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Regularly varying space-time processes have proved useful to study extremal depen-
dence in space-time data. We propose a semiparametric estimation procedure based on
a closed form expression of the extremogram to estimate parametric models of extremal
dependence functions. We establish the asymptotic properties of the resulting parameter
estimates and propose subsampling procedures to obtain asymptotically correct confi-
dence intervals. A simulation study shows that the proposed procedure works well for
moderate sample sizes and is robust to small departures from the underlying model. Fi-
nally, we apply this estimation procedure to fitting a max-stable process to radar rainfall
measurements in a region in Florida. Complementary results and some proofs of key
results are presented together with the simulation study in the supplement Buhl et al.
[7].

1. Introduction

Regularly varying processes provide a useful framework for modeling extremal depen-
dence in continuous time or space. They have been investigated in Hult and Lindskog
[19, 20]. A prominent class of examples consists of max-stable processes. A key example
in this paper is the max-stable Brown-Resnick process which was introduced in a time
series framework in Brown and Resnick [2], in a spatial setting in Kabluchko et al. [22],
and extended to a space-time setting in Davis et al. [10].

In the literature, various dependence models and estimation procedures have been
proposed for extremal data. For the Brown-Resnick process with parametrized depen-
dence structure, inference has been based on composite likelihood methods. In particular,
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2 S. Buhl et al.

pairwise likelihood estimation has been found useful to estimate parameters in a max-
stable process. A description of this method can be found in Padoan et al. [24] for the
spatial setting, and Huser and Davison [21] in a space-time setting. Asymptotic results
for pairwise likelihood estimates and detailed analyses in the space-time setting for the
model analysed in this paper are given in Davis et al. [11]. Unfortunately, parameter
estimation using composite likelihood methods can be laborious, since the computation
and subsequent optimization of the objective function is time-consuming. Also the choice
of good initial values for the optimization of the composite likelihood is essential.

In this paper we introduce a new semiparametric estimation procedure for regularly
varying processes which is based on the extremogram as a natural extremal analog of the
correlation function for stationary processes. The extremogram was introduced in Davis
and Mikosch [9] for time series (also in Fasen et al. [16]), and they show consistency
and asymptotic normality of an empirical extremogram estimate under weak mixing
conditions. The empirical extremogram and its asymptotic properties in a spatial setting
have been investigated in Buhl and Klüppelberg [5] and Cho et al. [8]. It can serve as a
useful graphical tool for assessing extremal dependence structures in spatial and space-
time processes that provides clues about potential parametric models, a critical step in
the model building paradigm. For example, compatibility with various assumptions such
as isotropy and stationarity (see Buhl and Klüppelberg [4] and Davis et al. [11] for some
examples), can be assessed by examining invariance of the empirical extremogram when
computed over specially chosen subsets of the data. Ultimately, a number of families
of proposed parametric models are often fitted before deciding on a particular class of
models. Therefore it is of interest to be able to not only have a procedure that can
compute estimates rapidly, but also to serve as a check on the efficacy of model choice.
Additionally, the new estimation procedure allows one to provide parameter estimates
that can be used as initial values in more refined procedures, such as composite likelihood.

Our semiparametric estimation method assumes a spatially isotropic and additively
separable dependence structure for regularly varying space-time processes. We first esti-
mate the extremogram nonparametrically by its empirical version, where we can hence
separate space and time. Weighted linear regression is then applied in order to produce
parameter estimates. Asymptotic normality of these semiparametric estimates requires
asymptotic normality of the empirical extremogram, and we apply the CLT with mixing
conditions as provided in [5]. The rate of convergence can be improved by a bias correc-
tion term, a fact which we explain in detail. The proofs of the asymptotic properties of
semiparametric spatial and temporal parameter estimates are analogous, and we present
the details on the spatial parameters only, referring to Buhl [3], Chapter 3, for details
about the asymptotic properties of the semiparametric temporal parameter.

In a second step we establish asymptotic normality of the weighted least squares
parameter estimates. When the dependence parameters have bounded support, as for the
Brown-Resnick process in Section 4, constrained optimization has to be applied. Then
also the limit law differs depending whether the true parameters lie on the boundary or
not. Since the asymptotic covariance matrix in the normal limit is difficult to access, we
apply subsampling procedures to obtain pointwise confidence intervals for the parameters.

The semiparametric estimates converge at a slower rate than the square root rate of a
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Semiparametric estimation for isotropic max-stable space-time processes 3

fully parametric procedure such as pairwise likelihood estimation. However, it is known
that likelihood-based estimates may be inefficient and even not consistent if the model
is slightly misspecified. The semiparametric estimates, however, are often unaffected by
slight deviations in the model. This is proved in Section 9 and illustrated in Section 10 of
the supplement [7], where data are generated from a Brown-Resnick process, but with ob-
servational noise. The semiparametric estimates clearly outperform pairwise likelihood
estimates in this case. On the other hand, the semiparametric estimates perform ad-
mirably well relative to the pairwise likelihood estimates when the underlying process is
in fact a Brown-Resnick process.

Our paper is organized as follows. Section 2 defines regularly varying processes in
space and time and their extremogram. Based on gridded data, the nonparametric ex-
tremogram estimation is derived and used for parametric model fitting. Asymptotic nor-
mality of the parameter estimates is established in Section 3. Section 3.1 is dedicated
to the asymptotic normality of the empirical extremogram; and Section 3.2 deals with
the asymptotic properties of the parameter estimates. The subsampling procedure – as
well as results and proofs for our setting – is given in Section 7 of the supplement [7].
In Section 4 we apply the semiparametric method to the Brown-Resnick process and
verify the required conditions. Here we also calculate the bias corrected estimator. We
test our new semiparametric estimation procedure in a simulation study presented in the
supplement [7] and compare it to pairwise likelihood estimation, both when applied to
data generated by a Brown-Resnick process and when the data are affected by observa-
tional noise. In the latter, our procedure produces estimates with less bias than those
based on pairwise likelihood (see Section 10 of the supplement [7]). The paper concludes
with an analysis of daily rainfall maxima in a region in Florida in Section 5, where we
also compare the semiparametric estimates with previously obtained pairwise likelihood
estimates. The supplement [7] contains four sections, on subsampling, on α-mixing of
the Brown-Resnick process, a robustness result for the bias corrected estimator, and a
simulation study.

2. Model description and semiparametric estimates

In this paper we consider strictly stationary regularly varying processes in space and
time {η(s, t) : s ∈ Rd−1, t ∈ [0,∞)} for d ∈ N, where all finite-dimensional distributions
are regularly varying (cf. Hult and Lindskog [20] for definitions and results in a general
framework and Resnick [25] for details about multivariate regular variation). Throughout,

f(n) ∼ g(n) means that limn→∞
f(n)
g(n) = 1. As a prerequisite, we define for every finite

set I ⊂ Rd−1 × [0,∞) with cardinality |I| the vector

ηI := (η(s, t) : (s, t) ∈ I)
ᵀ
.

Let furthermore ‖ · ‖ be the Euclidean norm on Rd−1.
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4 S. Buhl et al.

Definition 2.1 (Regularly varying stochastic process). A strictly stationary stochastic
space-time process {η(s, t) : (s, t) ∈ Rd−1 × [0,∞)} is called regularly varying, if there
exists some normalizing sequence 0 < an → ∞ such that P(|η(0, 0)| > an) ∼ n−d as
n→∞, and if for every finite set I ⊂ Rd−1 × [0,∞),

ndP
(ηI
an
∈ ·
)

v→ µI(·), n→∞, (2.1)

for some non-null Radon measure µI on the Borel sets in R|I|\{0}. In that case,

µI(xC) = x−βµI(C), x > 0,

for every Borel set C in R|I|\{0}. The notation
v→ stands for vague convergence, and

β > 0 is called the index of regular variation.

For every (s, t) ∈ Rd−1× [0,∞) and I = {(s, t)} we set µ{(s,t)}(·) = µ{(0,0)}(·) =: µ(·),
which is justified by stationarity. Throughout we furthermore consider the space-time
process {η(s, t) : (s, t) ∈ Rd−1 × [0,∞)} to be spatially isotropic. Together with the
assumption of strict stationarity, this means that extremal dependence between two
space-time points (s1, t1) and (s2, t2) is only driven by the spatial and temporal lags
v := ‖s1 − s2‖ and u := |t1 − t2|, respectively, and we can define the extremogram only
as a function of v and u. The extremogram was introduced for spatial and space-time
processes by Buhl and Klüppelberg [5] and Cho et al. [8], based on Steinkohl [27], and
can be regarded as a correlogram for extreme events.

Definition 2.2 (The extremogram). For a regularly varying strictly stationary isotropic
space-time process {η(s, t) : (s, t) ∈ Rd−1× [0,∞)} we define the space-time extremogram
for two µ-continuous Borel sets A and B in R\{0} (i.e. µ(∂A) = µ(∂B) = 0) such that
µ(A) > 0 by

ρAB(v, u) = lim
n→∞

P (η(s1, t1)/an ∈ A, η(s2, t2)/an ∈ B)

P (η(s1, t1)/an ∈ A)
, (2.2)

where v = ‖s1 − s2‖ and u = |t1 − t2|. Setting A = B = (1,∞), this reduces to the tail
dependence coefficient χ(v, u) = ρ(1,∞)(1,∞)(v, u).

In what follows we propose a two-step semiparametric estimation procedure of a para-
metric model of the extremogram. In particular, we assume that the model is additively
separable such that setting either the temporal lag u or the spatial lag v equal to 0, it
can be linearly parametrized as

T1(χ(v, 0)) = T1(χ(v, 0;C1, α1)) = C1 + α1v, (C1, α1) ∈ ΘS , v ≥ 0, (2.3)

and

T2(χ(0, u)) = T2(χ(0, u;C2, α2)) = C2 + α2u, (C2, α2) ∈ ΘT u ≥ 0, (2.4)
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Semiparametric estimation for isotropic max-stable space-time processes 5

where T1 and T2 are known suitable strictly monotonous continuously differentiable trans-
formations and the parameters (C1, α1) and (C2, α2) lie in appropriate parameter spaces
ΘS and ΘT . We refer to (C1, α1) as the spatial parameter and to (C2, α2) as the temporal
parameter. Equations (2.3) and (2.4) are the basis for parameter estimates. We replace the
extremogram on the left hand side in both of these equations by nonparametric estimates
sampled at different lags. Then we use constrained weighted least squares estimation in
a linear regression framework to obtain parameter estimates.

For better understanding, we stick to the 2-dimensional spatial case d−1 = 2; however,
the method can directly be generalized and applied to higher dimensions. The estimation
procedure is based on the following observation scheme for the space-time data.

Condition 2.3. (1) The locations lie on a regular grid

Sn =
{

(i1, i2) : i1, i2 ∈ {1, . . . , n}
}

=
{
si : i = 1, . . . , n2

}
.

(2) The time points are equidistant, given by the set {t1, . . . , tT }.

Remark 2.1. The assumption of a regular grid can be relaxed in various ways. A
simple, but notationally more involved extension is the generalization to rectangular
grids, cf. Buhl and Klüppelberg [5], Section 3. Furthermore, it is possible to assume that
the observation area consists of random locations given by points of a Poisson process, see
for instance Cho et al. [8], Section 2.3, or Steinkohl [27], Section 4.5.2. Also deterministic,
but irregularly spaced locations, could be considered as treated in [27] in Section 4.5.1 in
the context of pairwise likelihood estimation. In order to make our method transparent
we focus on observations on a regular grid. �

The following scheme provides the semiparametric estimation procedure in detail.
Denote by V and U finite sets of spatial and temporal lags, on which the estimation is
based. Concerning their choice, we generally include those lags which show clear extremal
dependence between locations or time points. Larger lags should not be considered, since
they may introduce a bias in the least squares estimates, similarly as in pairwise likeli-
hood estimation; cf. Buhl and Klüppelberg [4], Section 5.3. One way to determine the
range of clear extremal dependence are permutation tests, which we describe at the end
of Section 5.

(1) Nonparametric estimates for the extremogram:
Summarize all pairs of Sn which give rise to the same spatial lag v ∈ V into

N(v) = {(i, j) ∈ {1, . . . , n2}2 : ‖si − sj‖ = v}.
For all t ∈ {t1, . . . , tT } estimate the spatial extremogram by

χ̂(t)(v, 0) =

1

|N(v)|
n2∑
i=1

n2∑
j=1

‖si−sj‖=v

1{η(si,t)>q,η(sj ,t)>q}

1

n2

n2∑
i=1

1{η(si,t)>q}

, v ∈ V, (2.5)
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6 S. Buhl et al.

where q is a large quantile (to be specified) of the standard unit Frechét distribution.

For all s ∈ Sn estimate the temporal extremogram by

χ̂(s)(0, u) =

1
T−u

T−u∑
k=1

1{η(s,tk)>q,η(s,tk+u)>q}

1
T

T∑
k=1

1{η(s,tk)>q}

, u ∈ U , (2.6)

where again q is a large (possibly different) quantile of the standard unit Frechét distri-
bution.

(2) The overall “spatial” and “temporal” extremogram estimates are defined as averages
over the temporal and spatial locations, respectively; i.e.,

χ̂(v, 0) =
1

T

T∑

k=1

χ̂(tk)(v, 0), v ∈ V, (2.7)

χ̂(0, u) =
1

n2

n2∑

i=1

χ̂(si)(0, u), u ∈ U . (2.8)

(3) Parameter estimates for C1, α1, C2 and α2 are found by using weighted least squares
estimation:

(
Ĉ1

α̂1

)
= arg min

(C1,α1)∈ΘS

∑

v∈V
wv

(
T1(χ̂(v, 0))−

(
C1 + α1v

))2

, (2.9)

(
Ĉ2

α̂2

)
= arg min

(C2,α2)∈ΘT

∑

u∈U
wu

(
T2(χ̂(0, u))−

(
C2 + α2u

))2

, (2.10)

with weights wu > 0 and wv > 0.
We call the estimates (Ĉ1, α̂1) and (Ĉ2, α̂2) weighted least squares estimates (WLSE).

This approach bears similarity with that proposed by Einmahl et al. [14], who suggest
semiparametric weighted least squares estimation of the parameters of parametric models
of the stable tail dependence function based on iid random vector observations.

3. Asymptotic properties of the WLSE

In this section we investigate aymptotic properties of the WLSE (Ĉ1, α̂1) and (Ĉ2, α̂2).
Recall from (2.9) and (2.10) that they are functions of the averaged empirical extremogram
χ̂(·, ·). Its definition is given in (2.7) and (2.8) and implies that we first need CLTs of
the pointwise empirical extremograms χ̂(t) and χ̂(s) for a fixed time point t and a fixed
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Semiparametric estimation for isotropic max-stable space-time processes 7

location s, respectively. Sections 3.1 and 3.2 focus on the spatial parameters. The cor-
responding results for the temporal case can be derived similarly by replacing n with√
T and can be found with full details in Buhl [3], Chapter 3 for the Brown-Resnick

space-time process. We use several results for the extremogram provided in Section 8 of
the supplement [7] and in Buhl and Klüppelberg [5].

3.1. Asymptotics of the empirical spatial extremogram

We show a CLT for the empirical spatial extremogram of regularly varying space-time
processes, which is defined in (2.1) and based on a finite set of observed spatial lags

V = {v1, . . . , vp},

which show clear extremal dependence as explained in Section 2. First we state condi-
tions under which the empirical extremogram centred by the pre-asymptotic version is
asymptotically normal.

Theorem 3.1. For a fixed time point t ∈ {t1, . . . , tT }, consider a regularly varying
spatial process

{
η(s, t) : s ∈ R2

}
as defined in Definition 2.1. Let an be a sequence as

in (2.1). Assume that there exists γ > 0 that satisfies max{v1, . . . , vp} ≤ γ, such that the
following conditions are satisfied:

(M1) {η(s, t) : s ∈ R2} is α-mixing with α-mixing coefficients αk,`(·).
There exist sequences m = mn, r = rn →∞ with mn/n→ 0 and rn/mn → 0 as n→∞
such that the following hold:

(M2) m2
nr

2
n/n→ 0.

(M3) For all ε > 0:

lim
k→∞

lim sup
n→∞

∑

h∈Z2:k<‖h‖≤rn
m2
n

P
(

max
s∈B(0,γ)

|η(s, t)| > εam, max
s′∈B(h,γ)

|η(s′, t)| > εam

)
= 0,

where B(h, γ) := {s ∈ Z2 : ‖s− h‖ ≤ γ} for h ∈ R2.
(M4) (i) lim

n→∞
m2
n

∑
h∈Z2:‖h‖>rn

α1,1(‖h‖) = 0,

(ii)
∑
h∈Z2

αp,q(‖h‖) <∞ for 2 ≤ p+ q ≤ 4,

(iii) lim
n→∞

mnn α1,n2(rn) = 0,

Then the empirical spatial extremogram χ̂(t)(v, 0) defined in (2.5) with the quantile
q = am satisfies

n

mn

(
χ̂(t)(v, 0)− χn(v, 0)

)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞, (3.1)
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8 S. Buhl et al.

where the covariance matrix Π
(iso)
1 is specified in equation (3.6) below, and χn is the

pre-asymptotic spatial extremogram,

χn(v, 0) =
P(η(0, 0) > am, η(h, 0) > am)

P(η(0, 0) > am)
, v = ‖h‖ ∈ V . (3.2)

Proof. Theorem 3.1 is a direct application of Theorem 4.2 of Buhl and Klüppelberg [5]
to the process {η(s, t) : s ∈ R2} for d = 2 and A = B = (1,∞). For the specification of
the asymptotic covariance matrix we need to adapt that theorem to the isotropic case,
where each spatial lag vi arises from a set of different vectors h, all with same Euclidean
norm vi. For i ∈ {1, . . . , p} such that vi ∈ V, we summarize these into

L(vi) := {h ∈ Z2 : ‖h‖ = vi} = {h(i)
1 , . . . ,h

(i)
`i
},

where `i := |L(vi)|. We conclude that

n

mn

(
χ̂(t)(h

(i)
1 , 0)− χn(h

(i)
1 , 0), . . . , χ̂(t)(h

(i)
`i
, 0)− χn(h

(i)
`i
, 0)
)ᵀ
i=1,...,p

d→ N (0,Π
(space)
1 ),

where Π
(space)
1 is specified in equation (4.3)-(4.6) of [5]. Note the slight misuse of notation

committed here for the sake of simplicity: by χ̂(t)(h, 0) (instead of χ̂(t)(v, 0)) we denote
the empirical extremogram for each single vector h ∈ L(vi) specified above; i.e.,

χ̂(t)(h, 0) =

1

|N(h)|
n2∑
i=1

n2∑
j=1

si−sj=h

1{η(si,t)>q,η(sj ,t)>q}

1

n2

n2∑
i=1

1{η(si,t)>q}

,

where N(h) := {(i, j) ∈ {1, . . . , n2} : si − sj = h} (instead of N(v)). Analogously we
define the pre-asymptotic extremogram χn(h, 0) w.r.t. a vector h.

It holds that |N(vi)| =
∑
h∈L(vi)

|N(h)|. Isotropy implies furthermore for the pre-

asymptotic extremogram that χn(vi, 0) = χn(h, 0) for all h ∈ L(vi), such that

χn(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χn(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χn(h, 0) (3.3)

as well as, by the definition of the estimator in (2.5),

χ̂(t)(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χ̂(t)(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

χ̂(t)(h, 0). (3.4)

We conclude by (3.3) and (3.4) that

χ̂(t)(vi, 0)− χn(vi, 0) =
∑

h∈L(vi)

|N(h)|
|N(vi)|

(
χ̂(t)(h, 0)− χn(h, 0)

)
.
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Semiparametric estimation for isotropic max-stable space-time processes 9

To obtain a concise representation of the asymptotic normal law for the isotropic ex-
tremogram, we define row vectors (|N(h)|/|N(vi)| : h ∈ L(vi)) for i = 1, . . . , p. Set
L :=

∑p
i=1 `i and define the p× L−matrix

N :=




(
|N(h)|
|N(v1)| : h ∈ L(v1)

)
0 0 0

0
(
|N(h)|
|N(v2)| : h ∈ L(v2)

)
0 0

...
...

. . . 0

0 0 0
(
|N(h)|
|N(vp)| : h ∈ L(vp)

)



.

(3.5)

Then we find

n

mn

(
χ̂(t)(vi, 0)− χn(vi, 0)

)ᵀ
i=1,...,p

=
n

mn
N
(
χ̂(t)(h

(i)
1 , 0)− χn(h

(i)
1 , 0), . . . , χ̂(t)(h

(i)
`i
, 0)− χn(h

(i)
`i
, 0)
)ᵀ
i=1,...,p

d→ N (0, NΠ
(space)
1 N

ᵀ
), n→∞,

such that

Π
(iso)
1 := NΠ

(space)
1 N

ᵀ
. (3.6)

Corollary 3.2. Under the conditions of Theorem 3.1 the averaged spatial extremogram

in (2.7) satisfies (with covariance matrix Π
(iso)
2 specified in (3.11) below)

n

mn

( 1

T

T∑

k=1

χ̂(tk)(v, 0)− χn(v, 0)
)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞. (3.7)

Proof. For the first part of the proof, we neglect spatial isotropy. This part is similar
to the proof of Theorem 4.2 in Buhl and Klüppelberg [5] and Corollary 3.4 of Davis and
Mikosch [9]. We use the notation of the proof of Theorem 3.1. Enumerate the set of spatial

lag vectors inherent in the estimation of the extremogram as {h(i)
1 , . . . ,h

(i)
`i

: i = 1, . . . , p}
and let γ ≥ max{v1, . . . , vp}. Define the vector process

{Y (s) : s ∈ R2} = {(η(s+ h, tk) : h ∈ B(0, γ))
ᵀ
k=1,...,T : s ∈ R2}.

Let A = B = (1,∞). Consider i = 1, . . . , p, j = 1, . . . , `i, and k = 1, . . . , T . Define sets

D
(i)
j,k by

{Y (s) ∈ D(i)
j,k} = {η(s, tk) ∈ A, η(s′, tk) ∈ B : s− s′ = h

(i)
j },

and the sets Dk by
{Y (s) ∈ Dk} = {η(s, tk) ∈ A}.
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10 S. Buhl et al.

For h ∈ R2 let BT (h, γ) := B(h, γ)× {t1, . . . , tT }. For µBT (0,γ)-continuous Borel sets C

and D in RT |B(0,γ)|\{0}, regular variation yields the existence of the limit measures

µBT (0,γ)(C) := lim
n→∞

m2
nP
(Y (0)

m2
n

∈ C
)

τBT (0,γ)×BT (h,γ)(C ×D) := lim
n→∞

m2
nP
(Y (0)

m2
n

∈ C, Y (h)

m2
n

∈ D
)
.

By time stationarity we have µBT (0,γ)(Dk) = µ(A),

χ̂(tk)(h
(i)
j , 0) ∼ R̂mn(D

(i)
j,k, Dk) := µ̂BT (0,γ),mn(D

(i)
j,k)/µ̂BT (0,γ),mn(Dk), n→∞, (3.8)

where the µ̂BT (0,γ),mn(·) are empirical estimators of µBT (0,γ)(·) defined as

µ̂BT (0,γ),mn(·) :=
(mn

n

)2 ∑

s∈Sn
1{Y (s)

m2
n
∈·}. (3.9)

Likewise we have for the pre-asymptotic quantities

χn(h
(i)
j , 0) = Rmn(D

(i)
j,k, Dk) :=

P(Y (0)/m2
n ∈ D(i)

j,k)

P(Y (0)/m2
n ∈ Dk)

=:
µBT (0,γ),mn(D

(i)
j,k)

µBT (0,γ),mn(Dk)
, (3.10)

which are independent of time tk by stationarity. For notational ease we abbreviate in
the following

µBT (0,γ)(·) = µγ(·), µBT (0,γ),mn(·) = µγ,mn(·), and µ̂BT (0,γ),mn(·) = µ̂γ,mn(·)
For each k ∈ {1, . . . , T} we now define the matrices

F (k) = [F1, F
(k)
2 ]

with F1 ∈ RL×L and F
(k)
2 ∈ RL given by

F1 = diag(µ(A)) and F
(k)
2 := (−µγ(D

(1)
1,k), . . . ,−µγ(D

(1)
`1,k

), . . . ,−µγ(D
(p)
`p,k

))>.

Although F
(k)
2 is constant over k ∈ {1, . . . , T} by time stationarity, we keep the index to

clarify the notation. Define the TL× T (L+ 1)-matrix F and the column vector χ̂−χn
with TL components as

F :=




F (1) 0 0 0
0 F (2) 0 0
...

...
. . . 0

0 0 0 F (T )


 and χ̂− χn :=




χ̂(t1)(h
(1)
1 , 0)− χn(h

(1)
1 , 0)

...

χ̂(t1)(h
(1)
`1
, 0)− χn(h

(1)
`1
, 0)

...

χ̂(t1)(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)

...

χ̂(tT )(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)




.
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Semiparametric estimation for isotropic max-stable space-time processes 11

Define the vector (R̂mn − Rmn) with the quantities from (3.8) and the corresponding
pre-asymptotic quantities from (3.10) exactly in the same way. Furthermore, define for
k = 1, . . . , T the vectors in RL+1

µ(k)
γ,mn =
(
µγ,mn(D

(1)
1,k), . . . , µγ,mn(D

(1)
`1,k

), . . . . . . , µγ,mn(D
(p)
1,k), . . . , µγ,mn(D

(p)
`p,k

), µγ,mn(Dk)
)ᵀ
,

which we stack one on top of the other giving a vector µγ,mn ∈ RT (L+1), and µ̂γ,mn
analogously. Then we obtain

χ̂− χn = (1 + o(1))(R̂mn −Rmn) =
1 + op(1)

µ(A)2
F (µ̂γ,mn − µγ,mn), n→∞,

where the last step follows as in the proof of Theorem 4.2 of [5] and involves Slutzky’s
theorem. Using ideas of the proof of their Lemma 5.1, we observe that as n→∞,

Cov
[
µ̂BT (0,γ),mn(C), µ̂BT (0,γ),mn(D)

]

∼
(mn

n

)2(
µBT (0,γ)(C ∩D) +

∑

06=h∈Z2

τBT (0,γ)×BT (h,γ)(C ×D)
)

=:
(mn

n

)2

cC,D.

With Σ ∈ RT (L+1)×T (L+1) defined as

Σ =




c
D

(1)
1,1,D

(1)
1,1

· · · c
D

(1)
1,1,D1

· · · c
D

(1)
1,1,D

(p)
1,T

· · · c
D

(1)
1,1,DT

...
. . .

...
. . .

...
. . .

...
c
DT ,D

(1)
1,1

· · · cDT ,D1
· · · c

DT ,D
(p)
1,T

· · · cDT ,DT


 ,

we thus conclude that

n

mn




χ̂(t1)(h
(1)
1 , 0)− χn(h

(1)
1 , 0)

...

χ̂(tT )(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)




d→ N (0, µ(A)−4FΣ(F )>).

To obtain the asymptotic covariance matrix in the spatially isotropic case, we proceed
as in the proof of Theorem 3.1. We define the Tp× TL-matrix

N :=




N 0 0 0
0 N 0 0
...

...
. . . 0

0 0 0 N




with N given in equation (3.5). Then we have

n

mn



χ̂(t1)(v1, 0)− χn(v1, 0)

...
χ̂(tT )(vp, 0)− χn(vp, 0)


 =

n

mn
N




χ̂(t1)(h
(1)
1 , 0)− χn(h

(1)
1 , 0)

...

χ̂(tT )(h
(p)
`p
, 0)− χn(h

(p)
`p
, 0)
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12 S. Buhl et al.

d→ N (0, µ(A)−4NFΣ(NF )>), n→∞,

and we conclude that for the averaged spatial extremogram the statement holds with

Π
(iso)
2 =µ(A)−4T−2




1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

. . .

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1


NFΣ(NF )>




1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

. . .

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1




>

. (3.11)

Condition 3.3. In the CLTs (3.1) and (3.7), the pre-asymptotic extremogram (3.2)
can be replaced by the theoretical one (eq. (2.2) with A = B = (1,∞)), provided that

n

mn
(χn(v, 0)− χ(v, 0))→ 0, n→∞, (3.12)

is satisfied for all spatial lags v ∈ V. In particular, we then obtain

n

mn

(
χ̂(v, 0)− χ(v, 0)

)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞. (3.13)

This bias condition turns out to be central in order to obtain a CLT for the WLSE
(Ĉ1, α̂1) in Section 3.2 below. However, even if it is not satisfied, the empirical ex-
tremogram keeps its important asymptotic interpretation as a conditional probability
of extremal events. Furthermore there are cases where we can resort to a bias correction,
ensuring again a CLT for (Ĉ1, α̂1). For examples we refer to Section 4 below.

3.2. Asymptotic properties of spatial parameter estimates

In this section we state conditions that yield asymptotic normality of the WLSE (Ĉ1, α̂1)
of Section 2. Recall the weighted least squares optimization problem (2.9); i.e.,

(
Ĉ1

α̂1

)
= arg min

(C1,α1)∈ΘS

∑

v∈V
wv

(
T1(χ̂(v, 0))−

(
C1 + α1v

))2

.

To show asymptotic normality of the WLSE, we define the design matrix X and weight
matrix W as

X = [1, (v : v ∈ V)
ᵀ
] ∈ Rp×2 and W = diag{wv : v ∈ V} ∈ Rp×p,
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Semiparametric estimation for isotropic max-stable space-time processes 13

respectively, where 1 = (1, . . . , 1)
ᵀ ∈ Rp. If neither C1 nor α1 have bounded support,

then the WLSE; i.e., the solution to (2.9), is given by

ψ̂1 :=

(
Ĉ1

α̂1

)
= (X

ᵀ
WX)−1X

ᵀ
W (T1(χ̂(v, 0)))

ᵀ
v∈V .

If one of the parameters C1 or α1 does have bounded support, we need to constrain ψ̂1

properly, obtaining a CLT that might differ considerably from that given in Theorem 3.4
below. An important example of this is treated in Section 4.

Theorem 3.4. For a fixed time point t ∈ {t1, . . . , tT }, consider a regularly varying
spatial process

{
η(s, t) : s ∈ R2

}
as defined in Definition 2.1. Assume that it satisfies

the conditions of Theorem 3.1. Let ψ̂1 = (Ĉ1, α̂1)
ᵀ

denote the WLSE resulting from the
minimization problem (2.9) and ψ∗1 = (C∗1 , α

∗
1)

ᵀ ∈ ΘS the true parameter vector. Assume
that the CLT (3.13) holds, possibly after a bias correction of the empirical extremogram
(χ̂v : v ∈ V). Then for a suitably chosen scaling sequence mn, we obtain, as n→∞,

n

mn

(
ψ̂1 −ψ∗1

)
d→ N (0, Q(w)

x GΠ
(iso)
2 GQ(w)

x

ᵀ
). (3.14)

Here Π
(iso)
2 is the covariance matrix given in (3.11),

Q(w)
x = (X

ᵀ
WX)−1X

ᵀ
W and G = diag

{
T ′1(χ(v, 0)) : v ∈ V

}
, (3.15)

where T ′1(x) denotes the derivative of T1(x) with respect to x for 0 < x < 1.

Proof. Using the multivariate delta method together with the CLT (3.13) it directly
follows that

n

mn

(
T1(χ̂(v, 0))− T1(χ(v, 0))

)
v∈V

d→ N (0, GΠ
(iso)
2 G), n→∞,

where G is defined in (3.15). Since

min
(C1,α1)∈ΘS

∑

v∈V
wv
(
T1(χ(v, 0))−

(
C1 + α1v

))2
=
∑

v∈V
wv
(
T1(χ(v, 0))−

(
C∗1 + α∗1v

))2
,

we find the well-known property of unbiasedness of the WLSE,

Q(w)
x (T1(χ(v, 0)))

ᵀ
v∈V = arg min

(C1,α1)∈ΘS

∑

v∈V
wv
(
T1(χ(v, 0))−

(
log(θ1) + α1xv

))2
= ψ∗1.

It follows that, as n→∞,

n

mn

(
ψ̂1 −ψ∗1

)
=

n

mn
Q(w)
x

(
T1(χ̂(v, 0))−T1(χ(v, 0))

)
v∈V

d→ N
(
0, Q(w)

x GΠ
(iso)
2 GQ(w)

x

ᵀ)
.
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14 S. Buhl et al.

4. Example: the Brown-Resnick process

We illustrate the results of the previous sections by applying them to a max-stable strictly
stationary and isotropic Brown-Resnick space-time process with representation

η(s, t) =
∞∨

j=1

{
ξj e

Wj(s,t)−δ(‖s‖,t)
}
, (s, t) ∈ R2 × [0,∞), (4.1)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ and the
dependence function δ is nonnegative and conditionally negative definite; i.e., for every
m ∈ N and every (s(1), t(1)), . . . , (s(m), t(m)) ∈ R2 × [0,∞), it holds that

m∑

i=1

m∑

j=1

aiajδ(‖s(i) − s(j)‖, |t(i) − t(j)|) ≤ 0

for all a1, . . . , am ∈ R summing up to 0. The processes {Wj(s, t) : s ∈ R2, t ∈ [0,∞)}
are independent replicates of a Gaussian process {W (s, t) : s ∈ R2, t ∈ [0,∞)} with
stationary increments, W (0, 0) = 0, E[W (s, t)] = 0 and covariance function

Cov[W (s(1), t(1)),W (s(2), t(2))]

= δ(‖s(1)‖, t(1)) + δ(‖s(2)‖, t(2))− δ(‖s(1) − s(2)‖, |t(1) − t(2)|).

Representation (4.1) goes back to de Haan [12], Giné et al. [18] and Kabluchko et al.
[22]. All finite-dimensional distributions are multivariate extreme value distributions with
standard unit Fréchet margins, hence they are in particular multivariate regularly vary-
ing. Furthermore, they are characterized by the dependence function δ, which is termed
the semivariogram of the process {W (s, t)} in geostatistics: For (s(1), t(1)), (s(2), t(2)) ∈
R2 × [0,∞), it is given by

Var[W (s(1), t(1))−W (s(2), t(2))] = 2δ(‖s(1) − s(2)‖, |t(1) − t(2)|).

Since we assume δ to depend only on the norm of s(1) − s(2), the associated process is
(spatially) isotropic.

We assume the dependence function δ to be given for v, u ≥ 0 by

δ(v, u) = 2θ1v
α1 + 2θ2u

α2 , (4.2)

where 0 < α1, α2 ≤ 2 and θ1, θ2 > 0. This is the fractional class frequently used for
dependence modelling, and here defined with respect to space and time.

The bivariate distribution function of (η(0, 0), η(h, u)) is given for x1, x2 > 0 by

F (x1, x2) = exp

{
− 1

x1
Φ

(
log(x2/x1)√
2δ(‖h‖, |u|)

+

√
δ(‖h‖, |u|)

2

)
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− 1

x2
Φ

(
log(x1/x2)√
2δ(‖h‖, |u|)

+

√
δ(‖h‖, |u|)

2

)}
, (4.3)

where Φ denotes the standard normal distribution function (cf. Davis et al. [10]).
The parameters of interest are contained in the dependence function δ. We refer to

(θ1, α1) as the spatial parameter and to (θ2, α2) as the temporal parameter. From the
bivariate distribution function in (4.3), the pairwise density can be derived and pair-
wise likelihood methods can be used to estimate the parameters; cf. Davis et al. [11],
Huser and Davison [21] and Padoan et al. [24]. Full likelihood inference is virtually in-
tractable in a general multidimensional setting, as the number of terms occurring in
the likelihood explode. More recently, however, parametric inference methods based on
higher-dimensional margins have been proposed that work in specific scenarios, see for
instance Genton et al. [17], who use triplewise instead of pairwise likelihood, Engelke
et al. [15], who propose a threshold-based approach, or Thibaud and Opitz [28] and
Wadsworth and Tawn [29], who use a censoring scheme for bias reduction.

In the following we apply the estimation method introduced in Section 2 based on
the extremogram of more general regularly varying processes to the special case of the
Brown-Resnick process (4.1). We make use of the fact that its extremogram possesses a
closed-form expression which is characterized by the dependence function δ.

Lemma 4.1 (Davis et al. [10], equation (3.1)). Let {η(s, t) : (s, t) ∈ R2 × [0,∞)} be
the strictly stationary isotropic Brown-Resnick process in R2× [0,∞) as defined in (4.1)
with dependence function given in (4.2). Then the extremogram of η is given by

χ(v, u) = 2
(

1− Φ
(√1

2
δ(v, u)

))
= 2
(
1− Φ(

√
θ1vα1 + θ2uα2)

)
, v, u ≥ 0. (4.4)

Solving equation (4.4) for δ(v, u) leads to

δ(v, u)

2
= θ1v

α1 + θ2u
α2 =

(
Φ−1

(
1− 1

2
χ(v, u)

))2

. (4.5)

For temporal lag 0 and taking the logarithm on both sides we have

2 log
(

Φ−1
(
1− 1

2
χ(v, 0)

))
= log(θ1) + α1 log v =: log(θ1) + α1xv.

In the same way, we obtain

2 log
(

Φ−1
(
1− 1

2
χ(0, u)

))
=: log(θ2) + α2xu.

To put this in the context of equations (2.3) and (2.4), first note that in the weighted
linear regression, instead of working with the “original” lags v and u, we consider their
log transformations xv = log(v) and xu = log(u); hence in particular, we need to exclude
the lags v = 0 and u = 0. The observation scheme described in Condition 2.3 then yields
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16 S. Buhl et al.

that u, v ≥ 1 and thus xv, xu ≥ 0. We furthermore set C1 = log(θ1), C2 = log(θ2) and
choose the transformations T1 and T2 defined by T1(χ(v, 0)) = 2 log

(
Φ−1

(
1− 1

2χ(v, 0)
))

and T2(χ(0, u)) = 2 log
(
Φ−1

(
1 − 1

2χ(0, u)
))

. The parameter spaces are given by ΘS =
ΘT = R× (0, 2].

In the following we work out necessary and sufficient conditions for the Brown-Resnick
process (4.1) with dependence function (4.2) to satisfy the conditions of Theorem 3.4,
focusing again on the spatial case; i.e., on the processes

{
η(s, t) : s ∈ R2

}
for fixed ob-

served t ∈ {t1, . . . , tT }. Furthermore we show how the fact that the model parameter

α1 ∈ (0, 2] has bounded support influences the asymptotics of the WLSE (θ̂1, α̂1).

4.1. Asymptotics of the empirical spatial extremogram of the
Brown-Resnick process

For a start, we need a sufficiently precise estimate for the extremogram (4.4) of the
Brown-Resnick process, which we give now.

Lemma 4.2. Let s,h ∈ R2.For every sequence an →∞ we have for fixed t ∈ [0,∞),

P(η(s, t) > an, η(s+ h, t) > an)

P(η(s, t) > an)

=χ(‖h‖, 0) +
[ 1

2an

(
χ(‖h‖, 0)− 2

)(
χ(‖h‖, 0)− 1

)]
(1 + o(1)).

Lemma 4.2 is a direct application of Lemma A.1(b) of Buhl and Klüppelberg [5] for
A = B = (1,∞) and their equation (A.4). This applies since {η(s, t) : s ∈ R2} has finite-
dimensional standard unit Fréchet marginal distributions. We can choose in the following
an = n2 in order to satisfy the condition P(|η(0, 0)| > an) ∼ n−2 as n → ∞ from
Definition 2.1. Recall furthermore that we have to choose a finite set V = {v1, . . . , vp} of
observed lags, which show clear extremal dependence as explained in Section 2.

Theorem 4.3. Consider the spatial Brown-Resnick process
{
η(s, t) : s ∈ R2

}
as defined

in (4.1) with dependence function given in (4.2). Set mn = nβ1 for β1 ∈ (0, 1/2). Then the
empirical spatial extremogram χ̂(t)(v, 0) defined in (2.5) with the quantile q = amn = m2

n

satisfies

n

mn

(
χ̂(t)(v, 0)− χn(v, 0)

)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞, (4.6)

where the covariance matrix Π
(iso)
1 is specified in equation (3.6), and χn is the pre-

asymptotic spatial extremogram as in (3.2).

Furthermore, for the averaged empirical extremogram χ̃(v, 0) = T−1
∑T
k=1 χ̃

(tk)(v, 0)

defined in (2.7), we obtain (with covariance matrix Π
(iso)
2 given in equation (3.11))

n

mn

(
χ̂(v, 0)− χn(v, 0)

)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞. (4.7)
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Proof. We need to verify the conditions of Corollary 3.2; i.e., conditions (M1)-(M4) of
Theorem 3.1 for amn = m2

n, and apply results of Section 8 of the supplement [7].

Condition (M1) is satisfied by equation (8.2).

To show conditions (M2)-(M4) we choose sequences mn = nβ1 and rn = nβ2 for 0 <
β1 < 1/2 and 0 < β2 < β1. For this choice mn and rn increase to infinity with mn = o(n)
and rn = o(mn) as required.

Condition (M2); i.e.,m2
nr

2
n/n = n2(β1+β2)−1 → 0 holds if and only if β2 ∈ (0,min{β1, (1/2−

β1)}).
We now show condition (M3). Choose γ > 0, such that all lags in V lie in B(0, γ) = {s ∈
Z2 : ‖s‖ ≤ γ}. For ε > 0, like in Example 4.6 of Buhl and Klüppelberg [5], we have for
s, s′ ∈ R2 by a Taylor expansion,

P(η(s, t) > εm2
n, η(s′, t) > εm2

n)

= 1− 2P(η(0, 0) ≤ εm2
n) + P(η(s, t) ≤ εm2

n, η(s′, t) ≤ εm2
n)

= 1− 2 exp
{
− 1

x

}
+ exp

{
− 2− χ(‖s− s′‖, 0)

εm2
n

}

=
1

εm2
n

χ(‖s− s′‖, 0) +O
( 1

m4
n

)
, n→∞.

Therefore, for ‖h‖ ≥ 2γ,

P( max
s∈B(0,γ)

η(s, t) > εm2
n, max
s′∈B(h,γ)

η(s′, t) > εm2
n)

≤
∑

s∈B(0,γ)

∑

s′∈B(h,γ)

P(η(s, t) > εm2
n, η(s′, t) > εm2

n)

=
∑

s∈B(0,γ)

∑

s′∈B(h,γ)

{ 1

εm2
n

χ(‖s− s′‖, 0) +O
( 1

m4
n

)}

≤2|B(0, γ)|2
εm2

n

(
1− Φ(

√
θ1(‖h‖ − 2γ)α1

)
+O

( 1

m4
n

)
, (4.8)

as n → ∞, where we have used (4.4). Summarize V := {v = ‖h‖ : h ∈ Z2} and note
that |{h ∈ Z2 : ‖h‖ = v}| = O(v). Therefore, for k ≥ 2γ,

Lmn := lim sup
n→∞

m2
n

∑

h∈Z2
k<‖h‖≤rn

P
(

max
s∈B(0,γ)

η(s, t) > εm2
n, max
s′∈B(h,γ)

η(s′, t) > εm2
n

)

≤ 2|B(0, γ)|2 lim sup
n→∞

{ ∑

h∈Z2
k<‖h‖≤rn

{1

ε
(1− Φ(

√
θ1(‖h‖ − 2γ)α1))

}
+O

(( rn
mn

)2)}

≤K1 lim sup
n→∞

∑

v∈V :
k<v≤rn

{v
ε

2
(
1− Φ(

√
θ1(v − 2γ)α1)

)}
,
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for some constant K1 > 0. For the term O((rn/mn)2) we use that rn/mn → 0. From
Lemma 8.3 and the fact that 1− Φ(x) ≤ exp{−x2/2} for x > 0, we find for K2 > 0,

Lmn ≤K2k
2 exp

{
− 1

2
θ1(k − 2γ)α1

}
.

Since α1 > 0, the right hand side converges to 0 as k →∞ ensuring condition (M3).

Now we turn to the mixing conditions (M4).
We start with (M4i). With V as before, and with equation (8.2), we estimate, recalling
from above that the number of lags ‖h‖ = v is of oder O(v),

m2
n

∑

h∈Z2:‖h‖>rn
α1,1(‖h‖) ≤ K1m

2
n

∑

v∈V :v>rn

v α1,1(v) ≤ 4K1m
2
n

∑

v∈V :v>rn

v e−θ1v
α1/2.

By Lemma 8.3 we find

m2
n

∑

v∈V :v>rn

v e−θ1v
α1/2 ≤ cm2

nr
2
n e
−θ1rα1

n /2 = cm2
nr

2
n e
−θ1nα1β2/2 → 0, n→∞.

By the same arguments condition (M4ii) is satisfied.
Condition (M4iii) holds by equation (8.2), since

mn nα1,n2(rn) ≤ 4n3mn e
−θ1rα1

n /2 → 0, n→∞.

Remark 4.1. We want to examine for which choices of β1, introduced with the se-
quence mn = nβ1 in Theorem 4.3, we can replace the pre-asymptotic extremogram by
the theoretical one in the CLTs (4.6) and (4.7); that is, the bias condition (3.12),

n

mn
(χn(v, 0)− χ(v, 0))→ 0, n→∞,

is satisfied for all spatial lags v ∈ V. For the Brown-Resnick process (4.1) we obtain from
Lemma 4.2,

n

mn
(χn(v, 0)− χ(v, 0))

=
n

mn

(
P(η(s, t) > m2

n, η(s+ h, t) > m2
n)

P(η(s, t) > m2
n)

− χ(v, 0)

)

∼ n

2m3
n

(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)

= n1−3β1
1

2

(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)
→ 0 if and only if β1 > 1/3;

cf. Theorem 4.4 of Buhl and Klüppelberg [5]. Thus we have to distinguish two cases:
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(I) For β1 ≤ 1/3 we cannot replace the pre-asymptotic extremogram by the theoretical
version, but can resort to a bias correction, which is decribed in (4.12) below.

(II) For 1/3 < β1 < 1/2 we obtain indeed

n1−β1
(
χ̂(t)(v, 0)− χ(v, 0)

)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞, (4.9)

and likewise for the averaged empirical extremogram,

n1−β1
(
χ̂(v, 0)− χ(v, 0)

)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞. (4.10)

�

We now turn to the bias correction needed in case (I). By Lemma 4.2 the pre-
asymptotic extremogram has representation

χn(v, 0) = χ(v, 0) +
[ 1

2m2
n

(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)]
(1 + o(1))

= χ(v, 0) +
1

2m2
n

ν(v, 0)(1 + o(1)), n→∞, (4.11)

where ν(v, 0) :=
(
χ(v, 0) − 2

)(
χ(v, 0) − 1

)
. Consequently, we propose for fixed t ∈

{t1, . . . , tT } and all v ∈ V the bias corrected empirical spatial extremogram

χ̂(t)(v, 0)− 1

2m2
n

(
χ̂(t)(v, 0)− 2

)(
χ̂(t)(v, 0)− 1

)
=: χ̂(t)(v, 0)− 1

2m2
n

ν̂(t)(v, 0),

and set

χ̃(t)(v, 0) :=




χ̂(t)(v, 0)− 1

2m2
n

ν̂(t)(v, 0) if mn = nβ1 with β1 ∈ ( 1
5 ,

1
3 ],

χ̂(t)(v, 0) if mn = nβ1 with β1 ∈ ( 1
3 ,

1
2 ).

(4.12)

Theorem 4.4 below shows asymptotic normality of the bias corrected extremogram cen-
tred by the true one and, in particular, why β1 has to be larger than 1/5.

Theorem 4.4. For a fixed time point t ∈ {t1, . . . , tT } consider the spatial Brown-
Resnick process

{
η(s, t), s ∈ R2

}
defined in (4.1) with dependence function given in (4.2).

Set mn = nβ1 for β1 ∈
(

1
5 ,

1
3

]
. Then the bias corrected empirical spatial extremogram

(4.12) satisfies

n

mn

(
χ̃(t)(v, 0)− χ(v, 0)

)
v∈V

d→ N (0,Π
(iso)
1 ), n→∞, (4.13)

where Π
(iso)
1 is the covariance matrix as given in equation (3.6). Furthermore, the corre-

sponding bias corrected averaged version χ̃(v, 0) = T−1
∑T
k=1 χ̃

(tk)(v, 0) satisfies

n

mn

(
χ̃(v, 0)− χ(v, 0)

)
v∈V

d→ N (0,Π
(iso)
2 ), n→∞,

with covariance matrix Π
(iso)
2 specified in (3.11).

imsart-bj ver. 2014/10/16 file: BDKS_rev4_180708.tex date: July 17, 2018



20 S. Buhl et al.

Proof. For simplicity we suppress the time point t in the notation. By (4.11) and (4.12)
we have as n→∞,

n

mn
(χ̃(v, 0)− χ(v, 0)) ∼ n

mn
(χ̂(v, 0)− χn(v, 0))− n

2m3
n

(ν̂(v, 0)− ν(v, 0)).

By Theorem 4.3 it suffices to show that (n/(2m3
n))(ν̂(v, 0) − ν(v, 0))

P→ 0. Setting
νn(v, 0) :=

(
χn(v, 0)− 2

)(
χn(v, 0)− 1

)
we have

n

2m3
n

(ν̂(v, 0)− ν(v, 0)) =
n

2m3
n

(ν̂(v, 0)− νn(v, 0)) +
n

2m3
n

(νn(v, 0)− ν(v, 0)) =: A1 +A2.

We calculate

n

mn(2χ(v, 0)− 3)

(
ν̂(v, 0)− νn(v, 0)

)

=
n

mn(2χ(v, 0)− 3)

(
χ̂2(v, 0)− 3χ̂(v, 0)− (χ2

n(v, 0)− 3χn(v, 0))
)

=
n

mn(2χ(v, 0)− 3)

(
(χ̂(v, 0)− χn(v, 0))(χ̂(v, 0) + χn(v, 0))− 3(χ̂(v, 0)− χn(v, 0))

)

=
n

mn

(
χ̂(v, 0)− χn(v, 0)

) χ̂(v, 0) + χn(v, 0)− 3

2χ(v, 0)− 3
.

The first term converges by Theorem 4.3 weakly to a normal distribution, and the second

term, together with the fact that χ̂(v, 0)
P→ χ(v, 0) and χn(v, 0)

P→ χ(v, 0), converges to

1 in probability. Hence, it follows from Slutzky’s theorem that A1
P→ 0. Now we turn to

A2 and calculate

νn(v, 0) = χ2
n(v, 0)− 3χn(v, 0) + 2

∼
(
χ(v, 0) +

1

2m2
n

ν(v, 0)
)2

− 3
(
χ(v, 0) +

1

2m2
n

ν(v, 0)
)

+ 2

= χ2(v, 0)− 3χ(v, 0) + 2 +
1

m2
n

χ(v, 0)ν(v, 0) +
1

4m4
n

ν(v, 0)2 − 3

2m2
n

ν(v, 0)

=
(
χ(v, 0)− 2

)(
χ(v, 0)− 1

)
+

1

m2
n

χ(v, 0)ν(v, 0) +
1

4m4
n

ν(v, 0)2 − 3

2m2
n

ν(v, 0)

= ν(v, 0) +
ν(v, 0)

m2
n

(
χ(v, 0) +

1

4m2
n

ν(v, 0)− 3

2

)
,

where we have used (4.11). Therefore, A2 converges to 0, if n/m5
n → 0 as n→∞. With

mn = nβ1 it follows that β1 >
1
5 . Finally, the last statement follows as Corollary 3.2.

Remark 4.2. Note that in (4.9) and (4.10) the rate of convergence is of the order na for
a ∈ (1/2, 2/3). On the other hand, after bias correction in (4.13) we obtain convergence
of the order na for a ∈ [2/3, 4/5); i.e. a better rate. �
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Figure 4.1: Empirical spatial extremogram (left) and its bias corrected version (right) for 100
simulated max-stable random fields in (4.1) with δ(v, 0) = 2 ·0.4v1.5. The dashed line represents
the theoretical spatial extremogram and the solid line is the mean over all 100 replicates.

Example 4.5. We generate 100 realizations of the Brown-Resnick process in (4.1) using
the R-package RandomFields [26] and the exact method via extremal functions proposed
in Dombry et al. [13], Section 2. We then compare the empirical estimates of the spatial
extremogram χ̂(v, 0) in (2.5) and the bias corrected ones χ̃(v, 0) in (4.12) with the true
theoretical extremogram χ(v, 0) for lags v ∈ {1,

√
2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17}. We
choose the parameters θ1 = 0.4 and α1 = 1.5. The grid size and the number of time
points are given by n = 70 and T = 10. The results are summarized in Figure 4.1. We
see that the bias corrected extremogram is closer to the true one. �

4.2. Asymptotic properties of spatial parameter estimates of the
Brown-Resnick process

In this section we prove asymptotic normality of the WLSE (θ̂1, α̂1). We proceed as in
the more general setting in Section 3.2. Recall that in the more specific situation here we
have C1 = log(θ1) and choose the transformation T1(χ(v, 0)) = 2 log

(
Φ−1

(
1− 1

2χ(v, 0)
))

,
where the log transformed version of the spatial lag satisfies xv = log(v) ≥ 0 for v ∈ V.

We set χ̃(v, 0) = 1
T

∑T
k=1 χ̃

(tk)(v, 0) as in (2.7), possibly after a bias correction, which
depends on the two cases described in Remark 4.1. The analogue of the weighted least
squares optimization problem (2.9) then reads as

(
θ̂1

α̂1

)
= arg min

θ1,α1>0

α1∈(0,2]

∑

v∈V
wv
(
T1(χ̃(v, 0))−

(
log(θ1) + α1xv

))2
. (4.14)
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Note in particular that α1 has bounded support; this has to be treated as a special case in
what follows. To show asymptotic normality of the WLSE in (4.14), we define as before
design and weight matrices X and W as

X = [1, (xv)
ᵀ
v∈V ] ∈ Rp×2 and W = diag{wv : v ∈ V} ∈ Rp×p,

respectively, where 1 = (1, . . . , 1)
ᵀ ∈ Rp. Let ψ1 = (log(θ1), α1)

ᵀ
be the parameter vector

with parameter space ΘS = R × (0, 2]. Then the WLSE; i.e., the solution to (4.14) is
given by

ψ̂1 =

(
log(θ̂1)
α̂1

)
= (X

ᵀ
WX)−1X

ᵀ
W (T1(χ̃(v, 0)))

ᵀ
v∈V . (4.15)

Without any constraints ψ̂1 may produce estimates of α1 outside its parameter space
(0, 2]. In such cases we set the parameter estimate equal to 2, and we denote the resulting

estimate by ψ̂
c

1 = (log(θ̂c1), α̂c1)
ᵀ
.

Theorem 4.6. Let ψ̂
c

1 = (log(θ̂c1), α̂c1)
ᵀ

denote the WLSE resulting from the constrained
minimization problem (4.14) and ψ∗1 = (log(θ∗1), α∗1)

ᵀ ∈ ΘS the true parameter vector.
Set mn = nβ1 for β1 ∈ (1/5, 1/2). Then as n→∞,

n

mn

(
ψ̂
c

1 −ψ∗1
)

d→
{
Z1 if α∗1 < 2,

Z2 if α∗1 = 2,
(4.16)

where Z1 ∼ N (0,Π
(iso)
3 ), and the distribution of Z2 is given by

P (Z2 ∈ B) =

∫

B∩{(b1,b2)∈R2:b2<0}
ϕ
0,Π

(iso)
3

(z1, z2)dz1dz2 (4.17)

+

∫ ∞

0

∫

{b1∈R:(b1,0)∈B}
ϕ
0,Π

(iso)
3

(
z1 −

1∑
v∈V wv

∑

v∈V
(wvxv) z2, z2

)
dz1dz2

for every Borel set B in R2, and ϕ0,Σ denotes the bivariate normal density with mean
vector 0 and covariance matrix Σ. In particular, the joint distribution function of Z2 is
given for (p1, p2)

ᵀ ∈ R2 by

P
(
Z2 ≤ (p1, p2)

ᵀ)
=

min{0,p2}∫

−∞

p1∫

−∞

ϕ
0,Π

(iso)
3

(z1, z2)dz1dz2 (4.18)

+ 1{p2≥0}

∞∫

0

p1∫

−∞

ϕ
0,Π

(iso)
3

(
z1 −

1∑
v∈V wv

∑

v∈V
(wvxv) z2, z2

)
dz1dz2.

The covariance matrix of Z1 has representation

Π
(iso)
3 = Q(w)

x GΠ
(iso)
2 GQ(w)

x

ᵀ
, (4.19)
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where Π
(iso)
2 is the covariance matrix given in (3.11),

Q(w)
x = (X

ᵀ
WX)−1X

ᵀ
W and G = diag

{√
2π

θ∗1v
α∗1

exp
{1

2
θ∗1v

α∗1
}

: v ∈ V
}
.

Proof. For the first part of the proof, we neglect the constraints on α1. Then we can
directly use Theorem 3.4, observing that the derivative of T1 is given by

T ′1(x) = −
(

Φ−1(1− x

2
)ϕ(Φ−1(1− x

2
))
)−1

, 0 < x < 1,

where ϕ is the univariate standard normal density. Thus,

T ′1(χ(v, 0)) = −
(√

θ∗1v
α∗1 ϕ

(√
θ∗1v

α∗1
))−1

= −
√

2π

θ∗1v
α∗1

exp
{1

2
θ∗1v

α∗1
}
.

Hence, as n→∞,

n

mn

(
ψ̂1 −ψ∗1

)
=

n

mn
Q(w)
x

(
T1(χ̃(v, 0))−T1(χ(v, 0))

)
v∈V

d→ N
(
0, Q(w)

x GΠ
(iso)
2 GQ(w)

x

ᵀ)
.

Note that we can define the diagonal matrix G unsigned, since signs cancel out. We now
turn to the constraints on α1. Since the objective function is quadratic, if the uncon-
strained estimate exceeds two, the constraint α1 ∈ (0, 2] results in an estimate α̂c1 = 2.
We consider separately the cases α∗1 < 2 and α∗1 = 2; i.e., the true parameter lies either

in the interior or on the boundary of the parameter space. The constrained estimator ψ̂
c

1

can be written as
ψ̂
c

1 = ψ̂11{α̂1≤2} + (θ̂1, 2)
ᵀ
1{α̂1>2}.

We calculate the asymptotic probabilities for the events {α̂1 ≤ 2} and {α̂1 > 2},

P(α̂1 ≤ 2) = P
( n

mn
(α̂1 − α∗1) ≤ n

mn
(2− α∗1)

)
.

Since for α∗1 < 2 as n→∞
n

mn

(
α̂1 − α∗1

) d→ N
(

0, (0, 1)Π
(iso)
3 (0, 1)

ᵀ)
and

n

mn
(2− α∗1)→∞,

it follows that
P(α̂1 ≤ 2)→ 1 and P(α̂1 > 2)→ 0, n→∞. (4.20)

Therefore, for α∗1 < 2,

n

mn

(
ψ̂
c

1 −ψ∗1
) d→ N (0,Π

(iso)
3 ), n→∞.

We now consider the case α∗1 = 2 and α̂1 > 2 (the unconstrained estimate exceeds 2). In
this case (4.14) leads to the constrained optimization problem

min
ψ1

{[W 1/2((T1(χ̃(v, 0)))
ᵀ
v∈V −Xψ1)]

ᵀ
[W 1/2((T1(χ̃(v, 0)))

ᵀ
v∈V −Xψ1]},
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s.t. (0, 1)ψ1 = 2.

To obtain asymptotic results for ψ̂
c

1 −ψ∗1, the vector ψ̂1 −ψ∗1 is projected onto the line
Λ = {ψ ∈ R2, (0, 1)ψ = 0}, i.e., denoting by I2 the 2× 2-identity matrix, the projection
matrix with respect to the induced norm ψ 7→ (ψ

ᵀ
X

ᵀ
WXψ)1/2 is given by (cf. Andrews

[1], page 1365)

PΛ = I2 − (X
ᵀ
WX)−1(0, 1)

ᵀ
((0, 1)(X

ᵀ
WX)−1(0, 1)

ᵀ
)−1(0, 1).

For simplicity we use the abbreviation pwx =
∑
v∈V wvxv/

∑
v∈V wv. We calculate

(ψ̂
c

1 −ψ∗1)1{α̂1>2} = PΛ(ψ̂1 −ψ∗1)1{α̂1>2}

= (ψ̂1 −ψ∗1)1{α̂1>2} − (X
ᵀ
WX)−1(0, 1)

ᵀ (
(0, 1)(X

ᵀ
WX)−1(0, 1)

ᵀ)−1

(α̂1 − 2)1{α̂1>2}

= (ψ̂1 −ψ∗1)1{α̂1>2} +

(
pwx
−1

)
(α̂1 − 2)1{α̂1>2}.

For the joint constrained estimator ψc1 we obtain

ψ̂
c

1 −ψ∗1 = (ψ̂
c

1 −ψ∗1)1{α̂1≤2} + (ψ̂
c

1 −ψ∗1)1{α̂1>2}

= (ψ̂1 −ψ∗1)1{α̂1≤2} + (ψ̂1 −ψ∗1)1{α̂1>2} +

(
pwx
−1

)
(α̂1 − 2)1{α̂1>2}

= (ψ̂1 −ψ∗1) +

(
pwx
−1

)
(α̂1 − 2)1{α̂1>2}.

This implies

n

mn
(ψ̂

c

1 −ψ∗1) =
n

mn

(
(log(θ̂1)− log(θ∗1)) + pwx(α̂1 − 2)1{α̂1>2}

(α̂1 − 2)− (α̂1 − 2)1{α̂1>2}

)
.

Let f(x1, x2) = (x1 + pwxx21{x2>0}, x2 − x21{x2>0})
ᵀ

and observe that f(c(x1, x2)) =
cf(x1, x2) for c ≥ 0. For the asymptotic distribution we calculate, denoting by f−1 the
inverse image of f ,

P
( n

mn
(ψ̂

c

1 −ψ∗1) ∈ B
)

= P
( n

mn
f(ψ̂1 −ψ∗1) ∈ B

)
= P

(
f
( n
mn

(ψ̂1 −ψ∗1)
)
∈ B

)

= P
( n

mn
(ψ̂1 −ψ∗1) ∈ f−1(B ∩ {(b1, b2) ∈ R2 : b2 < 0}) ∪ f−1(B ∩ {(b1, 0) : b1 ∈ R})

)

= P
( n

mn
(ψ̂1 −ψ∗1) ∈ [B ∩ {(b1, b2) ∈ R2 : b2 < 0}]

∪ [{(b1 − pwxb2, b2), b2 ≥ 0, (b1, 0) ∈ B}]
)
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→
∫

B∩{(b1,b2)∈R2,b2<0}
ϕ
0,Π

(iso)
3

(z1, z2)dz1dz2

+

∫ ∞

0

∫

{b1∈R,(b1,0)∈B}
ϕ
0,Π

(iso)
3

(z1 − pwxz2, z2)dz1dz2, n→∞.

Plugging in B = (−∞, p1]× (−∞, p2] and using the Fubini-Tonelli theorem yields (4.18).

Remark 4.3. The asymptotic properties for the constrained estimate are derived as a
special case of Corollary 1 in Andrews [1], who shows asymptotic properties of parameter
estimates in a very general setting, when the true parameter is on the boundary of the
parameter space. The asymptotic distribution of the estimates for α∗1 = 2 results from the
fact that approximately half of the estimates lie above the true value and are therefore
equal to two. �

5. Analysis of radar rainfall measurements

Finally, we apply the Brown-Resnick space-time process in (4.1) and the WLSE to radar
rainfall data provided by the Southwest Florida Water Management District (SWFWMD)1.
Our objective is to quantify their extremal behaviour by using spatial and temporal block
maxima and fitting a Brown-Resnick space-time process to the block maxima.

The data base consists of radar values in inches measured on a 120 × 120km region
containing 3600 grid locations. We calculate the spatial and temporal maxima over sub-
regions of size 10 × 10km and over 24 subsequent measurements of the corresponding
hourly accumulated time series in the wet season (June to September) from the years
1999-2004. In this way we obtain 12× 12 locations on 732 days of space-time block max-
ima of rainfall observations. Taking block maxima yields a process consistent with the
assumption of a max-stable process, or at least to lie in the domain of attraction of a
max-stable process. Taking daily data, we can furthermore ignore diurnal patterns.

We denote the set of locations by S = {(i1, i2), i1, i2 ∈ {1, . . . , 12}} and the space-
time observations by {η(s, t), s ∈ S, t ∈ {t1, . . . , t732}}. This setup is also considered in
Buhl and Klüppelberg [4], Section 5, and Steinkohl [27], Chapter 7. To make the results
obtained there comparable to ours, we use the the same preprocessing steps; for a precise
description cf. [4], Section 5.1.

The data do not fail the max-stability check described in Section 5.2 of [4], such that
we assume that {η(s, t), s ∈ S, t ∈ {t1, . . . , t732}} are realizations of a max-stable space-
time process with standard unit Fréchet margins. Nevertheless, the assumption that the
data are in fact an exact realization from a max-stable process is only approximate. Hence
there is no guarantee that composite likelihood estimation applied to these transformed
data outperforms the semiparametric estimation introduced in Section 2; cf. the results
obtained in Section 10 of the supplement [7] when data have observational noise. Here
we use this data example to illustrate our new semiparametric methodology.

1http://www.swfwmd.state.fl.us/
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We fit the Brown-Resnick process (4.1) by estimating (4.2) as follows:

(1) We estimate the parameters θ1, α1, θ2 and α2 by WLSE as described in Section 2
based on the sets V = {1,

√
2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17} and U = {1, . . . , 10}.
Permutation tests as described below and visualized in Figure 5.3 indicate that these
lags are sufficient to cover the relevant extremal dependence structure. We choose
as weights for the different spatial and temporal lags v ∈ V and u ∈ U the cor-
responding estimated averaged extremogram values; i.e., wv = T−1

∑T
k=1 χ̃

(tk)(v, 0)

and wu = n−2
∑n2

i=1 χ̃
(si)(0, u), respectively. Since the so defined weights are random,

what follows is conditional on the realizations of these weights.
As the number of spatial points in the analysis is rather small, we cannot choose a
very high empirical quantile q, since this would in turn result in a too small number of
exceedances to get a reliable estimate of the extremogram. Hence, we choose q as the
empirical 60%−quantile, relying on the fact that the block maxima generate at least
approximately a max-stable process and on the robustness of the estimates derived in
Section 9 of the supplement [7].
For the temporal estimation, we choose the empirical 90%−quantile for q.

(2) We perform subsampling by constructing subsets of the observations and estimating on
the subsets (see Section 7 of the supplement [7]) to construct 95%-confidence intervals
for each parameter estimate. As subsample block sizes we choose bs = 12 (due to the
small number of spatial locations) for the spatial dimensions and bt = 300 for the
temporal one. As overlap parameters we take es = et = 1, which corresponds to the
maximum degree of overlap.

The results are shown in Figures 5.2, 5.3 and Table 1. Figure 5.1 visualizes the daily
rainfall maxima for the two grid locations (1, 1) and (5, 6). The semiparametric estimates
together with subsampling confidence intervals are given in Table 1.

For comparison we present the parameter estimates from the pairwise likelihood es-
timation (for details see Davis et al. [10] and [27], Chapter 7), where we obtained

θ̃1 = 0.3485, α̃1 = 0.8858, θ̃2 = 2.4190 and α̃2 = 0.1973. From Table 1 we recognize
that these estimates are close to the semiparametric estimates and even lie in most cases
in the 95%-subsampling confidence intervals.

Figure 5.2 shows the temporal and spatial mean of empirical temporal (left) and spa-
tial (right) extremograms as described in (2.7) and (2.8) together with 95% subsampling
confidence intervals. We perform a permutation test to test the presence of extremal inde-
pendence. To this end we randomly permute the space-time data and calculate empirical
extremograms as before. More precisely, we compute the empirical temporal extremogram
as before and repeat the procedure 1000 times. From the resulting temporal extremogram
sample we determine nonparametric 97.5% and 2.5% empirical quantiles, which gives a
95%−confidence region for temporal extremal independence. The analogue procedure is
performed for the spatial extremogram.

The results are shown in Figure 5.3 together with the extremogram fit based on the
WLSE. The plots indicate that for time lags larger than 3 there is no temporal extremal
dependence, and for spatial lags larger than 4 no spatial extremal dependence.
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Estimate θ̂1 0.3611 α̂1 0.9876
Subsampling-CI [0.3472,0.3755] [0.9482,1.0267]

Estimate θ̂2 2.3650 α̂2 0.0818
Subsampling-CI [1.9110,2.7381] [0.0000,0.2680]

Table 1.: Semiparametric estimates for the spatial parameters θ1 and α1 and the temporal
parameters θ2 and α2 of the Brown-Resnick process in (4.1) together with 95% subsampling
confidence intervals.

Figure 5.1: Daily rainfall maxima over hourly accumulated measurements from 1999-2004 in
inches for two grid locations.

Figure 5.2: Empirical spatial (left) and temporal (right) extremogram based on spatial and
temporal means for the space-time observations as given in (2.7) and (2.8) together with
95%−subsampling confidence intervals.
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Figure 5.3: Permutation test for extremal independence: The gray lines show the 97.5%− and
2.5%−quantiles of the extremogram estimates for 1000 random space-time permutations for the
empirical spatial (left) and the temporal (right) extremogram estimates.

6. Conclusions and Outlook

For isotropic strictly stationary regularly-varying space-time processes with additively
separable dependence structure we have suggested a new semiparametric estimation
method. The method works remarkably well and produces reliable estimates that are
much faster to compute than composite likelihood estimates. These estimates can also
be useful as initial values for a composite likelihood optimization.

Meanwhile, we have generalized the semiparametric method based on extremogram
estimation. The paper Buhl and Klüppelberg [6] is dedicated to the three topics:

1. Generalize the dependence function (4.2) to anisotropic and appropriate mixed
models and get rid of the assumption of separability.

2. Generalize the sampling scheme to a fixed (small) number of spatial observations
and limit results for the number of temporal observations to tend to infinity.

3. Generalize the least squares estimation to estimate spatial and temporal parameters
simultaneously, also in the situation described in 2.

Another question concerns the optimal choice of the weight matrix W , such that the
asymptotic variance of the WLSE is minimal. Some ideas can be found in the geostatistics
literature in the context of LSE of the variogram parameters; e.g. in Lahiri et al. [23], Sec-
tion 4. Here the optimal choice of the weight matrix is given by the inverse of the asymp-
totic covariance matrix of the nonparametric estimates; i.e., of

(
T−1

∑T
k=1 χ̃

(tk)(v, 0)
)ᵀ
v∈V

in the spatial case and of
(
n−2

∑n2

i=1 χ̃
(si)(0, u)−χ(0, u)

)ᵀ
u∈U in the temporal case. In our

case, however, this involves the matrices Π
(iso)
2 and Π

(time)
2 (given in equations (4.3)-(4.6)

of Buhl and Klüppelberg [5]), whose components are infinite sums.
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Supplementary Material

Supplement to “Semiparametric estimation for isotropic max-stable space-
time processes”
(doi: COMPLETED BY THE TYPESETTER; BDKSsupp.pdf). We provide additional
results on α−mixing, subsampling for confidence regions, and a simulation study sup-
porting the theoretical results. Our method is extended to max-stable date with obser-
vational noise and applied to both exact realizations of the Brown-Resnick process and
to realizations with observational noise, thus verifying the robustness of our approach.
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[5] S. Buhl and C. Klüppelberg. Limit theory for the empirical extremogram of random
fields. Stochastic Processes and their Applications, in Press. arXiv 1609.04961, 2017.
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This supplementary material provides additional definitions and results to the paper [4],
where the setting, notation, equation reference numbers are retained from that paper.
Section 8 defines α-mixing and states results for Brown-Resnick space-time processes
used in the proof of Theorem 4.3 and throughout this supplement. Within the particular
space-time setting considered in the paper, we provide insight into subsampling to obtain
adequate confidence regions for the true parameters in Section 7. Section 9 states and
proves an important result related to the extremogram for the Brown-Resnick process
observed with noise. This result provides the theoretical justification for the robustness
of WLSE for space-time data based on small departures from the Brown-Resnick model.
The simulation study presented in Section 10 confirms these results and other findings
of the paper.

7. Subsampling for confidence regions

As in Sections 2 and 3 of the paper [4] we consider a strictly stationary regularly varying
process in space and time {η(s, t) : s ∈ Rd−1, t ∈ [0,∞)} for d ∈ N. We assume additively
separable parametric models for its extremogram {χ(v, u), v, u ≥ 0}, such that setting
either the temporal lag u or the spatial lag v equal to 0, it can be linearly parametrized
as

T1(χ(v, 0)) = T1(χ(v, 0;C1, α1)) = C1 + α1v, (C1, α1) ∈ ΘS , v ≥ 0,

1
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2 S. Buhl et al.

T2(χ(0, u)) = T2(χ(0, u;C2, α2)) = C2 + α2u, (C2, α2) ∈ ΘT u ≥ 0,

where T1 and T2 are known suitable strictly monotonous continuously differentiable trans-
formations and the parameters (C1, α1) and (C2, α2) lie in appropriate parameter spaces
ΘS and ΘT .

The estimation method described in Sections 2 and 3, which is based on the (av-
eraged) empirical extremogram computed by means of space-time observations on the
grid Sn × {t1, . . . , tT } defined in Condition 2.3, yields a consistent and asymptotically

normal estimator ψ̂1 = (Ĉ1, α̂1)
ᵀ

of the true parameter vector ψ?1 = (C?1 , α
?
1)

ᵀ
. The rate

of convergence is given by τn := n/mn, where mn is an appropriately chosen scaling
sequence.

Due to the complicated forms of the covariance matrix of the normal limit distribution
(cf. Theorem 3.1 and Theorem 3.19 of [2]) we use resampling methods to construct
asymptotic confidence regions for ψ?1. One appealing method is subsampling (see Politis
et al. [10], Chapter 5), since it works under weak regularity conditions and produces
asymptotically correct coverage. The central assumption is the existence of a continuous
weak limit law, which is guaranteed by Theorem 3.1. Again we only consider the spatial
case, the temporal case is described (again for the example of the Brown-Resnick process)
in Section 3.4.2 of [2].

We have applied subsampling successfully already for confidence bounds of pairwise
likelihood estimates of the max-stable space-time Brown-Resnick process in Buhl and
Klüppelberg [3], Section 4. The procedure is as follows: understanding inequalities be-
tween vectors componentwise, we choose block lengths b = (bs, bs, T ) with (1, 1) ≤
(bs, bs) ≤ (n, n) and the degree of overlap e = (es, es, T ) with (1, 1) ≤ (es, es) ≤ (bs, bs),
where e = (1, 1, T ) corresponds to maximum overlap and e = b to no overlap. The blocks
are indexed by i = (i1, i2) ∈ N2 with ij ≤ qs for qs := bn−bses

c + 1 and j = 1, 2. This

results in a total number of q = q2
s blocks, which we summarize in the sets

Ei,b,e =
{

(s1, s2) ∈ Sn :(ij − 1)es + 1 ≤ sj ≤ (ij − 1)es + bs for j = 1, 2
}
× {t1, . . . , tT }.

We estimate the parameters based on the observations in each block as described in the
previous sections. This yields different estimates, which we denote by ψ̂1,i.

Theorem 7.1 below provides a basis for constructing asymptotically valid confidence
intervals for the true parameters C?1 and α?1. We define τbs = bs/mbs as the analogue of
τn = n/mn.

Theorem 7.1. Assume that the conditions of Theorem 3.4 hold, and

(i) bs →∞ such that bs = o(n) and τbs/τn → 0 as n→∞
(ii) e does not depend on n,

(iii) the α-mixing coefficients αk,`(·) defined in (8.1) satisfy

1

n2

n∑

r=1

rαb,b(r)→ 0, n→∞,

where b := b2s.
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Define the empirical distribution function Lbs,s

Lbs,s(x) :=
1

q

qs∑

i1=1

qs∑

i2=1

1{τbs‖ψ̂1,i−ψ̂1‖≤x}, x ∈ R,

and the empirical quantile function

cbs,s(1− α) := inf {x ∈ R : Lbs,s(x) ≥ 1− α} , α ∈ (0, 1).

Then

P
(
τn‖ψ̂1 −ψ?1‖ ≤ cbs,s(1− α)

)
→ 1− α, n→∞. (7.1)

Proof. We apply Corollary 5.3.3 of Politis et al. [10]. Their main Assumption 5.3.3

is the existence of a continuous weak limit distribution of τn‖ψ̂1 − ψ?1‖, which holds
by Theorem 3.1. The remaining assumptions (i)-(iii) are also presumed in Politis et al.
[10].

As a consequence of equation (7.1), for n large enough, an approximate (1 − α)-
confidence region for the true parameter vector ψ?1 = (C?1 , α

?
1) is given by

{ψ ∈ ΘS : ‖ψ − ψ̂1‖ ≤ cbs,s(1− α)/τn}, (7.2)

where ΘS denotes as before the parameter space.

Remark 7.1. Consider the special case of the Brown-Resnick process (4.1) with de-
pendence function δ given in (4.2) as

δ(v, u) = 2θ1v
α1 + 2θ2u

α2 , v, u ≥ 0, θ1, θ2 > 0, 0 < α1, α2 ≤ 2, (7.3)

whose parameters α1 and α2 have bounded support. Recall from Section 4 that to put
this in the context of this section, we set

C1 = log(θ1) and C2 = log(θ2)

and choose the transformations T1 and T2 defined by

T1(χ(v, 0)) = 2 log
(
Φ−1

(
1− 1

2
χ(v, 0)

))
and T2(χ(0, u)) = 2 log

(
Φ−1

(
1− 1

2
χ(0, u)

))
.

In the following, we focus on the spatial parameters. The parameter space is given
by ΘS = R × (0, 2]. Since the parameter space for α is bounded, we use the con-

strained estimate ψ̂
c

1 defined before Theorem 4.6. We denote the true parameter by
ψ?1 = (log(θ?1), α?1). The assumptions of Theorem 7.1 for subsampling are satisfied in this
setting. Particularly important is the existence of a continuous weak limit distribution

of τn‖ψ̂
c

1 − ψ?1‖, where the scaling sequence is given by τn = n/mn. By Theorem 4.6,
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the continuous mapping theorem and the Fubini-Tonelli theorem we have for γ ≥ 0, as
n→∞,

P(τn‖ψ̂
c

1 −ψ?1‖ ≤ γ)→ P(‖Z1‖ ≤ γ) = P(Z1 ∈ B(0, γ)) = 2

γ∫

−γ

√
γ2−r2∫

0

ϕ
0,Π

(iso)
3

(r, s)dsdr

if α?1 < 2. For α?1 = 2 we obtain

P(τn‖ψ̂
c

1 −ψ?1‖ ≤ γ) → P(‖Z2‖ ≤ γ) = P(Z2 ∈ B(0, γ))

=

γ∫

−γ

0∫

−
√
γ2−r2

ϕ
0,Π

(iso)
3

(r, s)dsdr

+

γ∫

−γ

∞∫

0

ϕ
0,Π

(iso)
3

(r − 1∑
v∈V wv

∑

v∈V
(wvxv)s, s)dsdr

=

γ∫

−γ

{ 0∫

−
√
γ2−r2

ϕ
0,Π

(iso)
3

(r, s)ds+

∞∫

0

ϕ
0,Π

(iso)
3

(
r − 1∑

v∈V wv

∑

v∈V
(wvxv)s, s

)
ds

}
dr.

In particular, the limiting distribution function of the scaled norm τn‖ψ̂
c

1 − ψ?1‖ is con-
tinuous in γ both for α?1 < 2 and α?1 = 2.

The required condition (iii) on the α-mixing coefficients is satisfied, similarly as in the
proof of Theorem 3.1, by equation (8.2) below.

As in (7.2), for n large enough, an approximate (1−α)-confidence region for the true
parameter vector ψ?1 = (log(θ?1), α?1) is given by

{ψ ∈ R× (0, 2] : ‖ψ − ψ̂c1‖ ≤ cbs,s(1− α)/τn}.

The one-dimensional approximate (1−α)-confidence intervals for the parameters θ?1 and
α?1 can be read off from this as

[
θ̂c1 exp

{
− cbs,s(1− α)

τn

}
, θ̂c1 exp

{cbs,s(1− α)

τn

}]
and

[
α̂c1 −

cbs,s(1− α)

τn
, α̂c1 +

cbs,s(1− α)

τn

]
∩ (0, 2].

�

8. α-mixing of the Brown-Resnick space-time process

We define α-mixing for spatial processes; see e.g. Doukhan [9] or Bolthausen [1].
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Definition 8.1. For d ∈ N, consider a strictly stationary process
{
X(s) : s ∈ Rd

}
and

let d(·, ·) be some metric induced by a norm on Rd. For Λ1,Λ2 ⊂ Zd set

d(Λ1,Λ2) := inf {d(s1, s2) : s1 ∈ Λ1, s2 ∈ Λ2} .

Further, for i = 1, 2 denote by FΛi = σ {X(s), s ∈ Λi} the σ-algebra generated by
{X(s) : s ∈ Λi}.

(i) The α-mixing coefficients are defined for k, l ∈ N ∪ {∞} and r ≥ 0 by

αk,l(r) = sup {|P(A1 ∩A2)− P(A1)P(A2)| : Ai ∈ FΛi , |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ r} ,
(8.1)

where |Λi| is the cardinality of the set Λi for i = 1, 2.
(ii) The random field is called α-mixing, if αk,l(r)→ 0 as r →∞ for all k, l ∈ N.

For a strictly stationary max-stable process Corollary 2.2 of Dombry and Eyi-Minko [7]
shows that the α-mixing coefficients can be related to the extremogram of the max-stable
process. Equations (8.2) and (8.3) follow as in the proofs of Proposition 1 and 2 of Buhl
and Klüppelberg [3].

Proposition 8.2. For all fixed time points t ∈ N the random field
{
η(s, t), s ∈ Z2

}

defined by (4.1) is α-mixing with mixing coefficients satisfying

αk,l(r) ≤ 2kl sup
s≥r

χ(s, 0) ≤ 4kle−θ1r
α1/2, k, l ∈ N, r ≥ 0. (8.2)

For all fixed locations s ∈ R2 the time series {η(s, t) : t ∈ [0,∞)} in (4.1) is α-mixing
with mixing coefficients satisfying for some constant c > 0

α(r) := α∞,∞(r) ≤ c
∞∑

u=r

ue−θ2u
α2/2, r ≥ 0. (8.3)

We will make frequent use of the following simple result.

Lemma 8.3. Let z ∈ N. For (θ, α) ∈ {(θ1, α1), (θ2, α2)} and sufficiently large r such
that the sequence uze−θu

α/2 is decreasing for u ≥ r, we have

gz(r) =
∞∑

u=r

uze−θu
α/2 ≤ ce−θrα/2rz+1, r ∈ N.

for some constant c = c(z) > 0.

Proof. An integral bound together with a change of variables yields

gz(r) = rze−θr
α/2 +

∞∑

u=r+1

uze−θu
α/2 ≤ rze−θrα/2 +

∫ ∞

r

uze−θu
α/2du

imsart-bj ver. 2014/10/16 file: BDKSsupp.tex date: July 17, 2018



6 S. Buhl et al.

= rze−θr
α/2 +

(
2

θ

)(z+1)/α
1

α

∫ ∞

θrα/2

t(z+1)/α−1e−tdt

≤ rze−θrα/2 + c1Γ (d(z + 1)/αe , θrα/2)

= rze−θr
α/2 + c1 (d(z + 1)/αe − 1)! e−θr

α/2

d(z+1)/αe−1∑

k=0

θkrαk

2kk!

≤ rze−θrα/2 + c2e
−θrα/2rα(d(z+1)/αe−1)

≤ ce−θrα/2rz+1,

where Γ(s, r) =
∫∞
r
ts−1e−tdt = (s− 1)!e−r

∑s−1
k=0 r

k/k!, s ∈ N, is the incomplete gamma
function and c1, c > 0 are constants depending on z.

9. Robustness of the bias corrected estimator

As shown in the simulation study in Section 10 below, the WLSEs are robust with respect
to small deviations from the model assumptions. Specifically, if one adds measurement
noise to the underlying Brown-Resnick process, the WLSEs still perform well. This is in
contrast to the composite likelihood procedure for which the estimates become biased.
The theoretical foundation for the good performance of the WLSEs is given in Lemma 9.1,
which is the analogue of Lemma 4.2 for the Brown-Resnick process without noise.

Lemma 9.1. Let {Z(s, t) : (s, t) ∈ R2 × [0,∞)} be i.i.d. random variables which are
independent of the space-time process {η(s, t) : (s, t) ∈ R2×[0,∞)}. Assume the moment
condition E|Z(0, 0)|2+ε < ∞ for some ε > 0. Then for every sequence an → ∞ we have
for fixed t ∈ [0,∞),

P(η(s, t) + Z(s, t) > an, η(s+ h, t) + Z(s+ h, t) > an)

P(η(s, t) + Z(s, t) > an)

=χ(‖h‖, 0) +
[ 1

2an

(
χ(‖h‖, 0)− 2

)(
χ(‖h‖, 0)− 1

)]
(1 + o(1)).

Proof. For notational simplicity, write η1 = η(s, t), η2 = η(s+ h, t), Z1 = Z(s, t), Z2 =
Z(s + h, t), and χ = χ(‖h‖). Here we assume that h 6= 0, since otherwise, χ = 1 and
thus

0 = (χ− 2)(χ− 1) =

(
P(η1 + Z1 > an)

P(η1 + Z1 > an)
− χ

)
.

Using (4.3) and the independence of (η1, η2) with (Z1, Z2), we have

P(η1 + Z1 > an, η2 + Z2 > an)

= 1− P(η1 + Z1 ≤ an)− P(η2 + Z2 ≤ an) + P(η1 + Z1 ≤ an, η2 + Z2 ≤ an)

= 2P(η1 + Z1 > an)− (1− P(η1 + Z1 ≤ an, η2 + Z2 ≤ an))
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= 2P(η1 + Z1 > an)− E
[
1− exp

{
− 1

(an − Z1)+
Φn1,2 −

1

(an − Z2)+
Φn2,1

}]
,

where x+ = max{0, x}, Φni,j = Φ(c log((an−Zj)+/(an−Zi)+)+c/2), and c =
√

2δ(‖h‖).
Set Φ∗ = limn→∞Φni,j = Φ(c/2) a.s.

Take bn = a
1−ε/4
n , where ε ∈ (0, 1) is specified in the statement of the lemma. Then it

follows that bn/an → 0, a2
n/b

2+ε
n = a

−(2−ε)ε/4
n → 0 and hence

P(|Z| ≥ bn) ≤ E|Z|2+ε

b2+ε
n

= o(a−2
n ) .

Writing En for expectation relative to the restriction on the event {|Z1| ∨ |Z2| ≤ bn},
we have for any bounded sequence of random variables Yn that a2

n(EYn − EnYn) → 0.
Hence, using a Taylor series approximation, we obtain

P(η1 + Z1 > an) = E
[
1− exp

{
− 1

(an − Z1)+

}]

= En
1

(an − Z1)+
− En

1

2(an − Z2)2
+ o(a−2

n )

= En
1

(an − Z1)+
− a−2

n + o(a−2
n ) (9.1)

and

I1 := E
[
1− exp

{
− 1

(an − Z1)+
Φn1,2 −

1

(an − Z2)+
Φn2,1

}]

= En
[ 1

(an − Z1)+
Φn1,2 +

1

(an − Z2)+
Φn2,1

]

−1

2
En
[ 1

(an − Z1)+
Φn1,2 +

1

(an − Z2)+
Φn2,1

]2
+ o(a−2

n )

= 2En
[ 1

(an − Z1)+
Φn1,2

]
− En

[ 1

(an − Z1)+
Φn1,2

]2

−En
[ 1

(an − Z1)+

1

(an − Z2)+
Φn1,2Φn2,1

]
+ o(a−2

n ).

In order to complete the proof it suffices to show the following two relations:

2En
[ 1

(an − Z1)+
Φn1,2

]
− 2Φ∗P(η1 + Z1 > an) +

Φ∗

a2
n

= o(a−2
n ), (9.2)

En
[ 1

(an − Z1)+
Φn1,2

]2
+ En

[ 1

(an − Z1)+

1

(an − Z2)+
Φn1,2Φn2,1

]

= 2
(Φ∗)2

a2
n

+ o(a−2
n ). (9.3)
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To see that (9.2) and (9.3) yield the result in Lemma 9.1, observe that

P(η1 + Z1 > an, η2 + Z2 > an)

P(η1 + Z1 > an)
= 2− I1

P(η1 + Z1 > an)

= 2− 2Φ∗ +
Φ∗ − 2(Φ∗)2

a2
nP(η1 + Z1 > an)

+ o(a
−1
n )

= χ+
1

2
a−1
n (χ− 2)(χ− 1) + o(a−1

n ) ,

where we have used the properties χ = 2− 2Φ∗ and anP(η1 + Z1 > an)→ 1..
Using a Taylor series expansion and the relation

log
(an − Z2)+

(an − Z1)+
=
Z1 − Z2

an
+ (Z1 − Z2)2 ·O(a−2

n ),

it follows that on the set {|Z1| ∨ |Z2| ≤ bn},

Φn1,2 − Φ∗ = c log
(an − Z2)+

(an − Z1)+
Φ′(c/2) +Op(a

−2
n )

= c
Z1 − Z2

an
Φ′(c/2) +Op(a

−2
n ) .

Finally turning to (9.2) and applying (9.1), the left-hand side is equal to

2En
[ 1

(an − Z1)+
(Φn1,2 − Φ∗)

]
+

Φ∗

a2
n

− o(a−2
n )

= cEn
Z1 − Z2

an(an − Z1)
+ Φ′(c/2)

Φ∗

a2
n

− o(a−2
n ) ,

which by multiplying by a2
n and taking limits gives the desired limit of Φ∗.

Finally, (9.3) is obtained by multiplying both sides of the equation a2
n and taking

limits, where the interchange of limits and expectation are justified by the dominating
convergence theorem. This completes the proof.

10. Simulation study

We examine the performance of the WLSEs by simulating a large number of Brown-
Resnick processes with dependence function (7.3). Many real data may not follow a
Brown-Resnick process precisely. For a more realistic setting, we thus do not perform
the simulation study for a Brown-Resnick process only, but also for the sum of a Brown-
Resnick process and some noise. This sum is regularly varying and possesses the same
dependence function and extremogram for which all results of Sections 2 and 3 hold. As
we want to use the bias reduction procedure of Section 4, we have to make sure that
Lemma 4.2 extends to this setting; all other results of this section follow from that. This
is guaranteed by Lemma 9.1.

imsart-bj ver. 2014/10/16 file: BDKSsupp.tex date: July 17, 2018



Semiparametric estimation for isotropic max-stable space-time processes: Supplement 9

The estimation of the spatial parameters relies on a rather large number of spatial
observations and the estimation of the temporal parameters on a rather large number of
observed time points. However, simulation of Brown-Resnick space-time processes based
on the exact method proposed by Dombry et al. [8] can be time consuming, if both a
large number of spatial locations and of time points is taken. For a time-saving method
we generate the process on two different space-time observation areas, one for examining
the performance of the spatial estimates and one for the temporal estimates, which we
call S(1) × T (1) and S(2) × T (2), respectively. The design for the simulation experiment
is given in more detail as follows:

1. We choose two space-time observation areas

S(1) × T (1) = {(i1, i2) : i1, i2 ∈ {1, . . . , 70}} × {1, . . . , 10}
S(2) × T (2) = {(i1, i2) : i1, i2 ∈ {1, . . . , 5}} × {1, . . . , 300}

and the sets V = {1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17} and U = {1, . . . , 10}.
2. We simulate the Brown-Resnick space-time process (4.1) based on the exact method

proposed in Dombry et al. [8], using the R-package RandomFields [11]. The dependence
function δ is modelled as in (4.2) (cf. (7.3)); i.e.,

δ(v, u) = 2θ1v
α1 + 2θ2u

α2 , v, u ≥ 0,

with parameters
θ1 = 0.4, α1 = 1.5, θ2 = 0.2, α2 = 1.

3. The parameters θ1, α1, θ2 and α2 are estimated.

• For the estimation of the empirical extremograms (cf. equations (2.5)-(2.8)) we
have to choose high empirical quantiles q. In practice, q is chosen from an interval
of high quantiles for which the empirical extremogram is robust, see the remarks
of Davis et al. [6] after Theorem 2.1. We choose the 90%−empirical quantile for
the estimation of the spatial parameters and the 70%−quantile for the temporal
part. The quantile for the temporal part is lower to ensure reliable estimation of
the extremogram, because the number of time points (300) used for the estimation
of the temporal parameters is much smaller than the number of spatial locations
(70 · 70 = 4900) used for the estimation of the spatial parameters.

• The weights in the constrained weighted linear regression problem (see (2.9) and
(2.10)) are chosen such that locations and time points which are further apart of
each other have less influence on the estimation. More precisely, we choose

wu = exp{−u2} for u ∈ U and wv = exp{−v2} for v ∈ V.

This choice of weights reflects the exponential decay of χ(v, 0) and χ(0, u) given in
(4.4), which are tail probabilities of the standard normal distribution Φ.

imsart-bj ver. 2014/10/16 file: BDKSsupp.tex date: July 17, 2018



10 S. Buhl et al.

Figure 10.1: WLSEs of θ1 (left) and α1 (right) for 100 simulated Brown-Resnick space-time
processes together with pointwise 95%−subsampling confidence intervals (dashed). The middle
solid line is the true value and the middle dashed line represents the mean over all estimates.

4. Pointwise confidence bounds are computed by subsampling as described in Section 7
for the spatial parameters of general regularly varying processes and in Section 3.4.2 of
[2] for the temporal parameters of the Brown-Resnick space-time process considered in
this section. We choose block lengths b = (50, 50, 10) and overlap e = (2, 2, 10) for the
space-time process with observation area S(1) × T (1) and b = (5, 5, 200), e = (5, 5, 1)
for the process with observation area S(2) × T (2).

5. Steps 1 - 5 are repeated 100 times.

Figure 10.1 shows the WLSEs of the spatial parameters θ1 and α1 for each of the 100
realizations of the Brown-Resnick space-time process. The dashed lines above and below
the dots are pointwise confidence intervals based on subsampling. Panel (a) of Table 1
shows the mean, root mean squared error (RMSE) and mean absolute error (MAE) of
both the spatial and the temporal WLSEs based on the 100 simulations. Altogether, we
observe that the estimates are close to the true values. The spatial estimates are slightly
superior to the temporal ones, which is due to the larger number of observations in space
than in time.

MEAN RMSE MAE
θ1 0.4033 0.0678 0.0559
α1 1.4984 0.0521 0.0400
θ2 0.2249 0.0649 0.0526
α2 0.9563 0.0939 0.0767

(a)

MEAN RMSE MAE
θ1 0.4008 0.0668 0.0552
α1 1.4946 0.0525 0.0400
θ2 0.2188 0.0597 0.0489
α2 0.9275 0.0976 0.0799

(b)

Table 1.: Mean, RMSE and MAE of the WLSEs when applied to exact realizations from the
Brown-Resnick process (a) and to realizations with observational noise (b).
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Figure 10.2: WLSEs of θ1 (left) and α1 (right) for 100 simulated Brown-Resnick space-time
processes with noise together with pointwise 95%−subsampling confidence intervals (dashed).
The middle solid line is the true value and the middle dashed line represents the mean over all
estimates.

Figure 10.3: Pairwise likelihood estimates of θ1 for 100 simulated Brown-Resnick space-time
processes together with pointwise 95%−subsampling confidence intervals (dashed) in the left-
hand plot; the corresponding estimates and pointwise 95%−subsampling confidence intervals
(dashed) for the simulated processes with noise are presented in the right-hand plot. The middle
solid line is the true value and the middle dashed line represents the mean over all estimates.
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In comparison with pairwise likelihood estimation in finite samples (cf. Davis et al. [5]),
a big advantage of the semiparametric method is the substantial reduction of computa-
tion time by about a factor 15. Moreover, the semiparametric estimation method is much
more robust when applied to observations that reveal slight deviations from the model
assumptions. To illustrate this point, we repeated the simulation study described above
with data obtained from the original ones by adding to each measurement the absolute
value of an independent N (0, 0.2)-distributed error. The results of the semiparametric
estimation remain practically unaffected; see the summary measures in the panel (b) of
Table 1 and Figure 10.2. This result can be explained theoretically by Lemma 9.1. Adding
noise to observations of the Brown-Resnick process does not affect the underlying true
extremogram nor the rate of convergence of the empirical extremogram to the true one.
In contrast, when applying pairwise likelihood estimation to the same simulated data we
observe that the estimates are much more sensitive to small disturbations than the semi-
parametric estimation. Whereas for the original data the estimates are slightly biased,
for the corrupted data the bias increases considerably; their variances, however, remain
nearly unaffected and are (not surprisingly) smaller than the corresponding variances of
the semiparametric estimates. Figure 10.3 illustrates the pairwise likelihood estimates of
the spatial parameter θ1 for the simulated Brown-Resnick space-time processes together
with 95%-subsampling confidence intervals and for the data with noise.
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[4] S. Buhl, R.A. Davis, C. Klüppelberg, and C. Steinkohl. Semiparametric estimation
for isotropic max-stable space-time processes. 2018. In preparation.
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