distance metrizes the weak convergence of probability mea-

sures Z 
DBL(P, Q) := sup gd(P − Q) 

kgk 61,kgk 61∞ L 

with kgk∞ := sup g(x) . It’s obvious that the first moment Mallow’s distance is x 
stronger than the bounded Lipschitz metric: 

DBL(P, Q) 6 M1(P, Q). 

The following continuity properties of L(·) and Π(·) with respect to M1(·, ·) and 
DBL(·, ·) are adapted from Theorem 2.15 in (Dümbgen et al., 2011). 

Lemma 2.1. Let the sequence {Pn} and P be distributions on R with finite first 
moment. Then, 

(i) If limn→∞ DBL(Pn, P ) = 0, then lim supn→∞ L(Pn) 6 L(P ) 

(ii) If limn→∞ M1(Pn, P ) = 0, then limn→∞ L(Pn) = L(P ). 

(ii) If limn→∞ M1(Pn, P ) = 0, then Π(Pn) converges to Π(P ) in L1 . 

Remark 2.2. For our results, Lemma 2.1 will be applied by taking Pn to be the empirical 
distribution of observations coming from a stationary ergodic time series. Suppose 
{Xt} is a stationary ergodic time series with marginal distribution P in P. Then it 

n1 Pfollows from (4) that the empirical distribution Pn := δXi converges to P in the n i=1 
first moment Mallow’s distance almost surely. As a result, the log-concave maximum 
likelihood estimator f̂  

n 

nX 
f̂  
n := Π(Pn) = arg max 

1 
log f(Xi) 

f ∈F n 
i=1 

is well defined for large n with probability one and Z 
a.s a.s

L(Pn) −→ L(P ), |f̂  
n − Π(P )| −→ 0. 

Lemma 2.3 summarizes some convergence results of the log-concave density se-
quences shown in (Cule and Samworth, 2010), which play an important role in the 
application of the log-concave density estimator to ARMA processes. 

Lemma 2.3. Let fn be a sequence of log-concave densities on R and f be some density 
d

function on R such that Fn ⇒ F where (Fn, F ) are the associated cdfs of (fn, f). Then, 

(i) f is log-concave 

(ii) fn converges to f almost everywhere 
(−a0|x|+b0)(iii) Let a0 > 0 and b0 ∈ R such that f(x) 6 e . Then for every a < a0, weR 

have R e
a|x||fn(x) − f(x)|)dx → 0. Furthermore, if f is continuous, 

sup e a|x||fn(x) − f(x)| → 0. 
x∈R 
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Lemma 2.3 further implies that f̂  converges to the log-concave projection Π(P ) in 
a stonger exponential weighting norm. Moreover, the log-concave maximum likelihood 
density estimator ϕ̂ := log f̂  is shown to be a piecewise linear function with knots at� � 
the observations {Xi}n and is zero outside the interval min Xi, max Xi . Iti=1 

i=1,··· ,n i=1,··· ,n 

is not differentiable at the sample points {Xi}in 
=1. As a substitute for f̂ , a smoothed 

log concave density estimator f̂  
σ, the convolution of f̂  with a zero mean, σ2 variance 

normal density, is proposed in (Chen and Samworth, 2013). Detailed construction of 
f̂  
σ can be found in (Dümbgen and Rufibach, 2010). 

3 Model specification 

Denote φ and θ as the AR and MA parameter vectors (φ1, · · · , φp) ∈ Rp and 
(θ1, · · · , θq) ∈ Rq respectively. Let the parameter space Θ := {β = (φ, θ)T } be a 
compact subset of Rp+q such that the AR and MA polynomials φ(z) and θ(z) have 
no common zeros and no zeros on the unit circle. Let β0 = (φ0, θ0)

T denote the true 
parameter vector and P0 denote the true distribution of Zt. Since the polynomials 
φ(z) and θ(z) have no zeros of absolute value one, then β(z) := θ−1(z)φ(z) admits a 
two sided power expansion 

∞X 
iβ(z) = ai(β)z 

i=−∞ 

in some annulus {z : 0 < r(β) < |z| < R(β)} where r(β) < 1, R(β) > 1 (Brockwell 
and Davis, 2009). The coefficients ai(β) decay geometrically fast to zero as |i| → ∞. 
Although Zt is unobserved, it’s expressible in terms of β0 and {Xt}. Rearranging (1), 
we obtain the linear representation of Zt in terms of {Xt} : 

∞X 
Zt(β0) = β0(B)Xt = ai(β0)Xt−i = Zt. 

i=−∞ 

Analogously, for any β ∈ Θ, define the process 
∞X 

Zt(β) := β(B)Xt = θ−1(B)φ(B)Xt = ai(β)Xt−i. 
i=−∞ 

It’s easy to see that Zt(β) is stationary and ergodic. We define a convergent represen-
tation of Zt(β) as introduced in Lii and Rosenblatt (1996): X 

Zt,m(n)(β) = ai(β)Xt, 
|i|6m(n) 

where m(n) → ∞ as n → ∞ with m(n) = o(n). By such truncation, Zt,m(n)(β) 
is completely computable from the observed sequence {X1, · · · , Xn} for t = m(n) + 
1, · · · , n − m(n). Let 

n−m(n)X1
Pβ,n := δZt,m(n)(β)n − 2m(n) 

t=m(n)+1 
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and 
n−m(n)X1

P̃ 
β,n := δZt (β)n − 2m(n) 

t=m(n)+1 

be the empirical measures of the truncated residuals {Zt,m(n)(β)}
n−m(n) 

and the t=m(n)+1 
n−m(n)

untruncated residuals {Zt(β)}t=m(n)+1, respectively. And let Pβ denote the stationary 

distribution of Zt(β). We have the following convergence results for Pβ,n and P̃ 
β,n. 

Lemma 3.1. Suppose that β0 is an interior point in the compact parameter space Θ 
and P0 ∈ P. Then, 

a.s. a.s. 
sup M1(Pβ,n, P̃ 

β,n) −→ 0 and sup M1(P̃ 
β,n, Pβ ) −→ 0 as n →∞. 

β∈Θ β∈Θ 

It follows that 
a.s. 

sup M1(Pβ,n, Pβ ) −→ 0 as n →∞. (5) 
β∈Θ 

Lemma 3.1 indicates that the truncated residuals are asymptotically equivalent 
to the untruncated version in the first moment Mallow’s distance. In (Lii and Rosen-
blatt, 1996), the following approximations to the log-likelihood function of the sequence 
{Xt}n are derived: t=1 

n−m(n) Z 
hn 1 X � � 
β,f := lβ,f Zi,m(n)(β) = lβ,f dPβ,n, (6) 

n − 2m(n) 
i=m(n)+1 

where 
lβ,f (u) := log f(u) + log κ(β), 

and f is the assumed pdf of Zt. The deterministic piece κ(β) is the Jacobian of the 
transformation introduced in deriving hn 

β,f , which equals the reciprocal of the products 
of θ(z)’s noninvertiable roots multiplied by the product of φ(z)’s noncausal roots (Lii 
and Rosenblatt, 1996). The generic notation f used here refers to a certain candidate 
density of Zt. Since in reality it is unlikely to know the true distribution of Zt, the 
error distribution is usually assumed to belong to a fairly general class of elliptical 
distributions (Breidt et al., 2001; Huang and Pawitan, 2000; Lii and Rosenblatt, 1996; 
Wu and Davis, 2010) to facilitate parameter estimation. The LAD methods (Breidt 
et al., 2001; Wu and Davis, 2010) maximize variants of (6) by using a Laplace error 
distribution and the objective functions generate consistent estimators under regularity 
conditions. 
In order to relax the distributional assumptions, we consider a semiparametric 

model and take the noise distribution itself as a parameter. The model consists of 
two parts: the finite dimensional parameter β and the infinite dimensional nuisance 
parameter P . Both β and P are unknown. We adopt the classic semiparametric 
estimation procedures, which consist of estimating P first, followed by maximizing the 
resultant profile likelihood with respect to β. 
In our framework, we consider the log-concave density projection method to esti-

mate P in step one, that is, projecting the empirical measure of the residuals Pβ,n 
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onto the space of log concave distributions on R to obtain a log concave maximum 
likelihood estimator of P (Cule and Samworth, 2010; Dümbgen et al., 2011). The 
profile log likelihood can be expressed as: 

hn(β) = max hβ,f 
n = L(Pβ,n) + log κ(β) for β ∈ Θ. (7) 

f ∈F 

Theorem 3.2. Under the assumption that P0 ∈ P and β0 is a interior point of the 
compact parameter space Θ, there exists (β,ˆ f̂) that maximize hn over Θ ×F β,f 

Proof. Note that β → Pβ,n defines a continuous mapping from Θ to the probability 
space P equipped with the first moment Mallow’s distance. On the other hand, the 
functional mapping L(·) is continuous on P with respect to Mallow’s distance. There-

ˆfore, hn(β) is a continuous function on Θ and attains its maximum on Θ at some β ∈ Θ.� � 
Then it follows that β,ˆ f̂  := Π(P ̂ ) maximizes hn(β, f) over Θ ×F .β 

The joint maximizer (β,ˆ f̂) is referred to as the maximum log-concave likelihood 
estimator (MLCLE). In Section 4, we will show β̂  is strongly consistent. 

4 Asymptotic results 

4.1 Consistency 

For causal-invertible ARMA models, κ(β) is identically equal to one. Thus (6) re-
duces to the conditional log-likelihood of the sequence {Xi}n The maximizer (β,ˆ f̂) of =1. 
(6) is exactly the estimator proposed in (Chen and Samworth, 2015), where consistency 
results were established. We now turn to the general case of noncausal/noninvertible 
models. The main result is contained in the following theorem. 

Theorem 4.1. In (1), suppose Zt satisfies the following condition, ⎛ ⎞ 
∞X 

L ⎝ dkZt−k
⎠ 6 L(Zt), (8) 

k=−∞ P∞
for any geometrically decaying sequence dk with d2 > 1 and the equality holding k=−∞ k 
if and only if only one dk is non-zero. Then, Z 

a.s. a.s.
β̂ −→ β0 and |f̂ − Π(P0)|dx −→ 0 as n → 0. 

Remark 4.2. In the causal-invertible case, (Chen and Samworth, 2015) did not require 
condition (8). This is due to the fact that noncausal/noninvertible models were not 
allowed. So if one expands the family of models to be noncausal/noninvertible, then a 
condition like (8) is required even if the true model is causal-invertible. 

We state the relevant consistency result shown in (Chen and Samworth, 2015) for 
comparison. 
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Proposition 4.3. For causal-invertible ARMA models, assume that P0 ∈ P and the 
parameter space Θ is compact, then Z 

a.s. a.s.
β̂ −→ β0 and |f̂ − Π(P0)| −→ 0 as n →∞. 

The consistency of β̂  even when the true density is not log concave is a somewhat 
surprising and interesting result. The proof takes advantage of the property (2) of 
the L(·) function. In short, under causality and invertibility, Zt is independent of 
Zt(β) − Zt. Therefore, � � � � 

L Zt(β) = L Zt + Zt(β) − Zt 6 L(Zt), � � 
implying that β0 is a global maximizer of L Zt(β) over β ∈ Θ. Furthermore, it can 
be shown that β0 is actually the unique global maximizer, which is a key ingredient 
in verifying the consistency of maximum likelihood estimators. However, for non-
causal/noninvertible models, the same argument does not apply since Xt may depend 
on future errors and Zt is not independent of Zt(β)−Zt. We will show the strong consis-
tency of the MLCLE for general ARMA processes from a different perspective. Recall 
that Zt(β) is a stationary ARMA process with AR polynomial φ0(z)θ(z) and MA poly-
nomial φ(z)θ0(z), which is possibly noncausal or noninvertible. Since φ0(z)θ(z) and 
φ(z)θ0(z) have no roots on the unit circle, the Laurent expansion 

∞X 
kβ(z)β−1(z) = akz0 

k=−∞ 

is valid on some annulus containing the unit circle. Correspondingly, Zt(β) can be 
represented as 

∞X 
Zt(β) = akZt−k. 

k=−∞ 

a.s.
Proof of Theorem 4.1: From Remark 2.2, we have L(Pβ,n) −→ L(Pβ ) for each β ∈ Θ, 
that is, the profile log-likelihood function hn(β) = L(Pβ,n) + log κ(β) converges almost 
surely to h(β) = L(Pβ ) + log κ(β). The proof of the theorem consists of two steps. 
First we show that the sequence of functions {L(Pβ,n) + log κ(β)}n converges not only 
pointwise but uniformly to L(Pβ )+log κ(β). Second we show that the limiting function 
L(Pβ ) + log κ(β) is uniquely maximized at β0. 

(i) Uniform convergence of the sequence {L(Pβ,n) + log κ(β)}n 

Similar to the argument of the continuity of hn(β) in the proof of Theorem 3.2, 
the limiting function is continuous in β. Define 

Ω := {ω : lim sup M1(Pβ,n, Pβ ) = 0}. 
n→∞ β∈Θ 

Then for fixed ω ∈ Ω, and for any convergent sequence {βn} ∈ Θ with limit β∗ , 
we have 

M1(Pβn,n, Pβn ) 6 sup M1(Pβ,n, Pβ ) 
β∈Θ 

lim sup M1(Pβn,n, Pβn ) 6 lim sup M1(Pβ,n, Pβ ) = 0. 
n→∞ β∈Θn→∞ 
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Furthermore, � � 
lim sup M1(Pβn,n, Pβ∗ ) 6 lim sup M1(Pβn,n, Pβn ) + M1(Pβn , Pβ∗ ) = 0, 
n→∞ n→∞ 

since the distribution of Zt(βn) converges in the first moment Mallows distance 
to the distribution of Zt(β

?). Then according to Lemma 2.1, 

L(Pβn ,n) − L(Pβ∗ ) −→ 0 as n →∞. 

As a result, 

L(Pβn,n) − L(Pβn ) 6 L(Pβn ,n) − L(Pβ∗ ) + L(Pβn ) − L(Pβ∗ ) → 0 for the fixed ω ∈ Ω. 

Since {βn} is arbitrary and Θ is compact, we have 

sup L(Pβ,n) − L(Pβ ) → 0 on Ω. 
β∈Θ 

Now since the function κ(β) is continuous and deterministic on Θ and the set 
Ω has probability one, this the establish the uniform convergence of {L(Pβ,n) + 
log κ(β)}n a.s.. 

(ii) Unique maximizer of L(Pβ ) + log κ(β) 
Denote the difference L(Pβ0 ) + log κ(β0) − L(Pβ ) − log κ(β) as d(β): 

d(β) = 
� � κ(β0)

L(Zt) − L Zt(β) + log 
κ(β)⎛ ⎞ 

= 
∞X κ(β0)⎝L(Zt) − L akZt−k

⎠+ log 
κ(β)

k=−∞ ⎛ ⎞ 
= 

∞X⎝κ(β0) ⎠L(Zt) − L akZt−k . 
κ(β) 

k=−∞ � �2 P∞κ(β0 ) 2According to Proposition 6.2, > 1. Then by condition (8),κ(β) k=−∞ ak 

d(β) > 0 for all β ∈ Θ, or equivalently, β0 is a global maximizer of L(Pβ ) + 
log κ(β). If there exists another β 6= β0 ∈ Θ such that d(β) = 0, where the equal 
sign in (8) holds, then we know there is only one ak being non-zero and the 
coefficients must satisfies � �2 ∞Xκ(β0) 2 a = 1.kκ(β) 

k=−∞ 

The Laurent expansion of β(z)β−1(z) only has one non-zero coefficient. It then0 
follows β(z)β−1(z) ≡ 1 and β = β0. Therefore, β0 is the unique global maximizer 0 
of the limiting function L(Pβ ) + κ(β). 
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Since the parameter space Θ is assumed to be compact, it follows from the continuous 
mapping theorem that the MLCLE β̂  maximizing L(Pβ,n) + κ(β) converges almost 
surely to β0. In addition, 

a.s
M1(P ˆ, Pβ0 ) 6 M1(Pˆ, Pβ0 ) + M1(P ˆ, Pˆ) −→ 0,n,β β n,β β R a.s.

from which we conclude that |f̂  
n − Π(P0)|dx −→ 0. 

Verification of (8) has to be checked on a case-by-case basis. We show that (8) is 
true for log-concave distributions and symmetric α stable distributions with α ∈ (1, 2). 

Corollary 4.4. If Zt is non-Gaussian and follows a log concave distribution, then theR a.s. 
MLCLE β̂  is strongly consistent for β0 and |f̂ − Π(P0)|dx −→ 0. 

Proof. We will use the celebrated Entropy Power Inequality from information theory, 
due to Shannon (Shannon, 2001), to show (8) is true for any non-Gaussian log-concave 
distribution. For completeness, this inequality is stated in Lemma 6.1. 
For any random variable X that has a log-concave distribution, the entropy of X 

is well-defined. Let H(X) denote the differential entropy of X. In this case, the log 
concave projection Π(X) is exactly the true density of X itself, implying L(X) =P 
−H(X). For any geometrically decaying sequence {dk}∞ with d2 > 1, letP k=−∞ k k 
Yj = |k|6j dkZt−k. Since the log concave measures are closed under convolution, Yj 

also has log concave distribution under the assumption that Zt is log concave. And 
hence, L(Yj ) = −H(Yj ). Applying the Entropy-Power Inequality repeatedly, we obtain X � � 

exp(2H(Yj )) > exp 2H(dkZt−k) . 
|k|6j 

The strict inequality follows from the fact that Zt is assumed to be non-Gaussian. 
Since H(dkZt−k) = H(Zt) + log|dk| if dk 6= 0, X � � � � X 

exp 2H(dkZt−k) = exp 2H(Zt) d2 
k, 

|k|6j |k|6j 

and hence ⎛ ⎞ X1 
H(Yj ) > H(Zt) + log ⎝ d2 ⎠ .k2 

|k|6j 

Then, ⎛ ⎞ X1 
L(Yj ) < L(Zt) − log ⎝ d2 ⎠ . (9)k2 

|k|6j P∞
It’s straightforward to see that Yj converges to dkZt−k in the first moment k=−∞ 
Mallow’s distance as j →∞. Thus we can let j goes to infinity in (9) and obtain ⎛ ⎞ ⎛ ⎞ 

∞ ∞X X1 
L(Zt) > L ⎝ dkZt−k

⎠+ log ⎝ d2 ⎠ .k2 
k=−∞ k=−∞ 
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P∞
Since d2 > 1 by assumption, we have k=−∞ k ⎛ ⎞ 

∞X⎝ ⎠L(Zt) > L dkZt−k . 
k=−∞ P∞

When the equality holds, it’s easy to see d2 = 1. If there exists at least two k=−∞ kP∞ 
non zero terms of these dks, Y := dkZt−k can be written as a sum of two k=−∞ P 
non-degenerate independent random variables Y 1 + Y 2 , where Y i = dkZt−k fork∈Ji 

i = 1, 2 and J1, J2 is a partition of the integers. As linear combinations of independent 
non-Gaussian random variables, Y 1 and Y 2 are also non-Gaussian. By the Entropy 
Power Inequality, � �� � ��� �� � 

exp 2H (Y ) > exp 2H Y 1 + exp 2H Y 2 X � � X � � 
> exp 2H (dkZt−k) + exp 2H (dkZt−k) 

k∈J1 k∈J2� � X � � X 
> exp 2H (Zt) dk 

2 + exp 2H (Zt) d2 
k 

k∈J1 k∈J2� �X 
> exp 2H (Zt) dk 

2 . 
k 

The first strict inequality is due to the non-Gaussianity of Y 1 and Y 2 . Although the 
Entropy Power Inequality only works for a finite sum, the second inequality follows P 
from the fact that d2 exp(2H(Zt−k)) is finite for i = 1, 2. By some simplek∈Ji k 
algebra, X1 

H(Y ) > H(Zt) + log d2 
k2 

k 

H(Y ) > H(Zt). P 
As Y is the weak limit of the log-concave distributed sequence Yj = |k|6j dkZt−k, Y 
has a log-concave distribution, indicating L(Y ) = −H(Y ). It follows that ⎛ ⎞ 

∞X⎝ ⎠L dkZt−k = L(Y ) < L(Zt) 
k=−∞ 

strictly, which is a contradiction. Therefore, there is at most one nonzero dk if ⎛ ⎞ 
∞X⎝ ⎠L dkZt−k = L(Zt). 

k=−∞ 

And this nonzero term has absolute value one, which indicates that log-concave random 
variable satisfies (8). 
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Remark 4.5. Even under misspecification of log-concavity, the MLCLE may still be 
consistent in cases the true distribution P0 is close to it’s log-concave projection Π(P0) 

ˆand preserves the property (8). Simulation results suggests that β is still consistent 
given Zt follows a student-t distribution which is not log concave, although not yet 
proved. 

Corollary 4.6. If Zt is symmetric-α-stable with exponent α ∈ (1, 2), then Z 
a.s. a.s.

β̂ −→ 0 and |f̂  
n − Π(P0)|dx −→ 0. as n →∞. P∞ P∞

d2 > 1,kwith dkZt−kk=−∞ k=−∞ k=−∞Proof. For any geometrically decaying sequence {dk}∞ �P∞ α|dk|k=−∞ 

∞ 

1� 
X 

α 
Now for α ∈ (1, 2),is equal in distribution to ⎛⎝ 

Zt. ⎞⎠ ⎛⎝ ⎞⎠ 1 
2 

1 
α ∞X 

−∞k= 

|dk|α 
d2 
k> > 1 

k=−∞ 

Therefore, ⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠L 

⎛⎝ ⎞⎠ ⎛⎝ 1 
α 

⎞⎠X∞ ∞ 

k=−∞ k=−∞ 

X 
α|dk|dkZt−k L Zt = 

⎛⎝ 1 
α 

⎞⎠X∞ 

k=−∞ 

6 L(Zt) 

|dk|α 
= L(Zt) − log 

When equality holds, XX∞ ∞ 
α|dk| = d2 = 1,k 

k=−∞ k=−∞ 

implying that there exists only one non-zero dk with absolute value one and all other 
dks being zero. This completes the proof and hence (8) is satisfied. 

4.2 Asymptotic properties 

The asymptotic distribution of semiparametric M-estimators has been studied ex-
tensively in the literature Andrews (1994); Ichimura and Lee (2010); van der Vaart 
(1996). Unfortunately there is no general approach that is applicable to a wide range 
of problems. Rather, each modeling framework, which often involves the interaction of 
a nuisance parameter with the main parameter of interest, has to be considered on a 
case-by-case basis. Specifically, unlike the classical Taylor expansion of the maximum 
likelihood equations, the score function depends on an estimated and hence random 
nuisance parameter. Therefore, extra effort is needed to quantify the smoothness of 
the model with respect to the nonparametric component. We make the the following 
assumptions on f0, the true density for Zt: 
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A1 f0(x) > 0 for all x 

A2 f0 is continuously differentiable and ϕ0 
00 is bounded R R R 

A3 zḟ  
0dz = zf0(z)|∞ f0(z)dz = −1 and zf0(z)dz = 0−∞ − 

A4 f0 is log-concave and non-Gaussian 

Following the ideas in Chapter 7 of (van der Vaart, 2002), we construct a semi-
parametric efficient estimator by using the efficient score function. For notational 
consistency, β is again used to denote the parameter vector, where β = φ is the autore-
gressive polynomial coefficients of the AR(p) process. Define an augmented process Xt� �T 
as Xt, Xt−1, · · · , Xt−p . Then the residuals Zt(β) = φ(B)Xt = (1, −βT )Xt is a func-
tion of Xt, and hence can be completely recovered from the data for t = p + 1, · · · , n. 
So there is no need for truncation. The derivative of Zt(β) with respect to the vector 

˙β: Zt(β), has a nice form in terms of Xt, which is 

Ż 
t(β) = (−Xt−1, −Xt−2, · · · , −Xt−p)

T = (0p×1, −Ip×p)Xt. 

˙To simplify notation, we ignore the index t and use Zβ and Zβ to denote Zt(β) and 
Żt(β), respectively, for a general t. Recall that the pseudo log-likelihood function is 

lβ,f (Zβ ) = log f(Zβ ) + log κ(β) (β, f) ∈ Θ ×F . (10) 

Since f ∈ F is a log concave function, it is differentiable at all but at most countably 
many points. If f is not differentiable at some point, use the left derivative instead. 
Then we can differentiate lβ,f with respect to β and obtain the ordinary parametric 
score for β when f is fixed: 

ḟ(Zβ ) ˙ κ̇(β)
l̇  β,f = Zβ + (11)

f(Zβ ) κ(β) 

It has been shown in Davis and Song (2012) that the parametric score l̇  β,f is unbiased, 
that is, ! 

ḟ(Zβ ) κ̇(β)
Eβ,f l̇  β,f = Eβ,f Ż 

β + = 0 (12)
f(Zβ ) κ(β) 

given f satisfies A1 − A3. The efficient score function for β is defined to be the 
parametric score function l̇  β,f minus its orthogonal projection onto the closed linear 
span of the score functions for the nuisance parameter f (van der Vaart, 2002; Kosorok, 
2007). By looking at the efficient score function, we can obtain a lower bound on the 

− 1 
asymptotic variance of regular estimators at rate n 2 . See (Kreiss, 1987; Drost et al., 
1997; Koul and Schick, 1997) for nice introductions to semiparametric estimation for 
time series models. 
Nw we consider the efficient score function. For fixed (β, f) ∈ Θ ×F , define a path 

s → (βs, fs) given by: 

βs = β + sa, fs(·) = (1 + sg(·))f(·), (13) 

where a ∈ Rp and g(·) is a bounded continuous function satisfying the constraint R 
R g(x)f(x)dx = 0. The functions fs are valid densities for s small enough, since 
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g is bounded. Differentiating the log-likelihood function lβs ,fs (Zβs ) = log fs(Zβs ) + 
log κ(βs) with respect to s, we obtain the score function at (β, f) along the one-
dimensional parametric submodel (13) 

∂ 
Sa,g := lβs,fs |s=0∂s � � 

T ˙ ∂ a Zβs ḟ(Zβs ) + g(Zβs )f(Zβs ) + s g(Zβs )f(Zβs ) κ̇(βs)∂s T = + a |s=0
f(Zβs ) + sg(Zβs )f(Zβs ) κ(βs)! 

ḟ(Zβ ) ˙ κ̇(β)T = a Zβ + + g(Zβ )
f(Zβ ) κ(β) 

= a T l̇  β,f + g. 

The information of this submodel is defined as � �2 Ia,g := Eβ,f Sa,g . 

For a fixed vector a ∈ Rp, Ia,g is minimized over g ∈ L2(Pf ) when g equals g ∗(u) :=h i 
−aT Eβ,f l̇  β,f | Zβ = u , where Pf is the probability measure associated with density 

f . The minimal information over all paths is referred to as the efficient information. If 
the minimum is attained, the score of the submodel that has the minimal information 
(least favorable submodel) is the efficient score function. Thus, we take a candidate 
for the efficient score function to be of the form � h i� 

˜ ḟ(Zβ ) ˙ ˙lβ,f = Zβ − Eβ,f Zβ | Zβ (14)
f(Zβ ) � �2 

since Eβ,f aT l̃β,f = inf Ia,g for any a ∈ R. 
g∈L2(Pf ) h i 

κ̇(β)˙Proposition 4.7. Replacing f with f0, we have Eβ,f0 Zt(β) | Zt(β) = Zt(β).κ(β) 

And hence, � � � � 
ḟ  
0 Zt(β) κ̇(β)˜ � � ˙lβ,f0 = Zt(β) − Zt(β) . (15)
f0 Zt(β) κ(β) 

˙Proof. Each coordinate of the vector Zt(β) admits a unique linear representation in 
˙ P+∞ 

terms of the sequence {Zt(β)}, so Zt(β) can be expressed as i=−∞ aβ,iZt−i(β), where 
aβ,i ∈ Rp is uniquely determined by β. Then we have ⎛ ⎞� � ! � � +∞

ḟ  
0 Zt(β) ḟ  

0 Zt(β) X 
Eβ,f0 

� � Ż 
t(β) = Eβ,f0 

⎝ � � aβ,iZt−i(β)⎠ 
f0 Zt(β) f0 Zt(β) i=−∞ � � ! 

+∞X ḟ  
0 Zt(β) 

= aβ,iEβ,f0 
� �Zt−i(β)
Zt(β)i=−∞ 

f0 � � ! 
ḟ  
0 Zt(β) 

= aβ,0Eβ,f0 
� �Zt(β)

f0 Zt(β) 

= −aβ,0, 
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κ̇(β)which together with (12) implies that aβ,0 = . Therefore,κ(β) ⎡ ⎤ h i +∞X κ̇(β)˙ ⎣ ⎦ 
κ(β) 

Eβ,f0 Z(β) | Zt(β) = Eβ,f0 aβ,iZt−i(β) | Zt(β) = Zt(β). 
i=−∞ 

h i 
ḟ(Zt(β)) κ(β)Remark 4.8. Here and after, let l̃β,f = Ż 

t(β) − κ 
˙
(β) Zt(β) . Note that by 

f (Zt(β)) 
such modification, l̃β,f may not be the efficient score function at points (β, f) other 
than (β, f0). The function l̃β,f is unbiased in the sense that 

� �� κ̇(β) 
�! 

˜ ϕ0 ˙Eβ,f0 lβ,f = Eβ,f0 Z(β) Z(β) − Z(β) = 0, (16)
κ(β) 

where ϕ = log f . Hence Eβ,f0 l̃
 = 0.β,f̂  

Unfortunately, we are not able to show the asymptotic efficiency of the MLCLE β̂. 
Alternatively, we follow the ideas of the one-step estimators constructed in Chapter 7 
of (van der Vaart, 2002) and design a semiparametric efficient estimator. Set ϕ̂σn = 
log f̂  

σn , where f̂  
σn is the smoothed log-concave density estimator. Write l̃β,f as a 

function of the augmented process {Xt}: � �� � �� κ̇(β)
l̃β,f (Xt) = ϕ0 (1, −βT )Xt (0p×1, −Ip×p)Xt − (1, −βT )Xt . 

κ(β) 

Suppose that an initial 
√ 
n consistent estimator β̃  (LAD estimator as an example) for 

β0 is available, and define the one-step estimator as ⎛ ⎞−1 
n nX X 

β̌  := β̃  − ⎝ l̃˜ (Xi)l̃
T (Xi)⎠ l̃ ̃  (Xi). (17)β,f̂σn β,˜ f̂  

σn 
β,f̂σn 

i=p+1 i=p+1 

Theorem 4.9. Suppose that f0 satisfies the conditions A1 − A4, and the efficient� � 
information matrix Ĩ  

β0,f0 
:= E l̃β0,f0 l̃

T is nonsingular. Then, β̌  is asymptoticβ0,f0 

efficient at (β0, f0) in the sense that 

D 
I−1

√ 
n(β̌  − β0) −→ N (0, ˜ ).β0,f0 

Proof. The function l̃β,f̂  
σn 
is unbiased according to (16) and satisfies the integrablibility 

conditions stated in Proposition 6.3. Then the conclusion follows from Theorem 7.2 in 
(van der Vaart, 2002). 

˜ ˇRemark 4.10. In practice, we can iterate by replacing β with the last update β in 
ˆequation (17). We suspect that the MLCLE β is semiparametric efficient, though 

this is not yet proved. Simulation results for investigating its asymptotic behavior are 
included in Section 5. 
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5 Examples 

5.1 Simulation study 

A simulation study was conducted to evaluate the finite performance of the MLCLE 
and to compare with LAD and MLE methods, when the pdf of Zt is known. We con-
sidered a mixed AR(2) process and a ARMA(1,1) process from a symmetric α−stable 
(SαS) distribution, respectively, i.e., 

1. Xt − φ1Xt−1 − φ2Xt−2 = Zt 

2. Xt − φXt−1 = Zt − θZt−1, 

where {Zt} is a sequence of iid SαS random variables. Three values of α are con-
sidered: 1.1, 1.5, 1.9. For each case, a time series of length 500 is simulated and the 
parameters of interest are estimated by MLCLE, LAD and MLE methods. This pro-
cedure is replicated 5,000 times, and the results of this experiment are summarized in 
the following tables. 
For the mixed AR(2) model, we set the true value (φ1, φ2) to be (1.2, 0.6), with a 

noncausal root in the AR polynomial. As shown in Table 1, for smaller α, the MLCLE 
is comparable to the LAD estimation. As α gets larger, the MLCLE outperforms the 
LAD estimation. In addition, as α decreases, both MLCLE and LAD estimation have 
improved performance. For the ARMA(1,1) model, we set the (φ, θ) to be (0.5, 1.5) 
and (1.5, 0.5). Similar conclusions as for Table 1 are seen in Table 2. 

Zt ∼ SαS 
True value α MLE MLCLE LAD 

φ1 = 1.2 
φ2 = 0.6 

1.1 

1.5 

1.9 

1.2002 (0.0141) 
0.6001 (0.011) 
1.2020 (0.0438) 
0.6003 (0.0327) 
1.2059 (0.0709) 
0.5981 (0.0593) 

1.2011 (0.0159) 
0.6005 (0.0129) 
1.2059 (0.0567) 
0.6014 (0.0365) 
1.2034 (0.1124) 
0.6044 (0.0620) 

1.2005 (0.0157) 
0.6002 (0.0125) 
1.2033 (0.0587) 
0.601 (0.0373) 
1.2045 (0.1449) 
0.6011 (0.0709) 

Table 1: Mean and root-mean-squared error (·) for MLE, MLCLE and LAD estimates for 
AR(2) 

In regard to the asymptotic behavior, we consider an AR(1) process driven by the 
following log concave distributions: Laplace distribution with λ equal to one, logistic 
distribution with mean zero and scale parameter equal to one. Time series of lengths 
100, 500, 5000 were simulated and for each realization, an AR(1) model was fitted 
via the MLCLE, LAD and MLE methods, respectively. For each sample size, this 
procedure was replicated 1000 times. 
Tables 3 and 4 reports the mean, the root-mean-squared error and the asymptotic 

standard deviation of each method given different noise distributions. Note that the 
LAD coincides with MLE for the Laplace distribution. The MLCLE and MLE esti-
mates are comparable for the two log-concave distributions. As the sample sizes grows, 
the normalized empirical variance σ̂2 by the MLCLE approaches the inverse efficient 
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Zt ∼ SαS 
True value α MLE MLCLE LAD 

0.5000 (0.0059) 0.4998 (0.0071) 0.5000 (0.0070)
1.1 

1.5000 (0.0107) 1.5006 (0.0161) 1.5007 (0.0160) 
φ = 0.5 0.4999 (0.0182) 0.4994 (0.0205) 0.5002 (0.0210)

1.5 
θ = 1.5 1.4998 (0.0311) 1.5017 (0.0402) 1.5027 (0.0439) 

0.4994 (0.0364) 0.4977 (0.0422) 0.5000 (0.0479)
1.9 

1.5009 (0.0445) 1.5040 (0.0831) 1.5089 (0.1001) 
1.5001 (0.0109) 1.5008 (0.0126) 1.5004 (0.0121)

1.1 
0.4999 (0.0059) 0.4998 (0.0100) 0.4999 (0.0105) 

φ = 1.5 1.5010 (0.0316) 1.5038 (0.0406) 1.5023 (0.0414)
1.5 

θ = 0.5 0.4997 (0.0188) 0.5000 (0.0211) 0.5001 (0.0219) 
1.5019 (0.0448) 1.5149 (0.0846) 1.5101 (0.0993)

1.9 
0.5001 (0.0364) 0.5014 (0.0423) 0.5000 (0.0499) 

Table 2: Mean and root-mean-squared error (·) for MLE, MLCLE and LAD estimates for 
ARMA(1,1) 

information. For logistic distributions, the MLCLE outperforms the LAD estimates, 
suggesting the efficiency of the MLCLE. 

Zt ∼ Logistic(0, 1), φ = 2 
n MLE MLCLE LAD 
100 
500 
5000 

2.1032 (0.4373) [4.3516] 
2.0178 (0.1548) [3.4570] 
2.0025 (0.0473) [3.3410] 

2.1507 (0.4402) [4.3803] 
2.0303 (0.1593) [3.5583] 
2.0032 (0.0473) [3.3473] 

2.1129 (0.5003) [4.9783] 
2.0198 (0.1804) [4.0295] 
2.0023 (0.0545) [3.8557] 

Table 3: Mean, root-mean-squared error (·) and normalized empirical standard error [·] of 
MLE, MLCLE and LAD estimates for non-causal AR(1) model 

Zt ∼ Laplace(1), φ = 2 
MLE MLCLE 

100 
500 
5000 

2.0694 (0.3681) [3.6628] 
2.0115 (0.1208) [2.6994] 
2.0012 (0.0352) [2.4900] 

2.1267 (0.3849) [3.8298] 
2.0196 (0.1238) [2.7663] 
2.0019 (0.0356) [2.5194] 

Table 4: Mean, root-mean-squared error (·) and normalized empirical standard error [·] of 
MLE and MLCLE estimates for non-causal AR(1) model 
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Figure 1: The demeaned differences of U.S. Total Government Revenue 

5.2 An empirical example 

Figure 1 contains the time series plot of the quarterly data of the demeaned differ-
ences of U.S. total government revenue from 1955:1 to 2000:4 (184 observations). The 
Jarque-Bera test for normality gives a p-value smaller than e−12 and the Shapiro-Wilk 
test gives a p-value smaller than e−8 . Both tests are significant and show strong ev-
idence of rejecting normality of the data. The sample ACF and PACF plots of xt in 
Figure 2 suggest fitting an AR(2) model to this data. 
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Figure 2: (a) Sample ACF of xt, and (b) sample PACF of xt 

The best fitting causal Gaussian AR(2) model is given by 

Xt − 0.0507Xt−1 − 0.1995Xt−2 = Wt. 

ˆWhile the sample ACF of the residuals {Ŵ 
t} in Figure 3 indicate that Wt is white 

noise, the ACF of the squared residuals {Ŵ 2} show significant lag one correlation.t 
And hence, {Ŵ 

t} is uncorrelated but not independent. In contrast, the best fitting 
mixed AR(2) model, by applying the MLCLE method, is given by 

Xt − 1.3042Xt−1 − 0.7606Xt−2 = Zt. 
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Figure 3: sample of ACF of the residuals Ŵ 
t and Ẑ 

t 

2The AR polynomial 1 − φ1z − φ2z has one root inside the unit circle and one root 
outside the unit circle. The bottom panel of Figure 3 shows the plot of the ACF of 
{Ẑ 

t} and the ACF of {Ẑ2} from the mixed model. The ACF of {Ẑ 
t} looks very similar t 

to those of {Ŵ 
t}, indicating both of them effectively remove the serial correlation 

structure in the data. Moreover, {Ẑ2} is also uncorrelated by looking at the ACF oft 
{Ẑ2}. Therefore, the noncausal model productes residuals that look more independent t 
at least in terms of the squares of the residuals. 
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6 Appendix: Auxiliary results and proof 

Lemma 6.1. (Entropy Power Inequality) 

exp(2H(X + Y )) > exp(2H(X)) + exp(2H(Y )) 

where X and Y are independent real-valued random variables and H(X) is the differ-
ential entropy of the probability density function fX Z 

H(X) = − fX (x) log fX (x)dx. 
R 

The equality holds if and only only X and Y are normal random variables. 
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Proof of Lemma 3.1: Since the parameter set Θ is assumed to be compact and all β(z) 
have no zeros of absolute value one, there exists some 0 < ρ < 1 and K > 0 such that 
aj (β) 6 Kρ|j| for all j (see (Brockwell and Davis, 2009)). !Z Z 

M1(Pβ,n, P̃ 
β,n) = sup gdPβ,n − gP̃ 

β,n 
kgk 61L 

n−m(n)X 
6 

1 
Zi,m(n)(β) − Zi(β) 

n − 2m(n) 
i=m(n)+1 

n−m(n)X X1
6 Kρ|j| Zi−j

n − 2m(n) 
i=m(n)+1|j|>m(n) 

n−m(n)X 
6 

1 
Yi,m(n), 

n − 2m(n) 
i=m(n)+1 P 

where Yi,m(n) = Kρ|j| Zi−j . Denote the right-hand side of the last inequality |j|>m(n)P∞
above as Wn. Then, E(Wn) is finite since n=1 ⎛ ⎞ 

n−m(n)X X ρm(n)1⎝ ⎠EWn = E Yi,m(n) = Kρ|j|E|Zi| = 2 ∗ KE(|Zi|) , 
n − 2m(n) 1 − ρ 

i=m(n)+1 |j|>m(n) 

indicating that Wn converges to 0 almost surely by Borel-Cantelli lemma. Thus, 

a.s. 
sup M1(Pβ,n, P̃ 

β,n) −→ 0. 
β∈Θ 

For any β, β0 ∈ Θ, !Z Z 
M1(P̃ 

β,n, P̃ 
β0,n) = sup gdP̃ 

β,n − gP̃ 
β0,n 

kgk 61L 

n−m(n)X 
6 

1 
Zi(β) − Zi(β

0) 
n − 2m(n) 

i=m(n)+1 

n−m(n) ∞X X1
6 aj (β) − aj (β

0)) Zi−j
n − 2m(n) 

i=m(n)+1 j=−∞ 

n−m(n) n−m(n)X X X X1 1
6 aj (β) − aj (β

0) Zi−j + 2Kρ|j| Zi−j
n − 2m(n) n − 2m(n)

i=m(n)+1|j|6M i=m(n)+1|j|>M 

n−m(n) n−m(n)X X X Xmax|j|6M aj (β) − aj (β
0) 1

6 Zi−j + 2Kρ|j| Zi−j
n − 2m(n) n − 2m(n)

i=m(n)+1|j|6M i=m(n)+1|j|>M 
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The second term converges almost surely to 4KE(|Zi|) ρ
M 

. Therefore, it can be arbi-1−ρ 
trarily small by choosing M large, and for this large M , 

n−m(n)X X1 
Zi−j

n − 2m(n) 
i=m(n)+1|j|6M 

converges almost surely to some constant and one can show that 

max aj (β) − aj (β
0)) 6 C β − β0 

|j|6M 

for some constant C not depends on β, β0 . Therefore, 

a.s.
lim M1(P̃ 

β,n, P̃ 
β0,n) −→ 0. 

n→∞ 
kβ−β0k→0 

a.s.
On the other hand, notice that M1(P̃ 

β,n, Pβ ) −→ 0 since Zt(β) is stationary and 
ergodic, and hence M1(Pβ0 , Pβ ) is uniformly continuous on Θ × Θ. This implies that 
M1(P̃ 

β,n, Pβ ) is stochastically equicontinuous since 

M1(P̃ 
β,n, Pβ ) − M1(P̃ 

β0 ,n, Pβ0 ) 6 M1(P̃ 
β,n, P̃ 

β0 ,n) + M1(Pβ0 , Pβ ). 

It follows that 
a.s. 

sup M1(P̃ 
β , Pβ ) −→ 0. 

β∈Θ 

Proposition 6.2. The coefficients ak of the Laurent expansion of β(z)β−1(z) satisfies0 
the inequality � �2 ∞Xκ(β0) 2 a > 1. (18)kκ(β) 

k=−∞ P∞ iid
Proof. Let Vt = k=−∞ akWt−k where Wt ∼ N(0, 1). There exists a causal-invertible P∞ 

� 
κ(β) 

�2 
∗ ∗version of Vt ≡ W ∗ with a = 1 and var(W ∗) = (Brockwell andk=0 ak t−k 0 t κ(β0) 

Davis, 2009)). Then we know 

∞ ∞ � �2X X κ(β)2 ∗ 2 ∗ ∗ a = var(Vt) = a var (W var (W ) = ,k k t−k) > t κ(β0)
k=−∞ k=0 

which implies that � �2 ∞Xκ(β0) 2 ak > 1. 
κ(β) 

k=−∞ � �2 P∞κ(β0) 2 ∗ = 1 implies a = 0 for all k =6 0.κ(β) k=−∞ ak k 
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Proposition 6.3. For every deterministic sequence βn converes to β0, the sequence 
l̃ ˆ satisfies the following integrability conditions. βn,fσn � � 

2 
˜Eβn,f0 lβn ,f − l̃β0 ,f0 | ˆ = oP (1).f=fσn 

Proof of Proposition 6.3: Let µn be the mode of f̂  
σn , then ϕ̂0 > 0 for x 6 µn andσn 

ϕ̂0 6 0 for x > µn. It follows thatσn Z Z Z ∞µn1 1 111 

ϕ̂0 σn 
f̂σn dx = ϕ̂0 σn 

f̂σn dx − ϕ̂0 σn 
f̂σn dx = 6f̂σn 

a.s.−→ 6f3 3 3 3 (un) 3 
0 (u), 

−∞ µn 

where µ is the mode of f0. Then, by following the same argument as Lemma 3 in (Cule 

and Samworth, 2010), ϕ̂0 f̂σnσn 

1 
3 is uniformly bounded with probability one. Besides, 

there exists some c > 0 such that f̂  
σn > cf0 with probability one according to the proof 

1 
3− 

of Theorem 4.1 of (Cule et al., 2010). Thus, ϕ̂0 can be bounded by fσn 
up to some0 

constant. Proposition 6.4 implies l̃βn, ˆ converges to l̃β0,f0 almost surely. Then thefσn 

results follow from the dominated convergence theorem. 

Proposition 6.4. Assume that f0 is continuously differentiable.Then for any compact 
set S ⊆ R, 

a.s. a.s.
ϕ0lim sup |ϕ̂σn (x) − ϕ0(x)| → 0 and lim sup | ̂ σn 

(x) − ϕ0 0(x)| → 0. 
n→∞ n→∞x:∈S x:∈S 

Proof. f̂  
σn is not only log-concave but also infinitely differentiable. Particularly, the 

first derivative of ϕ̂σn 
:= log f̂  

σn exist. Since f0 is assumed to be continuous, then 
according to Theorem 2 in (Chen and Samworth, 2013), we have 

a.s.
lim sup |f̂  

σn (x) − f0(x)| → 0. 
n→∞ x∈R 

And accordingly, let S be any compact set in R, we obtain 

a.s.
lim sup |ϕ̂σn (x) − ϕ0(x)| → 0, 
n→∞ x∈S 

since f̂  
σn and f0 are supported on the real line. Note that ϕ̂σn and ϕ0 are continuous 

concave functions. Thus, ϕ̂σ 
0 (x) converges pointwise to ϕ0 

0 (x) as n goes to infinity. 
Further, since both ϕ̂0 and ϕ0 0 are continuous non-increasing functions, this pointwise σn 

convergence actually can be strengthened to be uniform, that is, 

a.s.
ϕ0lim sup | ̂ (x) − ϕ0 0(x)| → 0.σnn→∞ {x:∈S} 
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