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Abstract: 
Preferential attachment is an appealing mechanism for modeling power-law behavior of the degree 

distributions in directed social networks. In this paper, we consider methods for fitting a 5-parameter 
linear preferential model to network data under two data scenarios. In the case where full history of 
the network formation is given, we derive the maximum likelihood estimator of the parameters and 
show that it is strongly consistent and asymptotically normal. In the case where only a single-time 
snapshot of the network is available, we propose an estimation method which combines method of 
moments with an approximation to the likelihood. The resulting estimator is also strongly consistent 
and performs quite well compared to the MLE estimator. We illustrate both estimation procedures 
through simulated data, and explore the usage of this model in a real data example. At the end of 
the paper, we also present a semi-parametric method to model heavy-tailed features of the degree 
distributions of the network using ideas from extreme value theory. 

Keywords and phrases: power laws, multivariate heavy tail statistics, preferential attachment, 
regular variation, estimation. 

1. Introduction 

The preferential attachment mechanism, in which edges and nodes are added to the network based on 
probabilistic rules, provides an appealing description for the evolution of a network. The rule for how edges 
connect nodes depends on node degree; large degree nodes attract more edges. The idea is applicable to both 
directed and undirected graphs and is often the basis for studying social networks, collaborator and citation 
networks, and recommender networks. Elementary descriptions of the preferential attachment model can be 
found in [7] while more mathematical treatments are available in [2, 6, 21]. Also see [10] for a statistical 
survey of methods for network data. 
For many networks, empirical evidence supports the hypothesis that in- and out-degree distributions follow 

a power law. This property has been shown to hold in linear preferential attachment models, which makes 
preferential attachment an attractive choice for network modeling [3, 6, 11, 12, 21]. While the marginal degree 
power laws in a simple linear preferential attachment model were established in [3, 11, 12], the joint regular 
variation (see [16, 17]) which is akin to a joint power law, was only recently established [18, 19]. In addition, it 
was shown in [22] that the joint probability mass function of the in- and out-degrees is multivariate regularly 
varying. This is a key result as the degrees of a network are integer-valued. 
In this paper, we discuss methods of fitting a simple linear preferential attachment model, which is 

parametrized by θ = (α, β, γ, δin, δout). The first three parameters, α, β, γ, correspond to probabilities of the 
3 scenarios for adding an edge and hence sum to 1, i.e., α + β + γ = 1. The other two, δin and δout, are tuning 
parameters related to growth rates. The tail indices of the marginal power laws for the in- and out-degrees 
can be expressed as explicit functions of θ (see (6.5) below). The graph G(n) = (V (n), E(n)), where V (n) is 
the set of nodes and E(n) is the set of edges at the nth iteration, evolves based on postulates that describe 
how new edges and nodes are formed. This construction of the network is Markov in the sense that the 
probabilistic rules for obtaining G(n + 1) once G(n) is known do not require prior knowledge of earlier stages 
of the construction. 
The Markov structure of the model allows us to construct a likelihood function based on observing 

G(n0), G(n0 + 1), . . . , G(n0 + n). After deriving the likelihood function, we show that there exists a unique 
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maximum at θ̂ = (ˆ β, ̂ δin, δ̂out) and that the resulting maximum likelihood estimator is strongly consistent α, ˆ γ, ˆ

and asymptotically normal. The normality is proved using a martingale central limit theorem applied to 
function. The limiting distribution also reveals that (ˆ β, ̂ δin, δoutthe score α, ˆ γ), ˆ and ˆ are asymptotically 

independent. From these results, asymptotic properties of the MLE for the power law indices can be derived. 
For some network data, only a snapshot of the nodes and edges are available at a single point in time, that 

is, only G(n) is available for some n. In such cases, we propose an estimation procedure for the parameters of 
the network using an approximation to the likelihood and method of moments. This also produces strongly 
consistent estimators. These estimators perform reasonably well compared to the MLE when the entire 
evolution of the network is known but predictably there is some loss of efficiency. 
We illustrate the estimation procedure for both scenarios using simulated data. Simulation plays an 

important role in the process of modeling networks since it provides a way to assess the performance of 
model fitting procedures in the idealized setting of knowing the true model. Also, after fitting a model to 
real data, simulation provides a check on the quality of fit. Departures from model assumptions can often 
be detected via simulation of multiple realizations from the fitted network. Hence it is important to have 
efficient simulation algorithms for producing realizations of the preferential attachment network for a given 
set of parameter values. We adopt a simulation method, learned from Joyjit Roy, that was stimulated by [1] 
and is similar to that of [20]. 
Our fitting methods are implemented in a real data setting using the Dutch Wiki talk network [14]. While 

one should not expect the simple 5-parameter (later extended to 7 parameters) linear preferential attachment 
model to fully explain a network with millions of edges, it does provide a reasonable fit to the tail behavior 
of the degree distributions. We are also able to detect important structural features in the network through 
inspecting the edge evolutions in separate time intervals. 
Often it is difficult to believe in the existence of a true model, especially one whose parameters are 

unchanging over time. Perhaps a family of models containing the truth is not available to the modeler. 
Nevertheless, some models can capture certain salient features in the data, such as heavy-tailed properties of 
the degree distributions. In cases where a true model family is not apparent, maximum likelihood assuming 
a model may deliver misleading estimates of model parameters. An alternative to maximum likelihood is to 
estimate certain tail properties using semi-parametric methods from extreme value theory. For example, for a 
network that exhibits power-like tails, one can use the Hill estimator and familiar complementary cumulative 
log-log plots of the power-law indices directly. Further, applying extreme value methods, also referred to as 
the asymptotic method in the sequel, it is possible to estimate various dependence structures in the network 
data related to in- and out-degrees. We discuss this approach at the end of the paper as an alternative to 
maximum likelihood based on the fully evolved network and a single snapshot where an exact parametric 
model is assumed. 
The rest of the paper is structured as follows. In Section 2, we formulate the linear preferential attachment 

network model and present an efficient simulation method for the network. Section 3 gives parameter estima-
tors when either the full history is known or when only a single snapshot is available. We test these estimators 
against simulated data in Section 4 and then explore the Wiki talk network in Section 5. Lastly Section 6 ad-
dresses the issue of estimation using asymptotic methods and discusses a semi-parametric estimation method 
through the tail asymptotics of in- and out-degrees. 

2. Model specification and simulation 

In this section, we present the linear preferential attachment model in detail and provide a fast simulation 
algorithm for the network. 

2.1. The linear preferential attachment model 

The directed edge preferential attachment model [3, 12] constructs a growing directed random graph G(n) = 
(V (n), E(n)) whose dynamics depend on five nonnegative real numbers α, β, γ, δin and δout, where α+β+γ = 
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1 and δin, δout > 0. To avoid degenerate situations, assume that each of the numbers α, β, γ is strictly smaller 
than 1. We obtain a new graph G(n) by adding one edge to the existing graph G(n − 1) and index the 
constructed graphs by the number n of edges in E(n). We start with an arbitrary initial finite directed graph 
G(n0) with at least one node and n0 edges. For n > n0, G(n) = (V (n), E(n)) is a graph with |E(n)| = n 

(n) (n)
edges and a random number |V (n)| = N(n) of nodes. If u ∈ V (n), D (u) and D (u) denote the in- and in out

out-degree of u respectively in G(n). There are three scenarios that we call the α, β and γ-schemes, which 
are activated by flipping a 3-sided coin whose outcomes are 1, 2, 3 with probabilities α, β, γ. More formally, 
we have an iid sequence of multinomial random variables {Jn, n > n0} with cells labelled 1, 2, 3 and cell 
probabilities α, β, γ. Then the graph G(n) is obtained from G(n − 1) as follows. 

v 

w v 

w 

v 

w 

α-scheme β-scheme γ-scheme 

• If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and an edge 
(v, w) leading from v to an existing node w ∈ V (n − 1). Choose the existing node w ∈ V (n − 1) with 
probability depending on its in-degree in G(n − 1): 

(n−1)
D (w) + δininP[choose w ∈ V (n − 1)] = . (2.1) 

n − 1 + δinN(n − 1) 

• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n − 1) with v ∈ V (n − 1) = V (n) and 
w ∈ V (n − 1) = V (n) and the existing nodes v, w are chosen independently from the nodes of G(n − 1) 
with probabilities � (n−1) �� (n−1) �D (v) + δout D (w) + δinout inP[choose (v, w)] = . 

n − 1 + δoutN(n − 1) n − 1 + δinN(n − 1) 

• If Jn = 3 (with probability γ), append to G(n − 1) a new node w ∈ V (n) \ V (n − 1) and an edge (v, w) 
leading from the existing node v ∈ V (n − 1) to the new node w. Choose the existing node v ∈ V (n − 1) 
with probability 

(n−1)
D (v) + δoutoutP[choose v ∈ V (n − 1)] = . 

n − 1 + δoutN(n − 1) 
Note that this construction allows the possibility of having self loops in the case where Jn = 2, but the 
proportion of edges that are self loops goes to 0 as n → ∞. Also, multiple edges are allowed between two 
nodes. 

2.2. Simulation algorithm 

We describe an efficient simulation procedure for the preferential attachment network given the parameter 
values (α, β, γ, δin, δout), where α + β + γ = 1. The simulation cost of the algorithm is linear in time. This 
algorithm was provided by Joyjit Roy during his graduate work at Cornell University. 
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Algorithm 1: Simulating a directed edge preferential attachment network 
Algorithm 

Input: α, β, δin, δout, the parameter values; G(n0) = (V (n0), E(n0)), the initialization graph; n, the targeted 
number edges 

Output: G(n) = (V (n), E(n)), the resulted graph 

t ← n0 

while t < n do 
N(t) ← |V (t)|
Generate U ∼ Uniform(0, 1) 
if U < α then 

v(1) ← N(t) + 1 

v(2) ← Node Sample(E(t), 2, δin) 
V (t) ← Append(V (t), N(t) + 1) 

else if α ≤ U < α + β then 
v(1) ← Node Sample(E(t), 1, δout) 

v(2) ← Node Sample(E(t), 2, δin) 
else if U ≥ α + β then 

v(1) ← Node Sample(E(t), 1, δout) 

v(2) ← N(t) + 1 
V (t) ← Append(V (t), N(t) + 1) 

(1) (2)))E(t + 1) ← Append(E(t), (v , v
t ← t + 1 

end 
return G(n) = (V (n), E(n)) 

Function Node Sample 

Input: E(t), the edge list up to time t; j = 1, 2, the node to be sample, representing outgoing and incoming nodes, 
respectively; δ ∈ {δin, δout}, the offset parameter 

Output: the sampled node, v 
Generate W ∼ Uniform(0, t + N(t)δ) 
if W ≤ t then 

(j)
v ← vdW e 

else if W > t thenl m 
W −t v ← 

δ 

return v 

Using the notation from the introduction, at time t = 0, we initiate with an arbitrary graph G(n0) = 
(1) (2)

(V (n0), E(n0)) of n0 nodes, where the elements of E(n0) are represented in form of (v , v ) ∈ V (n0) ×i i 
(1) (2)

V (n0), i = 1, . . . , n0, with v , v denoting the outgoing and incoming vertices of the edge, respectively. i i 
To grow the network, we update the network at each stage from G(n − 1) to G(n) by adding a new edge 

(1) (2)
(vn , vn ). Assume that the nodes are labeled using positive integers starting from 1 according to the time 
order in which they are created, and let the random number N(n) = |V (n)| denote the total number of 
nodes in G(n). 

Let us consider the situation where an existing node is to be chosen from V (n) as the vertex of the new edge. 
Naively sampling from the multinomial distribution requires O(N(n)) evaluations, where N(n) increases 
linearly with n. Therefore the total cost to simulate a network of n edges is O(n2). This is significantly 
burdensome when n is large, which is usually the case for observed networks. We describe a simulation 
algorithm in Algorithm 1 which uses the alias method [13] for node sampling. Here sampling an existing 
node from V (n) requires only constant execution time, regardless of n. Hence the cost to simulate G(n) is 
only O(n). This method allows generation of a graph with 107 nodes on a personal laptop in less than 5 
seconds. 

To see that the algorithm indeed produces the intended network, it suffices to consider the case of sampling 
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an existing node from V (n − 1) as the incoming vertex of the new edge. In the function Node Sample in 
Algorithm 1, we generate W ∼ Uniform(0, n − 1 + N(n − 1)δin) and set � � 

(j) W − N(n − 1) 
v ← vdW e 1{W ≤n−1} + 

δin 
1{W >n−1}. 

Then �� � �� � W − n − 1(j)
P (v = w) = P v = w P (W ≤ n − 1) + P = w P (W > n − 1)dW e δin 

(n−1)
D (w) n − 1 1 N(n − 1)δinin = + 
n − 1 n − 1 + N(n − 1)δin N(n − 1) n − 1 + N(n − 1)δin 

(n−1)
D (w) + δinin = , 

n − 1 + N(n − 1)δin 

which corresponds to the desired selection probability (2.1). 

3. Parameter estimation 

In this section, we estimate the preferential attachment parameter vector (α, β, δin, δout) under two assump-
tions about what data is available. In the first scenario, the full evolution of the network is observed, from 
which the likelihood function can be computed. The resulting MLE is strongly consistent and asymptotically 
normal. For the second scenario, the data only consist of one snapshot of the network with n edges, without 
the knowledge of the network history that produced these edges. For this scenario we give an estimation 
approach through approximating the score function and moment matching, which produces parameter es-
timators that are also strongly consistent but less efficient than those based on the full evolution of the 
network. In both cases, the estimators are uniquely determined. 

3.1. MLE based on the full network history 

3.1.1. Likelihood calculation 

Assume the network begins with the graph G(n0) (consisting of n0 edges) and then evolves according to 
the description in Section 2.1 with parameters (α, β, δin, δout), where δin, δout > 0 and α, β are non-negative 
probabilities. The γ is implicitly defined by γ = 1 − α − β. To avoid trivial cases, we will also assume 
α, β, γ < 1 for the rest of the paper. For MLE estimation we restrict the parameter space for δin, δout to be 
[�, K], for some sufficiently small � > 0 and large K. In particular, the true value of δin, δout is assumed to 

(1) (2)
be contained in (�, K). Let et = (v , v ) be the newly created edge when the random graph evolves from t t 
G(t − 1) to G(t). We sometimes refer to t as the time rather than the number of edges. 
Assume we observe the initial graph G(n0), and the edges {et}nt=n0+1 in the order of their formation. For 

t = n0 + 1, . . . , n, the values of the following variables are known: 

• N(t), the number of nodes in graph G(t); 
(t−1) (t−1)• D (v), D (v), the in- and out-degree of node v in G(t − 1), for all v ∈ V (t − 1);in out 

• Jt, the scenario under which et is created. 

Then the likelihood function is 

L(α, β, δin, δout| G(n0), (et)
n
t=n0+1) 

n (t−1) (2) 
!1{Jt=1}Y D (v ) + δinin t = α 

t − 1 + δinN(t − 1)
t=n0 +1 



 
 

6 Wan et al. !1{Jt =2}n � (t−1) (2) �� (t−1) (1) �Y D (v ) + δin D (v× β in t out t ) + δout 

t − 1 + δinN(t − 1) t − 1 + δoutN(t − 1)
t=n0+1 

n (t−1) (1) 
!1{Jt =3}Y D (v ) + δoutout t× (1 − α − β) (3.1)

t − 1 + δoutN(t − 1)
t=n0+1 

and the log likelihood function is 

logL(α, β, δin, δout| G(n0), (et)
n
t=n0+1) (3.2) 

n n nX X X 
= log α 1{Jt=1} + log β 1{Jt=2} + log(1 − α − β) 1{Jt=3} 

t=n0+1 t=n0+1 t=n0+1 

n � � n � �X X 
(t−1) (2) (t−1) (1)

+ log D (v ) + δin 1{Jt∈{1,2}} + log D (v ) + δout 1{Jt∈{2,3}}in t out t 
t=n0+1 t=n0+1 

n nX X 
− log(t − 1 + δinN(t − 1))1{Jt∈{1,2}} − log(t − 1 + δoutN(t − 1))1{Jt∈{2,3}}. 

t=n0+1 t=n0+1 

The score functions for α, β, δin, δout are calculated as follows: 

n nX X∂ 1 1 
log L(α, β, δin, δout| G(n0), (et)

n
t=n0+1) = 1{Jt=1} − 1{Jt =3}, (3.3)

∂α α 1 − α − β 
t=n0+1 t=n0 +1 

n nX X∂ 1 1 
log L(α, β, δin, δout| G(n0), (et)

n
t=n0 +1) = 1{Jt=2} − 1{Jt=3}, (3.4)

∂β β 1 − α − β 
t=n0+1 t=n0+1 

∂ 
log L(α, β, δin, δout| G(n0), (et)nt=n0+1) (3.5) 

∂δin 
n nX X1 N(t − 1) 

= 1{Jt∈{1,2}} − 1{Jt∈{1,2}},(t−1) (2) t − 1 + δinN(t − 1)D (v ) + δint=n0+1 in t t=n0 +1 

∂ 
log L(α, β, δin, δout| G(n0), (et)nt=n0+1)∂δout 

n nX X1 N(t − 1) 
= 1{Jt∈{2,3}} − 1{Jt∈{2,3}}. (t−1) (1)

D (v ) + δout 
t − 1 + δoutN(t − 1)

t=n0+1 out t t=n0+1 

Note that the score functions (3.3), (3.4) for α and β do not depend on δin and δout. One can show that 
the Hessian matrix of the log-likelihood for (α, β) is positive definite. Thus setting (3.3) and (3.4) to zero 
gives the unique MLE estimates for α and β. 

nX1 
α̂MLE = 1{Jt=1}, (3.6) 

n − n0 t=n0+1 

nX1 
β̂MLE = 1{Jt=2}. (3.7) 

n − n0 t=n0+1 

These estimates are strongly consistent by applying the strong law of large numbers for the {Jt} sequence. 
Next, consider the first term of the score function for δin in (3.5), and we have 

n ∞ nX X X1 1 o= 1n . 
(t−1) (2) 

1{Jt∈{1,2}} D
(t−1) 

(v
(2)

)=i,Jt ∈{1,2}in tD (v ) + δin 
i + δint=n0+1 in t i=0 t=n0+1 
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(t−1) (2) (2)

Observe that D (v ) = i, Jt ∈ {1, 2} describes the event that the in-degree of node v ∈ V (t − 1) is in t t 

i at time t − 1 and is augmented to i + 1 at time t. For each i ≥ 1, such an event happens at some stage 
t ∈ {n0 + 1, n0 + 2, . . . , n} only for those nodes with in-degree ≤ i at time n0 and in-degree > i at time n. 
Let Nij (n) denote the number of nodes with in-degree i and out-degree j at time n, and N in(n) and N in 

i >i(n) 
to be the number of nodes with in-degree equal to i and greater than i, respectively, so that, 

∞X X 
N in N in N in(n) = Nij (n), >i(n) = (n),i k 

j=0 k>i 

Then 
nX o = N in1n 

(t−1) (2) >i(n) − N in i ≥ 1. 
D (v )=i,Jt∈{1,2} >i(n0), 

in t 
t=n0+1 n o 

(t−1) (2)
On the other hand, when i = 0, D (v ) = 0, Jt ∈ {1, 2} occurs for some t if and only if all of the in t 

following three events happen: 

(2)
(i) v has in-degree > 0 at time n;t 

(2)
(ii) v does not have in-degree > 0 at time n0;t 

(2)
(iii) v was not created under the γ-scheme (otherwise it would have been born with in-degree 1). t 

This implies: 
n nX X 

1n 
>0(n) − N ino = N in 

(t−1) (2) >0(n0) − 1{Jt=3},D (v )=0,Jt∈{1,2}in t 
t=n0 +1 t=n0+1 Pn

since there are, in total, 1{Jt=3} nodes created under the γ-scheme. Therefore, t=n0+1 

n ∞ nX X X1 1 
1n o= (t−1) (2)(t−1) (2) 

1{Jt∈{1,2}} D (v )=i,Jt∈{1,2}in tD (v ) + δin 
i + δin t=n0+1 in t i=0 t=n0+1 P∞ nX N in (n) − N in 

>i >i(n0) t=n0+1 1{Jt=3}
= − . (3.8) 

i=0 
i + δin δin 

Setting the score function (3.5) for δin to 0 and dividing both sides by n − n0 leads to 

XN in (n) − N in1 
∞

(n0)>i >i

n − n0 i=0 
i + δin 

n nX X1 1 N(t − 1)− 1{Jt=3} − 1{Jt∈{1,2}} = 0, (3.9)
δin(n − n0) n − n0 t − 1 + δinN(t − 1)

t=n0+1 t=n0+1 

where the only unknown parameter is δin. In Section 3.1.2, we show that the solution to (3.9) actually 
maximizes the likelihood function in δin. Similarly, the MLE for δout can be solved from 

∞ NoutX 
>j (n) − Nout1 >j (n0) 

n − n0 j + δoutj=0 Pn1 nX 
n−n0 t=n0+1 1{Jt =1} 1 N(t − 1)− − 1{Jt∈{2,3}} = 0,

δout n − n0 t − 1 + δoutN(t − 1)
t=n0+1 

where Nout(n) is defined in the same fashion as N in (n).>j >i
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Remark 3.1. The arguments leading to (3.8) allow us to rewrite the likelihood function (3.1): 

L(α, β, δin, δout| G(n0), (et)
n
t=n0+1) P P P n n n 

= α t=n0+1 1{Jt=1} β t=n0 +1 1{Jt =2} (1 − α − β) t=n0 +1 1{Jt =3} 

nY 
× (t − 1 + δinN (t − 1))−1{Jt∈{1,2}} (t − 1 + δoutN(t − 1))−1{Jt∈{2,3}} 

t=n0+1 ⎡ ⎤ 
n ∞ ∞Y Y 1 Y 1(t−1) (2) (t−1) (1){D (v )=i,Jt∈{1,2}} {D (v )=j,Jt∈{2,3}}⎣ in t out t ⎦× (i + δin) (j + δout) 

t=n0+1 i=0 j=0 P P P n n n 

=α t=n0+1 1{Jt=1} β t=n0+1 1{Jt=2} (1 − α − β) t=n0+1 1{Jt=3} 

nY −1{Jt=3} −1{Jt=1}× (t − 1 + δinN (t − 1))−1{Jt∈{1,2}} (t − 1 + δoutN(t − 1))−1{Jt∈{2,3}} δ δin out 
t=n0+1 

∞ ∞Y Y 
(n)−N in (n)−Nout 

(i + δin)
N in (n0) (j + δout)

Nout (n0)>i >i >j >j× . 
i=0 j=0 

(n) − N in (n0))i≥0, (Nout(n) − NoutHence by the factorization theorem, N(n0), (Jt)nt=n0 +1, (N
in (n0))j≥0 are >i >i >j >j 

sufficient statistics for (α, β, δin, δout). 

3.1.2. Consistency of MLE 

αMLE βMLE We remarked after (3.6) and (3.7) that ˆ and ˆ converge almost surely to α and β. We now prove 
that the MLE of (δin, δout) is also strongly consistent. Note that if we initiate the network with G(n0) (for 
both n0 and N(n0) finite), then almost surely for all i, j ≥ 0, 

N in (n0)>i ≤ 
N(n0) → 0, 

Nout(n0)>j ≤ 
N(n0) → 0, as n → ∞, 

n n n n 

(n0), Noutand (n − n0)/n → 1. In other words, n0, N in (n0) are all o(n). So for simplicity, we assume that >i >j 
the graph is initiated with finitely many nodes and no edges, that is, n0 = 0 and N(0) ≥ 1. In particular, 
these assumptions imply the sum of the in-degrees at time n is equal to n. 
Let Ψn(·), Φn(·) be the functional forms of the terms in the log-likelihood function (3.2) involving δin and 

δout respectively, normalized by 1/n, i.e. 

∞
N in n nX X Xlog λ 1>i(n)Ψn(λ) := log(i + λ) − 1{Jt=3} − log (t − 1 + λN(t − 1)) 1{Jt∈{1,2}}, n n n 

i=0 t=1 t=1 
∞ Nout n nX X X 

>j (n) log µ 1 
Φn(µ) := log(j + µ) − 1{Jt=1} − log (t − 1 + µN(t − 1)) 1{Jt∈{2,3}}. n n n 

j=0 t=1 t=1 

The following theorem gives the consistency of the MLE of δin and δout. 

Theorem 3.2. Suppose δin, δout ∈ (�, K) ⊂ (0, ∞). Define 

δ̂MLE δ̂MLE δ̂MLE δ̂MLE = (n) := argmax (λ), = (n) := argmax (µ).in in Ψn out out Φn
�≤λ≤K �≤µ≤K 

These are the MLE estimators of δin, δout and they are strongly consistent; that is, as n →∞, 

δ̂MLE δ̂MLE a.s. a.s.
in −→ δin, out −→ δout. 
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δMLE δMLE We only verify the consistency of ˆ and similar arguments apply to ˆ . Before the proof, we give in out 
some preliminaries. Define P∞ n nX N in 1 X 

>i(n)/n t=1 1{Jt=3} 1 N(t − 1)nψn(λ) := Ψn
0 (λ) = − − 1{Jt ∈{1,2}}. (3.10)

i + λ λ n t − 1 + λN(t − 1)
i=0 t=1 

From [3], there exists a proper probability distribution {fij } such that almost surely 

Nij (n) pij→ fij =: , (n →∞). (3.11)
N(n) 1 − β 

Define 
α + β 

a1(λ) := , λ > 0. 
1 + λ(1 − β) P

inand denote p := j pij . From [3, Equation (3.10)], i 

αin p = ,0 1 + a1(δin)δin � � 
Γ(i + δin)Γ(1 + δin + a1(δin)−1) αδin γin p = + , i ≥ 1.i Γ(i + 1 + δin + a1(δin)−1)Γ(1 + δin) 1 + a1(δin)δin a1(δin) P

in in inWe write p (δin) to emphasize the dependence on δin. Define p>i(δin) := (δin) and i k>i pk 

X in∞
p (δin) γ>iψ(λ) := − − (1 − β)a1(λ). (3.12)
i + λ λ 

i=0 

Here is an outline of the proof. We think of ψ in (3.12) as a limit version of ψn given in (3.10). Lemma 3.3 
shows that ψ(·) has a unique zero at δin, and ψ(λ) is positive to the left of δin and negative to the right of 
δin. Then Lemma 3.4 shows that supλ≥� |ψn(λ) − ψ(λ)|→0 almost surely. The result of the theorem follows 
by a straightforward argument. 

Lemma 3.3. For λ > 0, the function ψ(λ) in (3.12) has a unique zero at δin and, ψ(λ) > 0 when λ < δin 

and ψ(λ) < 0 when λ > δin. 

inProof. The probabilities {p (λ)} satisfy the recursions in i (cf. [3]): i � � 
1 αin p0 (λ) λ + = , (3.13a) 

a1(λ) a1(λ)� � 
1

= λpin γin p1 (λ) 1 + λ + 0 (λ) + , (3.13b) 
a1(λ) a1(λ)� � 
1in in p2 (λ) 2 + λ + = (1 + λ)p1 (λ), (3.13c) 

a1(λ) 
. . . � � 

1in in p (λ) i + λ + = (i − 1 + λ)pi−1(λ), (i ≥ 2). (3.13d)i a1(λ) P−1
Summing the recursions in (3.13) from 0 to i, we get (with the convention that = 0) i=0 � �i i−1X X1 α γin in pk (λ) k + λ + = (k + λ)pk (λ) + + 1{i≥1}, i ≥ 0, 

a1(λ) a1(λ) a1(λ)
k=0 k=0 
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which can be simplified to 

i

pk (λ) + (i + λ)pi a1(λ) 

X 1 − β1 γin in − i ≥ 0.(λ) = 1{i=0}, (3.14) 
a1(λ) a1(λ)

k=0 

From (3.11), X∞X 
in p (λ) = pij (λ) = 1 − β. (3.15)i 

i=0 i,j 

Hence by rearranging (3.14), we have 

iX ! 
γ 1 1 

(i + λ)p in 
i 

in in 
>i(λ),1 − β −(λ) + 1{i=0}

a1(λ) 
= 
a1(λ) 

pk (λ) = p 
a1(λ)

k=0 

or equivalently, 
in in p>i(λ) = a1(λ)(i + λ)p (λ) + γ1{i=0}. (3.16)i 

Now with the help of (3.15) and (3.16), we can rewrite ψ(λ) in the following way: 

∞X pin γ>i(δin) − − (1 − β)a1(λ)ψ(λ) = 
i + λ λ 

i=0 
∞X ∞X inp (δin)a1(λ)(i + λ)i 

inp>i(δin) = − − 
γ 

i + λ λ i + λ 
i=0 i=0 
∞X a1(δin)(i + δin)pin 

i (δin) + γ1{i=0} γ − 
∞X inp (δin)a1(λ)(i + λ)i−= 

i + λ λ i + λ 
i=0 i=0 �� 

a1(δin)(i + δin) − a1(λ)(i + λ) 
∞X inp (δin)i = 

i + λ 
i=0 Z ��∞X inp (δin)i 

δin ∂ 
a1(s)(i + s) ds= 

i + λ ∂s λi=0 Z∞X δinin (α + β)(1 − i(1 − β))pi (δin) 
i + λ (1 + s(1 − β))2 

λi=0 

ds= !Zin δinp α + βi (δin) (1 − i(1 − β)) ds 
∞X 

= 
(1 + s(1 − β))2i + λ λi=0 Z δin α + β 

=: C(λ) ds. (3.17)
(1 + s(1 − β))2 

λ 

The series defining C(λ) converges absolutely for any λ > 0 since ���� ���� ���� ���� 1 
< (1 − β)(1 − β + ) < ∞. 

λ 

∞X ∞Xin i(1 − β)pi (δin) 

i=0 i=0 

Summing over i in (3.16), we get by monotone convergence 

1in(1 − i(1 − β)) (δin)< +pii + λ i + λ i + λ 

∞X∞X∞X∞X 
in in p>i(λ) = ipin(λ) = a1(λ) ipin(λ) + a1(λ)λ p (λ) + γ. i i i 

i=0 i=0 i=0 i=0 
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inThe infinite series converge because p (λ) is a power law with index greater than 2; see (6.3). Solving for i 

the infinite series we get 
∞X a1(λ)λ γ 
ipin(λ) = (1 − β) + = 1. (3.18)i 1 − a1(λ) 1 − a1(λ)i=0 

Hence we have X Xin inp pi (δin) i (δin)C(λ) = (1 − i(1 − β)) − (i(1 − β) − 1)
i + λ i + λ 

i≤(1−β)−1 i>(1−β)−1 

∞

(1 − β)−1 + λ 
i=0 

X inpi (δin) (1 − i(1 − β))> 

∞

= pi 
X X∞

i=0 

ipin 
i (δin) 

1 − β1 in(δin) − 
(1 − β)−1 + λ (1 − β)−1 + λ 

i=0 

X 

1 1 − β 
= (1 − β) − 1 
(1 − β)−1 + λ (1 − β)−1 + λ 

= 0. 

Now recall from (3.17) that ψ(λ) is of the form Z δin α + β 
ψ(λ) = C(λ) ds,

(1 + s(1 − β))2 
λ 

where C(λ) > 0 for all λ > 0. Therefore ψ(·) has a unique zero at δin and ψ(λ) > 0 when λ < δin and 
ψ(λ) < 0 when λ > δin. 

X 

We show the uniform convergence of ψn to ψ in the next lemma. 

Lemma 3.4. As n →∞, for any � > 0, 
a.s.

sup |ψn(λ) − ψ(λ)| −→ 0. 
λ≥� 

inProof. By the definition of ψ, p>i(δin) is a function of δin and is a constant with respect to λ. Hence we 
insuppress the dependence on δin and simply write it as p when considering the difference ψn − ψ as a >i 

function of λ: 
∞ n

! 
N in in(n)/n − p 1 1>i >iψn(λ) − ψ(λ) = − 1{Jt=3} − (1 − α − β)

λ ni + λ 
i=0 t=1 ��X

X 

n

n 
t=1 

Thus, 

∞

N(t − 1) (1 − β)(α + β)1 − 1{Jt∈{1,2}} − . 
t − 1 + λN(t − 1) 1 + λ(1 − β) 

����� 1 n 

Xn
t=1 

����� 
�� ��N in in(n)/n − p>i 1>i|ψn(λ) − ψ(λ)| ≤ sup 

λ≥� 
1{Jt =3} − (1 − α − β)+ sup 

λ≥� 
sup 
λ≥� i + λ λ ����� 

i=0 

+ sup 

����� . Xn
t=1 

N(t − 1) (1 − β)(α + β)1 
n 

1{Jt∈{1,2}} − (3.19)
t − 1 + λN (t − 1) 1 + λ(1 − β)λ≥� 

For the first term, note that for all i ≥ 0, XX∞ ∞

N iniN in kN in 
>i(n) = (n)i ≤ (n) = n,k k 

k=i+1 k=1 
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since the assumption on initial conditions implies the sum of in-degrees at n is n. Therefore N in (n)/n ≤ i−1 
>i

for i ≥ 1, and it then follows that �� �� �� ��∞ M ∞ ∞

i + λ i + λ i + λ i + λ 
i=0 i=0 i=M+1 i=M+1 

X 
Note that the last two terms on the right side can be made arbitrarily small uniformly on [�, ∞) if we choose 
M sufficiently large. 
Recall the convergence of the degree distribution {Nij (n)/N(n)} to the probability distribution {fij } in 

(3.11), we have 

XXX N in in(n)/n − p>i N in in(n)/n − p>i
in1/i

+ + 
p>i >i >i≤ . 

XN in N inN(n) a.s.>i(n) >i(n) −→ fkl 
in = p>i,(1 − β) ∀i ≥ 0.= 

n n N(n) 
l≥0,k>i 

Hence, for any fixed M , 
M

i + � 
i=0 

X N in in 
>i(n)/n − p>i 

�� ��
a.s.−→ 0, as n →∞. 

which implies further that choosing M arbitrarily large gives 

MX �� �� �� ��∞

sup 
i + λλ≥� 

X XX∞ ∞
p>i 

i + � i + � i + � 

N in in(n)/n − p>i N in in(n)/n − p>i
in1/i>i >i a.s.−→ 0.≤ + + 

i=0 i=0 i=M +1 i=M+1 

The second term in (3.19) converges to 0 almost surely by strong law of large numbers, and the third 
term in (3.19) can be written as ����� 

��Xn
n t − 1 + λN(t − 1) 1 + λ(1 − β)

t=1 

N(t − 1) (1 − β)1 − 1{Jt∈{1,2}} ����� , Xn
+ 1{Jt∈{1,2}} − (α + β)
1 + λ(1 − β) n 

�1 − β 1 

t=1 

X 
which is bounded by 

n
����� 

����� + 

����� 1 n 

Xn
t=1 

����� . N(t − 1) (1 − β) 1 − β 
1 + λ(1 − β) 

1 − 1{Jt∈{1,2}} − (α + β)
t − 1 + λN(t − 1) 1 + λ(1 − β)n 

t=1 

We have ��� ��� Xn
n t − 1 + λN(t − 1) 1 + λ(1 − β) 

N(t − 1) (1 − β)1 −sup 
λ≥� t=1 

= sup 
λ≥� 

����� 
����� Xn

n (1 + λN(t − 1)/(t − 1))(1 + λ(1 − β)) 
N(t − 1)/(t − 1) − (1 − β)1 

t=1 ���� ���� , Xn
n 

t=1 

N(t − 1)/(t − 1) − (1 − β) 
(1 + �N(t − 1)/(t − 1))(1 + �(1 − β)) 

1 ≤ 

which converges to 0 almost surely by Cesàro convergence of random variables, since ���� N(n)/n − (1 − β) 
(1 + �N(n)/n)(1 + �(1 − β)) 

���� a.s.−→ 0, as n →∞. 
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Further, by the strong law of large numbers, 

nX1 − β 
sup 
λ≥� 1 + λ(1 − β) 

����� 
����� 1 

1{Jt∈{1,2}} − (α + β) 
n 

t=1 

1 
����� 

����� a.s.−→ 0, as n →∞. 
n

n 
t=1 

X 
≤ 

1 − β 
1 + �(1 − β) 

1{Jt∈{1,2}} − (α + β) 

Hence the third term of (3.19) also goes to 0 almost surely as n →∞. The result of the lemma follows. 

δMLE We are now ready to establish the consistency for ˆ .in 

Proof of Theorem 3.2. From Lemma 3.3 and the fact that ψ is continuous, for any κ > 0 arbitrarily small, 
there exists εκ > 0 such that ψ(λ) > εκ for λ ∈ [�, δin − κ] and ψ(λ) < −εκ for λ ∈ [δin + κ, K]. From 
Lemma 3.4, ! 

P ∃Nκ s.t. sup sup |ψn(λ) − ψ(λ)| < εκ/2 = 1. (3.20) 
n>Nκ λ∈[�,K] 

Note that Lemma 3.4 implies supλ∈[�,K] |ψn(λ) − ψ(λ)| < εκ/2, which further gives 

ψn(λ) ≥ ψ(λ) − sup |ψn(λ) − ψ(λ)| ≥ εκ − εκ/2 > 0, λ ∈ [�, δin − κ), 
λ∈[�,K] 

and 
ψn(λ) ≤ ψ(λ) + sup |ψn(λ) − ψ(λ)| ≤ −εκ + εκ/2 < 0, λ ∈ (δin + κ, K]. 

λ∈[�,K] 

δMLE These jointly indicate that δin − κ ≤ ˆ ≤ δin + κ. Hence (3.20) implies in �� 
δMLE P lim |ˆ − δin| ≤ κ = 1,in 

n→∞ 

a.s.
δMLE for arbitrary κ > 0. That is, ˆ −→ δin.in 

3.1.3. Asymptotic normality of MLE 

In the following theorem, we establish the asymptotic normality for the MLE estimator 

MLE ˆ αMLE β̂MLE δ̂MLE δ̂MLE θ = (ˆ , , , ).n in out 

MLE 
Theorem 3.5. Let θ̂ be the MLE estimator for θ, the parameter vector of the preferential attachment n 
model. Then √ MLE d

n(θ̂ − θ) → N (0, Σ(θ)) , (3.21)n 

where ⎡ ⎤1−β 1 0 0α(1−α−β) 1−α−β 
1 1−α 0 0⎢⎢⎣ ⎥⎥⎦Σ−1(θ) = I(θ) = 1−α−β β(1−α−β) , (3.22)
0 0 Iin 0 
0 0 0 Iout 

with 

Iin = 
X∞
i=0 

inp γ (α + β)(1 − β)2 
>i − − , (3.23)

(i + δin)2 δ2 
in 

2
(1 + δin(1 − β))
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∞X outp>j α (γ + β)(1 − β)2 

Iout = − − . 
δ2 2 

j=0 
(j + δout)2 

out (1 + δout(1 − β))

In particular, I(θ) is the asymptotic Fisher information matrix for the parameters, and hence the MLE 
estimator is efficient. 

αMLE β̂MLE ), δ̂MLE δMLE Remark 3.6. From Theorem 3.5, the estimators (ˆ , , and ˆ are asymptotically in out 
independent. 

αMLE β̂MLE ), δ̂MLE δMLE Proof. We first show the limiting distributions for (ˆ , , and ˆ . The joint asymptotic in out 
normality is illustrated at the end of the proof. 
From (3.6) and (3.7), 

n
1 X� � 

αMLE ˆ(ˆ , βMLE ) = 1{Jt=1}, 1{Jt=2} , 
n 

t=1 � � 
where {Jt} is a sequence of iid random variables. Hence the limiting distribution of the pair α̂MLE , β̂MLE 

follows directly from standard central limit theorem. 
δMLE δMLE Next we show the asymptotic normality for ˆ ; the argument for ˆ is similar. Recall from (3.5), in out 

the score function for δin can be written as � n� X∂ �log L(α, β, δin, δout) =: ut(δ),�∂δin δ t=1 

where ut is defined by 

1 N(t − 1) 
ut(δ) := 1{Jt∈{1,2}} − 1{Jt∈{1,2}}. (3.24)

(t−1) (2) t − 1 + δN(t − 1)D (v ) + δin t 

n n
δMLE The MLE estimator ˆ can be obtained by solving 

P
t=1 ut(δ) = 0. By a Taylor expansion of 

P
t=1 ut(δ),in 

n n nX X X 
δMLE δMLE 0 = ut(ˆ ) = ut(δin) + (ˆ u̇t(δ̂

∗ (3.25)in in − δin) in), 
t=1 t=1 t=1 

δ∗ δMLE where u̇t denotes the derivative of ut, and ˆin = δin + ξ(ˆin − δin) for some ξ ∈ [0, 1]. An elementary 
transformation of (3.25) gives ! ! 

nX 
1/2(δ̂MLE 1 −1/2 n − δin) = − P n .in n ut(δin)−1n u̇t(δ̂∗ )t=1 in t=1 

To establish 
d1/2(δ̂MLE n − δin) → N(0, I−1),in in 

where Iin is as defined in (3.23), it suffices to show the following two results: P−1/2 n d
(i) n → N(0, Iin),t=1 ut(δin) 

−1 n 
δ∗ p

(ii) n
P

u̇t(ˆ ) → −Iin.t=1 in

These are proved in Lemmas 3.7 and 3.8, respectively. 

Lemma 3.7. As n →∞, 
nX 

d−1/2 n ut(δin) → N(0, Iin). (3.26) 
t=1 
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Proof. Let Fn = σ(G(0), . . . , G(n)) be the σ-field generated by the information contained in the graphs. We 
n 
t=1 ut(δin), Fn, n ≥ 1} is a martingale. To see this, note from (3.24) that |ut(δ)| ≤ 2/δ 

P
first observe that {
and 

E[ut(δin)|Ft−1] 

= E 1{Jt∈{1,2}}(t−1) (2)
D (v ) + δin 

" ����� 
# 

N(t − 1)1 Ft−1 − E[1{Jt∈{1,2}}|Ft−1]
t − 1 + δinN(t − 1)

in t ����� 
" # 

1 
Jt = 1, Ft−1E P[Jt = 1] = 

(t−1) (2)
D (vin" ) + δint ����� 

# 
N(t − 1) 

t − 1 + δinN(t − 1) 
1 

Jt = 2, Ft−1 P[Jt = 2] − (α + β)+ E 
(t−1) (2)

D (v ) + δinin t 

(t−1)
1 D (v) + δin N(t − 1)in − (α + β) 

X 
= (α + β) 

(t−1) t − 1 + δinN(t − 1) t − 1 + δinN(t − 1)D (v) + δinv∈Vt−1 in ⎛⎝ ⎞⎠ X 1 N(t − 1)−= (α + β) 
t − 1 + δinN(t − 1) t − 1 + δinN(t − 1) 

v∈Vt−1 

= 0, n 
n

Pt−1/2 
r=1 ur

o 
(δin) is a zero-mean, which satisfies the definition of a martingale difference. Hence 

t=1,...,n 

square-integrable martingale array. The convergence (3.26) follows from the martingale central limit theory 
(cf. Theorem 3.2 of [8]) if the following three conditions can be verified: 

p| | →(δ ) 0,n max u int t �→ Iin, 

−1/2 P(a) 
p−1 2(b) (δin)n utt 

(c) E n−1 maxt u
2 
t (δin) is bounded in n. 

Since |ut(δin)| ≤ 2/δin, we have 

2−1/2 n max |ut(δin)| ≤ → 0, 
t n1/2δin 

and 
4−1 2 n max ut ≤ → 0. 

t nδ2 
in 

Hence conditions (a) and (c) are straightforward. 
To show (b), observe that !2XXn n

t=1 t=1 

N(t − 1) 
t − 1 + δinN(t − 1) 

1 
n 

1 12 

XX 
(δin) = 1{Jt∈{1,2}} − 

(t−1) (2)n D (v ) + δin 

n n

ut 
in t 

1{Jt∈{1,2}} 1{Jt∈{1,2}} N(t − 1)1 2 −�2 = � (t−1) (2)
D (v ) + δinin t 

t − 1 + δinN(t − 1)n n(t−1) (2)
D (v ) + δint=1 t=1

in t � �2Xn
+ 1{Jt∈{1,2}}n 
1 

t=1 

N(t − 1) 
t − 1 + δinN(t − 1) 

= : T1 − 2T2 + T3. 
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Following the calculations in the proof of Lemma 3.4, we have for T1, 

∞ n ∞XXX N in 
>i

in(n)/n 1 1 γpp→ >i− −T1 = 1{Jt=3} . 
δ2 
in n δ2 

in(i + δin)2 (i + δin)2 
t=1i=0 i=0 

We then rewrite T2 as ��n

(t−1) (2)n 1 + δinN(t − 1)/(t − 1) 1 + δin(1 − β)D (v ) + δint=1 in t 

X 1{Jt∈{1,2}} N(t − 1)/(t − 1) 1 − β − 
1 

T2 = 

n

(t−1) (2)n 1 + δin(1 − β)D (v ) + δint=1 in t 

= : T21 + T22, 

X 1{Jt∈{1,2}} 1 − β1 
+ 

where ���� ���� n

n 
t=1 

δin 

X N(t − 1)/(t − 1) 1 − β1 1 p→ 0|T21| ≤ − 
1 + δinN(t − 1)/(t − 1) 1 + δin(1 − β) 

by Cesàro’s convergence and ! X∞
1 + δin(1 − β) i + δin δin n 

Xn
t=1 

1{Jt =3} 
N in 

>i1 − β (n)/n 1 1 −T22 = 
i=0 ! X∞ p

1 + δin(1 − β) 
i=0 

i + δin δin 

in γ (α + β)(1 − β)2 
>i1 − βp→ − = ,

(1 + δin(1 − β))2 

where the equality follows from (3.16). For T3, similar to T1, we have !� �2Xn
T3 = 1{Jt∈{1,2}}n 

(1 − β)2N(t − 1)/(t − 1)1 − 
(1 + δin(1 − β))21 + δinN(t − 1)/(t − 1)

t=1 Xn
n 

t=1 

(1 − β)2 

(1 + δin(1 − β))2 

(α + β)(1 − β)2 

(1 + δin(1 − β))2 

1 p
1{Jt ∈{1,2}} →+ . 

Combining these results together, 

1 Xn
n 

t=1 X 
2 u (δin) = T1 − 2(T21 + T22) + T3t 

∞ inp γ (α + β)(1 − β)2 
>ip→ − − = Iin. (3.27)

δ2 
in(i + δin)2 (1 + δin(1 − β))2 

i=0 

This completes the proof. 

Lemma 3.8. As n →∞, Xn
n 

t=1 

Proof. The result of this lemma can be established by showing first 

1 
δ ∗ p

u̇t(ˆin) → −Iin. 

1 Xn
n 

t=1 

p
u̇t(δin) → −Iin (3.28) 



 

 

17 Linear Preferential Attachment Model 

and then ����� 
����� 

n n

n n 
t=1 t=1 

XX1 1 p→ 0.δ ∗ u̇t(ˆin) − u̇t(δin) (3.29) 

We first observe that !2 � �2
N(t − 1)1 

u̇t(δ) = − 1{Jt∈{1,2}} + 
(t−1) (2)

D (v ) + δ 
1{Jt∈{1,2}}t − 1 + δN(t − 1)

in t 

N(t − 1)2 = − u (δ) − 2ut(δ) .t t − 1 + δN(t − 1) 

Recall the definition and convergence result for T2 and T3 in Lemma 3.7, we have 

n

n 
t=1 

Also from (3.27), 

X N(t − 1)1 p
T2 − T3 → 0.ut(δin) = 

t − 1 + δinN(t − 1) 

n

n 

X 
=1t

Hence 

1 p2 ut (δin) → Iin. 

Xn n n

n n n 

X 
t=1 t=1 t=1 

and (3.28) is established. 

X N(t − 1)1 1 2 p→ −Iin 
2 u̇t(δin) = − (δin) − ut(δin)ut t − 1 + δinN(t − 1) 

δ̂∗By construction and definition, we have δ̂in, in, δin > 0. To prove (3.29), note that 

δ ∗ |ut(ˆin) − ut(δin)| ≤ 1{Jt∈{1,2}} 

�����D
����� 1 1 − 

(t−1) (2) (t−1) (2)
) + δ̂∗ 

in(v D (v ) + δinin int t����� 
����� N(t − 1) N(t − 1)−+ 1{Jt ∈{1,2}} 

t − 1 + δ̂∗ N(t − 1) t − 1 + δinN(t − 1)
in

= 1{Jt∈{1,2}} 

������ � 
������ δ∗δin − ˆin�� � 

(t−1) (2) (t−1) (2)
D (v ) + δ̂∗ D (v ) + δinin t in in t ������ � 

������ �(N(t − 1))2(δin − δ̂∗ )in

t − 1 + δ̂∗ N(t − 1) (t − 1 + δinN(t − 1))in

+ 1{Jt ∈{1,2}} 

2|δ̂∗ − δin|in≤ . 
δ̂∗ 
inδin 

Then 

2 
���δ̂∗ 

in − δin 

��� ! 
|u 2 

t (δ̂
∗ 
in) − u 2 

t (δin)| = 
��� δ ∗ ut(ˆin) − ut(δin) 

������ δ ∗ ut(ˆin) + ut(δin) 
��� ≤ 

2 2 
+ , 

δ̂∗ δ̂∗ δininδin in 

and ��� N(t − 1) N(t − 1)
δ ∗ ut(ˆin) − ut(δin) 

t − 1 + δ̂∗ N(t − 1) t − 1 + δinN(t − 1)
in

����� 
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N(t−1) N (t−1) N(t−1) 
t−1 t−1 t−1 

����� 
����� ��� ��� ��� ���δ ∗ ut(ˆin) − ut(δin) ut(δ̂

∗ 
in)≤ −+ 

N(t−1) N(t−1) N(t−1)1 + δ̂∗ 
in1 + δin 1 + δint−1 t−1 t−1 

2 
��� − δin 

��� ��� ���δ̂∗ δ̂∗ − δin1 2in in 
≤ + . 

δ̂∗ δ̂∗ δ̂∗δininδin in inδin 

δMLE From Theorem 3.2, ˆ is consistent for δin, hence in ���δ̂∗ 
in − δin 

��� ≤ 
��� ��� p→ 0.δ̂MLE − δinin 

We have ����� 
����� 

n n

n n 
t=1 t=1 

XX1 
δ ∗ u̇t(ˆin) − 

1 
u̇t(δin) 

��� ��� ��� 2 ut (δ̂
∗ 
in) − u (δin) 

��� n

n n 

nX 
X nX 

t=1 

1 1 
u̇t(δ̂

∗ 2 
t≤ ≤in) − u̇t(δin) 

t=1 ����� 
����� N(t − 1) N(t − 1)2 

ut(δ̂
∗ 
in) − ut(δin)+ 
t − 1 + δ̂∗ 

in
t − 1 + δinN(t − 1) ���

N(t − 1) 

δ̂∗ 

n 
t=1 

2 
��� ��� ��� ��� ��� ! 
δ̂∗ δ̂∗− δin − δin − δin42 2 1 4in in in p→≤ 0.+ + + 
δ̂∗ δ̂∗ δ̂∗ δ̂∗ δ̂∗δin δininδin in inδin in inδin 

This proves (3.29) and completes the proof of Lemma 3.8. 

MLE 
We now establish the joint asymptotic normality of the MLE estimator θ̂ . Denote the joint score n 

function vector for θ by 

∂ T
log L(θ) =: Sn(θ) = (Sn(α), Sn(β), Sn(δin), Sn(δout)) ,

∂θ 

where Sn(α), Sn(β), Sn(δin), Sn(δout) are the score functions for α, β, δin, δout, respectively. A multivariate 
Taylor expansion gives � �� �� ∗ �

MLE MLE 
θ̂ = Sn(θ) + Ṡn θ̂ θ̂n − θ0 = Sn , (3.30)n n � �∗ MLE 

n − θwhere Ṡn denotes the Hessian matrix of the log-likelihood function log L(θ), and θ̂ = θ + ξ ◦ θ̂n 

for some vector ξ ∈ [0, 1]4, where “◦” denotes the Hadamard product. From Remark 3.1, the likelihood 
function L(θ) can be factored into 

L(θ) = f1(α, β)f2(δin)f3(δout). 

Hence ⎡ ⎢⎢⎢⎢⎢⎣ 

∗ 
∂2 log Ln(θ̂ )n

∂α2 
∗ 

∂2 log Ln(θ̂ ) 
∂β∂α 

n

⎤∗ 
∂2 log Ln(θ̂ )n 0 0∂α∂β 

∗ 
∂2 log Ln(θ̂ )n 0 0∂β2 

∗ 
∂2 log Ln (θ̂ )n

∂δ2 
in 

0 

⎥⎥⎥⎥⎥⎦ 
p→ I(θ) 

1 ∗ 
Ṡn(θ̂ ) = (3.31)n

0 0n 

0 0 0 
∗ 

∂2 log Ln(θ̂ )n

∂δ2 
out 

as implied in the previous part of the proof, where I(θ) is as defined in (3.22) and is positive semi-definite. 
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Note that (Sn(α), Sn(β)), Sn(δin), Sn(δout) are pairwise uncorrelated. As an example, observe that Z 
∂ log L(θ) ∂ log L(θ)

E[Sn(α)Sn(δin)] = L(θ)dx 
∂α ∂δinZ 

∂ log f1(α, β) ∂ log f2(δin) 
= f1(α, β)f2(δin)f3(δout)dx 

∂α ∂δinZ 
∂f1(α, β) ∂f2(δin) 

= f3(δout)dx 
∂α ∂δinZ 

∂2 

= L(θ)dx 
∂α∂δin 

= 0 = E[Sn(α)]E[Sn(δin)]. 

Using the Cramér-Wold device, the joint convergence of Sn(θ) follows easily, i.e., 

d−1/2Snn (θ) → N(0, I(θ)). 

From here, the result of the theorem follows from (3.30) and (3.31). 

3.2. Estimation based on one snapshot 

Based only on the single snapshot G(n), we propose a parameter estimation procedure. Since no information 
on the initial graph G(n0) is available, we assume that n0 and N(n0) are negligible compared to n and N(n).� � � � 

N in NoutAmong the sufficient statistics for (α, β, δin, δout) derived in Remark 3.1, (n) , (n) are>i >ji≥0 j≥0 

computable from G(n), but the (Jt)nt=1 are not. However, when n is large, we can use the following approx-
imations according to the proof of Lemma 3.4: 

nX1 
1{Jt=3} ≈ 1 − α − β, 

n 
t=n0+1 

and 
nX1 N(t) 1 − β 

1{Jt∈{1,2}} ≈ (α + β) . 
n t + δinN(t) 1 + δin(1 − β)

t=n0 +1 

Replacing them in (3.9), we estimate δin in terms of α and β by solving 

X N in∞
(n)/n 1 − α − β (α + β)(1 − β)>i − − = 0. (3.32) 

i=0 
i + δin δin 1 + (1 − β)δin 

Note that a strongly consistent estimator of β can be obtained directly from G(n): 

N(n) a.s.
β̃ = 1 − −→ β. 

n 

inTo obtain an estimate for α, we make use of the recursive formula for {p } in (3.13a): i � � 
(α + β)δin in1 + p = α, (3.33)01 + (1 − β)δin 

in by N inand replace p (n)/n for large n,0 0 � � 
N in(α + β)δin (n)01 + = α. (3.34)

1 + (1 − β)δin n 
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Plug the strongly consistent estimator β̃ into (3.32) and (3.34), and we now show that solving the system of 
equations: X∞ N in (n)/n 1 − α − β̃ (α + β̃)(1 − β̃)>i − − = 0, (3.35a)

i + δin δin 1 + (1 − β̃)δini=0 ! 
N in(α + β̃)δin (n)01 + = α, (3.35b) 

1 + (1 − β̃)δin n 

gives the unique solution (α̃, δ̃in) which is strongly consistent for (α, δin). 

Theorem 3.9. The solution (α̃, δ̃in) to the system of equations in (3.35) is unique and strongly consistent 
for (α, δin), i.e. 

a.s. a.s.˜α̃ −→ α, δin −→ δin. P 
Proof. First observe that i iNi 

in(n) sums up to the total number of edges n, so X X 
= 

∞

n n 
i=0 i=0 

We can re-write (3.35a) as 

∞
N in 

>i iN in 
i(n) (n) 

= 1. 

!� ! 
∞

X 
δin i + δin δin 

∞

X X∞

1 − β̃N in (n)/n>i1 1 
α + β̃ − −= 

1 + δin(1 − β̃)
i=0 !�� � 

N in 
>i N in 

>i(n)/n (n)/n 1 −= 
δin(1 + δin(1 − β̃))δin i + δini=0 i=0 

N in � � 
>i(n) i 

1 + δin(1 − β̃) =: fn(δin), (3.36) 
∞X 

= 
n i + δini=1 

and (3.35b) as � ��� � 
N in N in(n) (n)0 0 δin

α + β̃ = + β̃ 1 − =: gn(δin). 
n n 1 + (1 − β̃)δin 

Then δ̃in can be obtained by solving 

fn(δ) − gn(δ) = 0, δ ∈ [�, K]. 

Similar to the proof of Theorem 3.2, we define the limit versions of fn, and gn as follows: 

∞X iinf(δ) := p (1 + δ(1 − β)),>i i + δ 
i=1 �� � � � δin in g(δ) := p + β 1 − p , δ ∈ [�, K].0 0 1 + (1 − β)δ 

Now we apply the re-parametrization � � 
δ 1 1 

η := ∈ , =: I (3.37)
1 + δ(1 − β) �−1 + 1 − β K−1 + 1 − β 

to f and g, such that 

f̃(η) := f(δ(η)) = 
∞X 

,
1 + (i−1 − (1 − β))η 

i=1 

inp>i 
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inp + β0 g̃(η) := g(δ(η)) = . 
1 − ηpin 

0 

Note that for all η ∈ I: 

• Set bi(η) := (i−1 − (1 − β))η, then 1 + bi(η) > 0 for all i ≥ 1. So f̃(η) > 0 on I; 
1 P∞ in• f̃(η) ≤ >i ≤ 1 + (1 − β)K < ∞.1−(1−β)η i=0 p

Meanwhile, g̃ is also well defined and strictly positive for η ∈ I because 

1/pin > 1/(1 − β) > η. (3.38)0 

The first inequality holds since: 

in1/pin > 1/(1 − β) ⇔ p < 1 − β0 0 
α ⇔ < 1 − β 

(α+β)δin1 + 1+(1−β)δin 

(1 − β)(α + β)δin⇔ α + β < 1 + 
1 + (1 − β)δin 

⇔ α + β < 1 + (1 − β)δin. 

We know α + β < 1 by our model assumption, thus verifying (3.38). 
Define for η ∈ I, !−1X∞

g̃(η) 1 + (i−1 − (1 − β))η 

in 1 − ηpin 
>i 01 1 p

h̃(η) := − −= ,
inf̃(η) + βp0i=1 

XX 

then it follows that 
h̃(η) = 0 ⇔ f̃(η) = g̃(η), η ∈ I. 

We now show that h̃ is concave and h̃(η) → 0 as η → 0, then the uniqueness of the solution follows. 
First observe that 

∞ ∞
p>i 

!−1 !−1 
in in∂2 ∂2 ∂2p>ih̃(η) = = 

1 + (i−1 − (1 − β))η∂η2 ∂η2 ∂η2 1 + bi(η)i=1 i=1 !−3 " !#2 !−2 ! X 

X 

XXX∞ ∞ ∞ ∞
p p p p>i >i >i >i= 2 − . (3.39)

1 + bi(η) ∂η 1 + bi(η) 1 + bi(η) ∂η2 1 + bi(η)i=1 i=1 i=1 i=1 

We now claim that 

∞

in in in in∂2∂ 

! � �XX∞ ∞
p p>i >i 

∂η 1 + bi(η) ∂η 1 + bi(η) 

inp (i−1 − (1 − β))>i
in in∂ ∂ 

= − (3.40)= ,
(1 + bi(η))2 

i=1 i=1 X i=1 

∞! � �XX∞ ∞
p>i 

∂η2 1 + bi(η) ∂η2 

inp (i−1 − (1 − β))2 
>i

in in∂2 ∂2 p>i 

1 + bi(η) 
= 2 (3.41)= . 

(1 + bi(η))3 
i=1 i=1 i=1 

It suffices to check: ���� ����� < ∞, 
X∞
i=1 

sup 
η∈I 

���� ∂2 

∂η2 

� ����� < ∞. 
�X∞

i=1 

in in∂ p>i 

∂η 1 + bi(η) 
p>i 

1 + bi(η)
sup 
η∈I 
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Note that for i ≥ 1, ���� ������ in 

= sup 
pin 
>i|i−1 − (1 − β)|∂ p>i 

∂η 1 + bi(η)
sup 
η∈I η∈I (1 + bi(η))2 

in 
>i in≤ (2 − β) sup 
p

≤ (2 − β)(1 + (1 − β)K)2 p 
η∈I (1 + bi(η))2 >i. 

Recall (3.18), we then have 

X 

∞ ∞ ∞ k−1 ∞
in in in p = p = p = kpin = 1.>i k k k 

i=0 i=0 k>i k=0 i=0 k=0 

X 
Hence, 

∞ ∞
p

XXX 

>i 

X 

X 

X 

���� ����� �in∂ in≤ (2 − β)(1 + (1 − β)K)2 psup >i∂η 1 + bi(η)η∈Ii=1 i=0 

= (2 − β)(1 + (1 − β)K)2 < ∞, 

which implies (3.40). Equation (3.41) then follows by a similar argument. Combining (3.39), (3.40) and (3.41) 
gives !−3X∞ p>ih̃(η) = 2 

in∂2 

∂η2 1 + bi(η)i=1⎡ !2 ! !# ∞

i=1 

X X∞ p>i− 
X∞

1 + bi(η) (1 + bi(η))3 

inp>i(i
−1 − (1 − β)) in inp>i(i

−1 − (1 − β))2 ⎣ < 0,× 
(1 + bi(η))2 

i=1 i=1 

by the Cauchy-Schwarz inequality. Hence h̃ is concave on I. 
From Lemma 3.3, ψ(δin) = 0 where ψ(·) is as defined in (3.12). Hence we have f(δin) = α + β in a similar 

derivation to that of (3.36). Also from (3.33), we have g(δin) = α + β. Hence, δin is a solution to f(δ) = g(δ). 
Under the δ 7→ η reparametrization in (3.37), we have that f̃(ηin) = g̃(ηin) where ηin := δin/(1+δin(1−β)), 

and also X∞
in in inlim f̃(η) = p>i = 1 − p = β + p = lim g̃(η).>0 0 

η↓0 η↓0 
i=1 

This, along with the concavity of h̃, implies that ηin is the unique solution to h̃(η) = 0, or equivalently, to 
f̃(η) = g̃(η) on I. 
Let f̃  

n(η) := fn(δ(η)), g̃n(η) := gn(δ(η)). We can show in a similar fashion that η̃ := δ̃in/(1 − δ̃in(1 − β̃)) 
is the unique solution to f̃  

n(η) = g̃n(η). Using an analogue of the arguments in the proof of Theorem 3.4, 
we have 

a.s. a.s.
sup |f̃  

n(η) − f̃(η)| −→ 0, sup |g̃n(η) − g̃(η)| −→ 0, 
η∈I η∈I 

a.s.
and therefore η̃ −→ ηin. Since δ 7→ η is a one-to-one transformation from [�, K] to I, we have that δ̃in is 

a.s.
the unique solution to fn(δ) = gn(δ) and that δ̃in −→ δin. On the other hand, α̃ can be solved uniquely by 
plugging δ̃in into (3.36) and is also strongly consistent, which completes the proof. 

The parameters δ̃out and γ̃ can be estimated by a mirror argument. We summarize the estimation proce-
dure for (α, β, γ, δin, δout) from the snapshot G(n) as follows: 

1. Estimate β by β̃ = 1 − N(n)/n. 



� 
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2. Obtain δ̃in by solving 

∞X N in N0
in(n)

(n) i + β̃>i n(1 + δin(1 − β̃)) = 
N in . 

(n)n i + δin 0 δin1 −i=1 n 1+(1−β̃)δin 

3. Estimate α by 
N in 

0 (n) 
+ β̃nα̃ = β. 

N in − ˜
(n) ˜

0 δin1 − n 1+(1−β̃)δ̃in 

4. Obtain δ̃out by solving 

∞
jX Nout 

0 (n) 
+ β̃Nout(n)>j n(1 + δout(1 − β̃)) = 

Nout . 
(n)0 δoutj + δoutn 1 −j=1 n 1+(1−β̃)δout 

5. Estimate γ by 
N out (n)0 + β̃ nγ̃ = β. ˜− 

p

N out (n)0 δout1 − n 1+(1−β̃)δout 

Note that though this procedure does not guarantee α̃ + β̃ + ˜ α, ˜ γ areγ = 1 precisely, all three estimators ˜ β, ̃
a.s.

strongly consistent, so α̃ + β̃ + γ̃ −→ 1. 

4. Simulation study 

We now apply the estimation procedures described in Sections 3.1 and 3.2 to simulated data, which allows us 
to compare the estimation results using the full evolution of the network with that using just one snapshot. 
Algorithm 1 is used to simulate realizations of the preferential attachment tnetwork. 

4.1. MLE 

For the first scenario of having full evolution of the network, we simulate 5000 independent replications of 
the preferential attachment network with 105 edges under the true parameter 

θ = (α, β, δin, δout) = (0.3, 0.5, 2, 1). 

For each realization, the MLE estimate of the parameters is computed and standardized according to its 
asymptotic limit (3.21), i.e., by 

(θ̂n)i − (θ)i 
, (4.1) 

σ2 /nii

where (θ̂n and θ respectively, and σ2 
ii)i and (θ)i denote the i-th components of θ̂n is the i-th diagonal 

component of Σ(θ). 
The QQ plots of the normalized estimates are shown in Figure 4.1, all of which line up quite well with 

the y = x line (the red line). This reaffirms the asymptotic theory in Theorem 3.5. We can obtain confidence 
intervals for θ by replacing the variance with estimated asymptotic variance of θ̂n given by �⎡ ⎤ 

αMLE αMLE ˆ 1 − ˆ −ˆ �αMLE β̂MLE 0 0� ⎢⎢⎢⎣ ⎥⎥⎥⎦ , αMLE β̂MLE β̂MLE βMLE −ˆ 1 − ˆ1 1 0 0
Σ̂ := 

Î−1 
in 0n n 0 0 

Î−10 0 0 out 



24 Wan et al. 

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot of α=0.3

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot of β=0.5

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
2

0
2

4

Normal Q−Q Plot of δin=2

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
4

−
2

0
2

Normal Q−Q Plot of δout=1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Fig 4.1. Normal QQ-plots for normalized estimates in (4.1) under 5000 replications of a preferential attachment network with 
105 edges and θ = (0.3, 0.5, 2, 1). The fitted lines in black are the traditional qq-lines used to check normality of the estimates. 
The red line is the y = x line in all plots. 

where � �� �2 
∞ αMLE βMLE βMLE X N in αMLE − β̂MLE ˆ + ˆ 1 − ˆ(n)/n 1 − ˆ>iÎin = � �2 − � �2 − � � ��2 , 

δMLE δ̂MLE δMLE βMLE i=0 i + ˆ 1 + ˆ 1 − ˆin in in � �� �2 
αMLE βMLE ∞ Nout αMLE 1 − ˆ 1 − ˆ

Îout = � �2 − � �2 − � �2 . 
X 

>j (n)/n ˆ

δMLE δ̂MLE δMLE βMLE )j=0 j + ˆ 1 + ˆ (1 − ˆout out out 

Given a single realization, the (1 − ε) confidence interval for (θ)i can be written as r 
ii(θ̂n)i ± zε/2 
σ̂2 

for i = 1, . . . , 4, 
n 

where zε/2 is the upper ε/2 quantile of N(0, 1) and σ̂2 is the i-th diagonal component of Σ̂.ii 

4.2. One snapshot 

We use the same simulated data as in Section 4.1, and obtain parameter estimates θ̃n α, ˜ δin, δ̃out) using := (˜ β, ˜

only the final snapshot, following the procedure described at the end of Section 3.2. The same normalization 
is applied by the true mean and true variance of the full MLE: 

(θ̃n)i − (θ)i p , i = 1, . . . , 4, (4.2) 
σ2 /nii
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Fig 4.2. Normal QQ-plots for the normalized estimates in (4.2) under 5000 replications of a preferential attachment network 
with 105 edges and θ = (0.3, 0.5, 2, 1). The fitted lines in black are the traditional qq-lines used to check normality of the 
estimates. The red line is the y = x line in all plots. 

where (θ̃n)i denotes the i-th components of θ̃n. 
Figure 4.2 gives QQ-plots for the normalized estimates from the snapshots. Again, the fitted lines in black 

are the traditional qq-lines and the red lines are the y = x line. The estimates of all four parameters look 
normal, but the slope of the QQ-lines for α̃, δ̃in, δ̃out are much steeper than the diagonal line, which gives an 
indication of the relative efficiency of θ̃n compared to θ̂n. The asymptotic relative efficiencies (ARE) are 

α(1 − α) α(1 − α)
ARE(α̃) = lim ≈ ≈ 0.2026, (4.3) 

n→∞ nVar(α̃) dnVar(α̃) 
I−1 Ĩ−1 
in inARE(δ̃in) = lim ≈ ≈ 0.1922, 

n→∞ dnVar(δ̃in) nVar(δ̃in) 

I−1 Ĩ−1 
out outARE(δ̃out) = lim ≈ ≈ 0.1693. 

n→∞ dnVar(δ̃out) nVar(δ̃out) 

Comparing Figure 4.2 to Figure 4.1, we see that though using one snapshot gives consistent estimation, 
it inflates the estimator variance for all parameters except for β, where the true MLE (3.7) can be estimated 
directly from G(n). This is as expected since knowing only the final snapshot provides far less information 
than the whole network history. 
Given a single realization, the variance of the estimates can be estimated through resampling as follows. 

Using the estimated parameter θ̃, we simulate 104 independent replications of the network with 105 edges. 
Next, the model is fitted to each simulated network and the resulting parameter estimates, denoted by � � 

ˆ̂ ˆ̂ β, ˆ̂ ˆ̂
θn := α, ˆ̂ δin, δout , 
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are collected. The sample variance of ˆ̂θn can then be used as an approximation for the variance of θ̃. The 
ARE can be estimated by: 

α̃(1 − α̃)
ARE(α̃) ≈ ≈ 0.2021,dnVar(ˆ̂α) 

Ĩ−1 
inARE(δ̃in) ≈ ≈ 0.1887, dnVar(δˆ̂in) 
Ĩ−1 
outARE(δ̃out) ≈ ≈ 0.1711, dnVar(δˆ̂out) 

all of which correspond well with (4.3). Hence the (1 − ε)-confidence interval for θ, assuming asymptotic 
normality, can be approximated by r � � 

(θ̃n)i ± zε/2 Var (ˆ̂θn)i for i = 1, . . . , 4, 

where zε/2 is the upper ε/2 quantile of N(0, 1). 

5. Real network example 

In this section, we explore fitting a preferential attachment model to a social network. As illustration, we chose 
the Dutch Wiki talk network dataset, available on KONECT (http://konect.uni-koblenz.de/networks/ 
wiki_talk_nl). The nodes represent users of Dutch Wikipedia, and an edge from node A to node B refers 
to user A writing a message on the talk page of user B at a certain time point. The network consists of 
225,749 nodes (users) and 1,554,699 edges (messages). All edges are recorded with timestamps. 
In order to accommodate all the edge formulation scenarios appeared in the dataset, we extend our model 

by appending the following two interaction schemes (Jn = 4, 5) in addition to the existing three (Jn = 1, 2, 3) 
described in Section 2.1. 

• If Jn = 4 (with probability ξ), append to G(n − 1) two new nodes v, w ∈ V (n) \ V (n − 1) and an edge 
connecting them (v, w). 

• If Jn = 5 (with probability ρ), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and self loop (v, v) 
onto itself. 

These scenarios have been observed in other social network data, such as the Facebook wall post network 
(http://konect.uni-koblenz.de/networks/facebook-wosn-wall), etc. They occur in small proportions 
and can be easily accommodated by a slight modification in the model fitting procedure. The new model 
has parameters (α, β, γ, ξ, δin, δout), and ρ is implicitly defined through ρ = 1 − (α + β + γ + ξ). Similar to 
the derivations in Section 3.1, the MLE estimators for α, β, γ, ξ are 

n nX X1 1 
αMLE β̂MLEˆ = 1{Jt=1}, = 1{Jt=2}, 

n n 
t=1 t=1 
n nX X1 1 

γMLE ξ̂MLEˆ = 1{Jt=3}, = 1{Jt=4}, 
n n 

t=1 t=1 

and δin, δout can be obtained through solving P∞ n nX N in 1 X 
>i(n)/n n t=1 1{Jt∈{3,4,5}} 1 N(t)− − 1{Jt∈{1,2}} = 0,
i + δin δin n t + δinN(t)i=0 t=1 

http://konect.uni-koblenz.de/networks/facebook-wosn-wall
http://konect.uni-koblenz.de/networks
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Fig 5.1. In- and out-degree frequencies of the full Wiki talk network (red) and 20 simulated fitted linear preferential attachment 
networks with constant parameters (green). 

P∞ Nout 1 n nX X 
>j (n)/n 

n t=1 1{Jt ∈{1,4,5}} 1 N(t)− − 1{Jt∈{2,3}} = 0. 
j + δout δout n t + δoutN(t)j=0 t=1 

We first naively fit the linear preferential attachment model to the full network using MLE. The MLEs 
are 

(α̂, ˆ γ,ˆ ρ, ˆ δ̂out) = β, ̂ ξ, ˆ δin, 

(3.08 × 10−3 , 8.55 × 10−1 , 1.39 × 10−1 , 4.76 × 10−5 , 3.06 × 10−3 , 0.547, 0.134). 

To evaluate the goodness-of-fit, 20 network realizations are simulated from the fitted model. We overlaid the 
in- and out-degree frequencies of the original network with that of the simulations. If the model fits the data 
well, the degrees of the data should lie within the range formed by that of the simulations. From Figure 5.1, 
we see that while the data roughly agrees with the simulations in the out-degree frequencies, the deviation 
in the in-degree frequencies is noticeable. 
To better understand the discrepancy in the in-degree frequencies, we examined the link data and their 

time stamps and discovered bursts of messages originating from certain nodes over small time intervals. 
According to Wikipedia policy [23], certain administrating accounts are allowed to sent group messages to 
multiple users simultaneously. These bursts presumably represent broadcast announcements generated from 
these accounts. These administrative broadcasts can also be detected when we apply the linear preferential 
attachment model to the network in local time intervals. We divided the total time frame into sub-intervals 
each containing the formation of 104 edges. This generated 20 data sets � � 

{G(nk−1), . . . , G(nk − 1)}, k = 1, . . . , 20 . 

For each of the 20 data sets, we fit a preferential attachment model using MLE. The resulting estimates 
(δ̂in, δ̂out) are plotted against the corresponding timeline on the upper left panel of Figure 5.2. Notice that δ̂in 

exhibits large spikes at various times. Recall from (2.1), a large value of δin indicates that the probability of 
an existing node v receiving a new message becomes less dependent on its in-degree, i.e., previous popularity. 
These spikes appear to be directly related to the occurrences of group messages. This plot is truncated after 
the day 2016/3/16, on which a massive group message of size 48,957 was sent and the model can no longer 
be fit. 
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Fig 5.2. Local parameter estimates of the linear preferential attachment model for the full and reduced Wiki talk network. 
Upper left: (δ̂in, δ̂out) for the full network. Upper right, lower left, lower right: (δ̂in, δ̂out), β, ˆ (ˆ ξ, ˆ(ˆ γ), α, ˆ ρ) for the reduced 
network, respectively. 

We identified 37 users who have sent, at least once, 40 or more consecutive messages in the message history. 
This is evidence that group messages were sent by this user. We presume these nodes are administrative 
accounts; they are responsible for about 30% of the total messages sent. Since their behavior cannot be 
regarded as normal social interaction, we exclude the messages from these accounts from the dataset in our 
analysis. We also removed nodes with zero in- and out-degrees. 
The re-estimated parameters after the data cleaning are displayed in the other three panels of Figure 5.2. 

Here all parameter estimates are quite stable through time. This suggests that the network is less likely to 
contain large-scale group messages which stands out among normal individual interactions. 
The reduced network now contains 112,919 nodes and 1,086,982 edges, to which we fit the linear prefer-

ential attachment model. The fitted parameters based on MLE for our reduced dataset are 

(α̂, ˆ γ,ˆ ρ, δ̂in, δ̂out) = β, ̂ ξ, ˆ

(6.95 × 10−3 , 8.96 × 10−1 , 9.10 × 10−2 , 1.44 × 10−4 , 5.61 × 10−3 , 0.174, 0.257). 

Again the degree distributions of the data and 20 simulations from the fitted model are displayed in Figure 
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Fig 5.3. In- and out-degree distributions of the reduced Wiki talk network (red) and 20 simulated fitted linear preferential 
attachment networks with constant parameters (green). 

5.3. The out-degree distribution of the data agrees reasonably well with the simulations. For the in-degree 
distribution, the fit is better than that for the entire dataset (Figure 5.1). However, for smaller in-degrees, 
the fitted model over-estimates the in-degree frequencies. We speculate that in many social networks, the 
out-degree is inlined with that predicted by the preferential attachment model. An individual node would be 
more likely to reach out to others if having done so many times previously. For in-degrees, the situation is 
complicated and may depend on a multitude of factors. For instance, the choice of recipient may depend on 
the community that the sender is in, the topic being discussed in the message, etc. As an example a group 
leader might send messages to his/her team on a regular basis. Such examples violate the base assumptions 
of the preferential attachment model and could result in the deviation between the data and the simulations. 

While the linear preferential attachment model is perhaps too simplistic for the Wiki talk network dataset, 
it has the ability to illuminate some gross features, such as the out-degrees, as well as to capture important 
structural changes such as the group message behavior. As a result, it may be used as a building block for more 
flexible models. Modification to the existing model formulation and more careful analysis of changepoints in 
parameters is a direction for future research. 

6. Parameter estimation using asymptotics 

So far we have seen procedures to fit the linear preferential attachment model under two data scenarios. 
Both procedures produce consistent and asymptotically normal estimators, but are heavily dependent on 
the correctness of the model. For real social network data, this adherence to the model assumptions is hard 
to guarantee and the issue becomes how much does one trust the correctness of the model. 

In this section, we propose a semi-parametric asymptotic method through estimating the one-dimensional 
tail indices of both in- and out-degrees using extreme value analysis. This estimation procedure uses only the 
portion of the nodes with large degrees in the network data. For simulated data from a known model, these 
estimates do not perform as well as MLE; yet when the underlying model is misspecified, this procedure 
should be useful. 
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6.1. Methodology 

We first give an overview of a method based on extreme value theory, and then apply it to the linear 
preferential attachment setting in Section 6.2 as a benchmark. 
Let M(R2 \ {0}) be the set of Borel measures on R2 \ {0} that are finite on sets bounded away from the + + 

origin. A random vector (X, Y ) ≥ 0 is non-standard regularly varying on R2 \ {0}, if there exists regularly + 
varying functions b1, b2 with positive indices, called the scaling functions, and a measure ν(·) ∈ M(R2 \{0}),+ 
called the limit or tail measure, such that as t →∞, �� 

X Y 
�� 

∈ · → ν(·), in M(R2 \ {0}),+tP (6.1),
b1(t) b2(t) 

in the sense of M-convergence, see [5, 9, 15] for details. Without loss of generality, we assume all scaling 
functions are continuous and strictly increasing. The phrasing in (6.1) implies the marginal distributions 
have regularly varying tails. 
When the scaling functions are power functions, i.e., bi(t) = , ιi > 0, i = 1, 2, the vector can be tιi 

transformed using a power function so that it is standard regularly varying. For instance with a = ι2/ι1, �� 
Xa Y 

�� 
∈ · → ν̃(·), in M(R2 \ {0}),+tP (6.2), 

tι2 tι2 

X 

awhere ν̃ = ν ◦ T −1 with T (x, y) = (x , y). The advantage of the standard form is that one can estimate 
the angular component of the transformed measure [16]. Of course, in order to apply the transformation T , 
one needs to know the tail indices ι1 and ι2. From the data, we estimate these quantities using a method 
proposed in [4] that we refer to as the ‘minimum distance method’. We now give a brief summary of this 
method. 
Given a sample of n iid observations, Z1, . . . , Zn from a power law distribiution, the minimum distance 

method suggests using the thresholded data consisting of the k upper-order statistics, Z(1) ≥ . . . ≥ Z(k), for 
estimating ι. The tail index can be estimated based on these order statistics by the Hill estimator defined by !−1k−1

Z(i)1 
ι̂(k) := log , k ≥ 2. 

k − 1 Z(k)i=1 

X 
To select k, we first compute the Kolmogorov-Smirnov (KS) distance between the empirical distribution of 
the upper k observations and the power-law distribution with index ι̂(k): 

n
����� 

�����1 
�Zi/Z(k) 

−ι̂(k)(y, ∞] − yDk := sup 
y≥1 

, 1 ≤ k ≤ n. 
k 

i=1 

Then the optimal k∗ is the one that minimizes the KS distance 

k ∗ := argmin Dk, 
1≤k≤n 

and we estimate the tail index and threshold by ι̂(k∗) and Z(k∗) respectively. This estimator performs well 
if the thresholded portion comes from a Pareto tail and also seems effective in a variety of non iid scenarios. 
Returning to data satisfying (6.1), after determining marginal tail indices and standardizing the data 

according to (6.2), we apply a polar coordinate transform to the limit measure ν̃ that factorizes into a 
product of a Pareto measure and an angular measure. The angular measure here is one way to describe the 
asymptotic dependence structure of the standardized (X, Y ) (cf. [16, Section 6.1.4]). For models alternative 
to the one given in Section 2, applying parametric or non-parametric estimators to the angular measure 
may give estimates for other model parameters. Section 6.2 provides an example where we can compute the 
asymptotic angular density in closed form and use it as the true density for computing the MLE. 
This semi-parametric asymptotic method may be more robust against modeling error and gives more 

flexibility in the choice of models. In contrast, the full MLE and one-snapshot methods rely heavily on the 
precise model assumptions and may not be accurate when the model is not correctly specified. 
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6.2. Applications to the preferential attachment model 

For the preferential attachment model specified in Section 2.1, the limiting degree distribution (pij ) is jointly 
regularly varying in i and j [19] with power law marginals given by 

∞X 
in p := pij ∼ Cini

−ιin as i →∞, as long as αδin + γ > 0, (6.3)i 
j=0 

∞X 
out p := pij ∼ Couti

−ιout as j →∞, as long as γδout + α > 0, (6.4)j 
i=0 

for some finite positive constants Cin and Cout, where 

1 + δin(α + γ) 1 1 + δout(α + γ) 1 
ιin = 1 + =: 1 + , and ιout = 1 + =: 1 + . (6.5)

α + β c1 β + γ c2 

Therefore instead of estimating (α̂, ˆ δin, δ̂out), one may calculate (ˆ β, ̂ιin, ̂ιout), where ι̂in, ̂ιout are estimates β, ˆ α, ˆ

for the tail indices of the in- and out-degrees that can be obtained by applying the minimum distance method. 
In addition, similar to the one-snapshot case, β is estimated by β̂ = 1 − N(n)/n. 
With β, ˆ ι̂in, ̂ιout determined, the only parameter remaining to be estimated is α and we obtain α̂ from 

the asymptotic angular density as mentioned in Section 6.1. Let (I,O) be the pair of random variables that 
follows the limiting degree distribution pij defined in (3.11) and recall the results from [19]: as t →∞, �� � � 

I O 
tP , ∈ · → ν(·), in M(R2 \ {0}).+t1/(ιin−1) t1/(ιout−1) 

√ 
Applying the power function followed by a switch to polar coordinates, i.e., (Ia, O) 7→ (arctan(O/Ia), I2a + O2), 
where a := c2/c1 = (ιin − 1)/(ιout − 1), the distribution of arctan(O/Ia) given I2a + O2 > r0 converges to a 
random variable Θ as r0 →∞. By [19, Section 4.1.2], the pdf of Θ is given by Z ∞γ δin+1 −1 a c +δin+aδout −t(cos θ)1/a−t sin θdta 1f(θ) ∝ (cos θ) −1(sin θ)δout −1 t e 

δin 0Z ∞α δ

a 
in a−1+c1 +δin+aδout −t(cos θ)1/a−ta sin θdt.+ (cos θ) −1(sin θ)δout t

−1 

e (6.6)
δout 0 

Given the degree counts for all nodes (Ii, Oi), we estimate α̂ by maximizing the likelihood of f(θ) based on 
the observations (Ii, Oi) for which I2a + O2 > r0 for a large threshold r0.i i 
There are two issues when applying the minimum distance method to network data. First, the data is 

node-based and not like those collected from independent repeated sampling. Secondly, the degree counts are 
discrete and do not exactly comply with the Pareto assumption made in the minimum distance method. Our 
analysis shows that even if we ignore these two issues, the tail estimates obtained still perform reasonably 
well. However, if the model is correct, the asymptotic based estimates are dominated by MLE methods. 

6.3. Estimation results 

6.3.1. Tail estimates 

We start with simulating one preferential attachment network with 106 edges under the true parameter 
(α, β, δin, δout) = (0.3, 0.5, 2, 1), so the theoretical values of the tail indices are (ιin, ιout) = (1 + 1/c1, 1 + 
1/c2) = (3.5, 3.14). The Hill plots correspond to the first 2000 upper order statistics of in- and out-degrees 
are included in Figure 6.1. Let i∗ and j∗ be the number of order statistics used for estimating ιin and 
ιout. The minimum distance method suggests choosing (i∗, j∗) = (386, 213), which corresponds to using the 
observations such that I > I∗ and O > O∗ where ( Î∗ , Ô∗) = (52, 85). The tail estimates are (ι̂in, ̂ιout) = 
(3.43, 3.28). 
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Fig 6.1. Hill plots for in- (left) and out-degrees (right). The black dashed lines represent the theoretical values of the tail 
indices, and the red dashed lines reflect the estimation results using the minimum distance method. 

6.3.2. Asymptotic method 

Table 6.1 presents some numerical results using the asymptotic method on simulated data. For each set of 
parameter values (α, β, δin, δout), a network with n = 106 edges is simulated and the true value of (ιin, ιout) is 
computed by (6.5). Then we estimate (ιin, ιout) by both the minimum distance method, denoted by (ι̂in, ̂ιout), 
and from the one-snapshot method applied to the parametric model (cf. Section 4.2), denoted by (ι̃in, ̃ιout). 
With (ι̂in, ̂ιout), α̂ is then estimated from the angular density. There are two underlying assumptions made 

here. First, given degree counts (Ii, Oi) for each node, we are assuming that n is large enough that the joint 
distribution of in- and out-degrees is close to that of the limit pair (I,O) which follows the mass function 
pij . Moreover, after choosing a large r0, we also assume that the distribution of arctan(O/Ia), conditioned 
on I2a + O2 > r0

2, has converged to the limit distribution of the angular component Θ with density as in 
(6.6). 
In our experiment, r0 is chosen to be the upper 99.9%-quantile of (I2a +Oi 

2) (which includes approximately i 
600 observations here, according to our choice of β), and we then fit the limit density f(θ) to the transformed 
data arctan(Oi/Ii

a) for which I2a + O2 > r0
2 .i i 

n (α, β, ιin, ιout) α, ˆ ιin, ̂ιout) (˜ β, ̃ιin, ̃ιout)(ˆ β, ̂ α, ˜

106 (0.3, 0.4, 2.857, 2.857) (0.266, 0.400, 2.837, 2.729) (0.300, 0.400, 2.858, 2.859) 
106 (0.3, 0.4, 3.286, 3.286) (0.302, 0.399, 3.258, 3.261) (0.302, 0.399, 3.290, 3.295) 
106 (0.3, 0.4, 5, 5) (0.300, 0.400, 4.486, 4.852) (0.302, 0.400, 5.051, 5.013) 
106 (0.3, 0.4, 3.286, 4.143) (0.328, 0.400, 3.365, 4.516) (0.300, 0.400, 3.283, 4.156) 
106 (0.1, 0.4, 4.2, 2.778) (0.050, 0.400, 4.304, 2.719) (0.100, 0.400, 4.215, 2.778) 
106 (0.4, 0.4, 3, 3.667) (0.431, 0.400, 3.021, 3.518) (0.400, 0.400, 3.005, 3.668) 

Table 6.1 
Estimates for (ιin, ιout) using both minimum distance and one-snapshot methods. 

For simulated data where we know the model is correct, one-snapshot parametric estimation described in 
Section 3.2 gives more accurate estimates in all cases than the asymptotic methods which may suffer from 
three possible sources of errors. The first is that both (6.3) and (6.4) hold only asymptotically for large 
in-/out-degrees, so the proportion of observations that exceeds the estimated threshold might be small. For 
example, in the case where (α, β, ιin, ιout) = (0.3, 0.4, 5, 5), the largest in-(out-)degree is 114(210), respec-
tively, and we are using the largest 134(39) observations to estimate ιin (ιout). Under such circumstances, the 
tail estimates (ι̂in, ̂ιout) will be more variable across simulation runs, leading to inaccuracy in the estimation 
of a before even attempting to calculate α by MLE from the angular density. 
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Secondly, as noted before, estimating α̂ from (6.6) not only depends on the accuracy of ι̂in and ι̂out, 
but also on whether n is large enough that (6.2) thought of as an approximation is valid. Has the network 
evolved long enough? Thirdly, the polar-transformed data arctan(Oi/Ii

a) for which I2a + O2 > r2 is not i i 0 
generated from the angular density f(θ) directly. This double limit approximation introduces yet another 
layer of uncertainty and Table 6.1 reveals that α̂ is very inaccurate when the true value of α is relatively 
small (e.g., the fifth row where α = 0.1). 
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	Abstract: 
	Preferential attachment is an appealing mechanism for modeling power-law behavior of the degree distributions in directed social networks. In this paper, we consider methods for ﬁtting a 5-parameter linear preferential model to network data under two data scenarios. In the case where full history of the network formation is given, we derive the maximum likelihood estimator of the parameters and show that it is strongly consistent and asymptotically normal. In the case where only a single-time snapshot of th
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	1. Introduction 
	The preferential attachment mechanism, in which edges and nodes are added to the network based on probabilistic rules, provides an appealing description for the evolution of a network. The rule for how edges connect nodes depends on node degree; large degree nodes attract more edges. The idea is applicable to both directed and undirected graphs and is often the basis for studying social networks, collaborator and citation networks, and recommender networks. Elementary descriptions of the preferential attach
	For many networks, empirical evidence supports the hypothesis that in-and out-degree distributions follow a power law. This property has been shown to hold in linear preferential attachment models, which makes preferential attachment an attractive choice for network modeling [3, 6, 11, 12, 21]. While the marginal degree power laws in a simple linear preferential attachment model were established in [3, 11, 12], the joint regular variation (see [16, 17]) which is akin to a joint power law, was only recently 
	In this paper, we discuss methods of ﬁtting a simple linear preferential attachment model, which is parametrized by θ =(α, β, γ, δin,δout). The ﬁrst three parameters, α, β, γ, correspond to probabilities of the 3 scenarios for adding an edge and hence sum to 1, i.e., α + β + γ = 1. The other two, δin and δout, are tuning parameters related to growth rates. The tail indices of the marginal power laws for the in-and out-degrees can be expressed as explicit functions of θ (see (6.5) below). The graph G(n)=(V (
	The Markov structure of the model allows us to construct a likelihood function based on observing G(n0),G(n0 + 1),...,G(n0 + n). After deriving the likelihood function, we show that there exists a unique 
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	maximum at θ=(ˆβ, ˆδin,δout) and that the resulting maximum likelihood estimator is strongly consistent 
	ˆ
	ˆ

	α, γ, and asymptotically normal. The normality is proved using a martingale central limit theorem applied to function. The limiting distribution also reveals that (ˆβ, ˆδin, δout
	ˆ
	ˆ

	the score α, γ), and are asymptotically independent. From these results, asymptotic properties of the MLE for the power law indices can be derived. 
	ˆ
	ˆ
	ˆ

	For some network data, only a snapshot of the nodes and edges are available at a single point in time, that is, only G(n) is available for some n. In such cases, we propose an estimation procedure for the parameters of the network using an approximation to the likelihood and method of moments. This also produces strongly consistent estimators. These estimators perform reasonably well compared to the MLE when the entire evolution of the network is known but predictably there is some loss of eﬃciency. 
	We illustrate the estimation procedure for both scenarios using simulated data. Simulation plays an important role in the process of modeling networks since it provides a way to assess the performance of model ﬁtting procedures in the idealized setting of knowing the true model. Also, after ﬁtting a model to real data, simulation provides a check on the quality of ﬁt. Departures from model assumptions can often be detected via simulation of multiple realizations from the ﬁtted network. Hence it is important
	Our ﬁtting methods are implemented in a real data setting using the Dutch Wiki talk network [14]. While one should not expect the simple 5-parameter (later extended to 7 parameters) linear preferential attachment model to fully explain a network with millions of edges, it does provide a reasonable ﬁt to the tail behavior of the degree distributions. We are also able to detect important structural features in the network through inspecting the edge evolutions in separate time intervals. 
	Often it is diﬃcult to believe in the existence of a true model, especially one whose parameters are unchanging over time. Perhaps a family of models containing the truth is not available to the modeler. Nevertheless, some models can capture certain salient features in the data, such as heavy-tailed properties of the degree distributions. In cases where a true model family is not apparent, maximum likelihood assuming a model may deliver misleading estimates of model parameters. An alternative to maximum lik
	The rest of the paper is structured as follows. In Section 2, we formulate the linear preferential attachment network model and present an eﬃcient simulation method for the network. Section 3 gives parameter estimators when either the full history is known or when only a single snapshot is available. We test these estimators against simulated data in Section 4 and then explore the Wiki talk network in Section 5. Lastly Section 6 addresses the issue of estimation using asymptotic methods and discusses a semi
	-
	-

	2. Model speciﬁcation and simulation 
	In this section, we present the linear preferential attachment model in detail and provide a fast simulation algorithm for the network. 
	1 
	1 

	2.1. The linear preferential attachment model 
	2.1. The linear preferential attachment model 
	The directed edge preferential attachment model [3, 12] constructs a growing directed random graph G(n)= (V (n),E(n)) whose dynamics depend on ﬁve nonnegative real numbers α, β, γ, δin and δout, where α+β+γ = 
	The directed edge preferential attachment model [3, 12] constructs a growing directed random graph G(n)= (V (n),E(n)) whose dynamics depend on ﬁve nonnegative real numbers α, β, γ, δin and δout, where α+β+γ = 
	1 and δin,δout > 0. To avoid degenerate situations, assume that each of the numbers α, β, γ is strictly smaller than 1. We obtain a new graph G(n) by adding one edge to the existing graph G(n − 1) and index the constructed graphs by the number n of edges in E(n). We start with an arbitrary initial ﬁnite directed graph G(n0) with at least one node and n0 edges. For n>n0, G(n)=(V (n),E(n)) is a graph with |E(n)| = n 

	(n)(n)
	edges and a random number |V (n)| = N(n) of nodes. If u ∈ V (n), D(u) and D(u) denote the in-and 
	in out
	out-degree of u respectively in G(n). There are three scenarios that we call the α, β and γ-schemes, which are activated by ﬂipping a 3-sided coin whose outcomes are 1, 2, 3 with probabilities α, β, γ. More formally, we have an iid sequence of multinomial random variables {Jn,n > n0} with cells labelled 1, 2, 3 and cell probabilities α, β, γ. Then the graph G(n) is obtained from G(n − 1) as follows. 
	v w v w v w 
	α-scheme β-scheme γ-scheme 
	• If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and an edge (v, w) leading from v to an existing node w ∈ V (n − 1). Choose the existing node w ∈ V (n − 1) with probability depending on its in-degree in G(n − 1): 
	(n−1)
	D(w)+ δin
	in
	P[choose w ∈ V (n − 1)] = . (2.1) 
	n − 1+ δinN(n − 1) 
	• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n − 1) with v ∈ V (n − 1) = V (n) and w ∈ V (n − 1) = V (n) and the existing nodes v, w are chosen independently from the nodes of G(n − 1) with probabilities 
	. (n−1) .. (n−1) .
	D(v)+ δout D(w)+ δin
	out in
	P[choose (v, w)] = . 
	n − 1+ δoutN(n − 1) n − 1+ δinN(n − 1) 
	• If Jn = 3 (with probability γ), append to G(n − 1) a new node w ∈ V (n) \ V (n − 1) and an edge (v, w) leading from the existing node v ∈ V (n − 1) to the new node w. Choose the existing node v ∈ V (n − 1) with probability 
	(n−1)
	D(v)+ δout
	out
	P[choose v ∈ V (n − 1)] = . 
	n − 1+ δoutN(n − 1) Note that this construction allows the possibility of having self loops in the case where Jn = 2, but the proportion of edges that are self loops goes to 0 as n →∞. Also, multiple edges are allowed between two nodes. 
	2.2. Simulation algorithm 
	2.2. Simulation algorithm 
	We describe an eﬃcient simulation procedure for the preferential attachment network given the parameter values (α, β, γ, δin,δout), where α + β + γ = 1. The simulation cost of the algorithm is linear in time. This algorithm was provided by Joyjit Roy during his graduate work at Cornell University. 
	Algorithm 1: Simulating a directed edge preferential attachment network 
	Algorithm 
	Input: α, β, δin,δout, the parameter values; G(n0)=(V (n0),E(n0)), the initialization graph; n, the targeted number edges 
	Output: G(n)=(V (n),E(n)), the resulted graph 
	t ← n0 while t<n do 
	N(t) ←|V (t)|Generate U ∼ Uniform(0, 1) if U <α then 
	v← N(t)+1 v← Node Sample(E(t), 2,δin) V (t) ← Append(V (t),N(t) + 1) 
	(1) 
	(2) 

	else if α ≤ U <α + β then v← Node Sample(E(t), 1,δout) v← Node Sample(E(t), 2,δin) 
	(1) 
	(2) 

	else if U ≥ α + β then v← Node Sample(E(t), 1,δout) v← N(t)+1 V (t) ← Append(V (t),N(t) + 1) 
	(1) 
	(2) 

	(1)(2)
	))

	E(t + 1) ← Append(E(t), (v,vt ← t +1 
	end return G(n)=(V (n),E(n)) 
	Function Node Sample 
	Input: E(t), the edge list up to time t; j =1, 2, the node to be sample, representing outgoing and incoming nodes, 
	respectively; δ ∈{δin,δout}, the oﬀset parameter Output: the sampled node, v Generate W ∼ Uniform(0,t + N(t)δ) if W ≤ t then 
	(j)
	v ← v
	dW e 
	else if W >t then
	lm 
	W −t 
	v ← 
	δ 
	return v 
	Using the notation from the introduction, at time t = 0, we initiate with an arbitrary graph G(n0)= 
	(1) (2)
	(V (n0),E(n0)) of n0 nodes, where the elements of E(n0) are represented in form of (v,v) ∈ V (n0) ×
	ii 
	(1) (2)
	V (n0), i =1,...,n0, with v,vdenoting the outgoing and incoming vertices of the edge, respectively. 
	ii 
	To grow the network, we update the network at each stage from G(n − 1) to G(n) by adding a new edge 
	(1) (2)
	(vn ,vn ). Assume that the nodes are labeled using positive integers starting from 1 according to the time order in which they are created, and let the random number N(n)= |V (n)| denote the total number of nodes in G(n). 
	Let us consider the situation where an existing node is to be chosen from V (n) as the vertex of the new edge. Naively sampling from the multinomial distribution requires O(N(n)) evaluations, where N(n) increases linearly with n. Therefore the total cost to simulate a network of n edges is O(n). This is signiﬁcantly burdensome when n is large, which is usually the case for observed networks. We describe a simulation algorithm in Algorithm 1 which uses the alias method [13] for node sampling. Here sampling a
	2
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	To see that the algorithm indeed produces the intended network, it suﬃces to consider the case of sampling 
	To see that the algorithm indeed produces the intended network, it suﬃces to consider the case of sampling 
	an existing node from V (n − 1) as the incoming vertex of the new edge. In the function Node Sample in Algorithm 1, we generate W ∼ Uniform(0,n − 1+ N(n − 1)δin) and set 

	.. 
	(j) v ← vdW e 1{W ≤n−1} + 1{W >n−1}. 
	W − N(n − 1) 
	δ
	in 

	Then 
	.. ..
	.. ..
	.. 

	W − n − 1
	(j)
	P (v = w)= P v= w P (W ≤ n − 1) + P = w P (W >n − 1)
	dW e 
	δ
	in 

	(n−1)
	D(w) n − 11 N(n − 1)δin
	in 
	=+ 
	n − 1 n − 1+ N(n − 1)δin 
	n − 1+ N(n − 1)δin N(n − 1) 

	(n−1)
	D(w)+ δin
	in 
	= , 
	n − 1+ N(n − 1)δin 
	which corresponds to the desired selection probability (2.1). 
	3. Parameter estimation 
	In this section, we estimate the preferential attachment parameter vector (α, β, δin,δout) under two assumptions about what data is available. In the ﬁrst scenario, the full evolution of the network is observed, from which the likelihood function can be computed. The resulting MLE is strongly consistent and asymptotically normal. For the second scenario, the data only consist of one snapshot of the network with n edges, without the knowledge of the network history that produced these edges. For this scenari
	-
	-



	3.1. MLE based on the full network history 
	3.1. MLE based on the full network history 
	3.1.1. Likelihood calculation 
	3.1.1. Likelihood calculation 
	Assume the network begins with the graph G(n0) (consisting of n0 edges) and then evolves according to the description in Section 2.1 with parameters (α, β, δin,δout), where δin,δout > 0 and α, β are non-negative probabilities. The γ is implicitly deﬁned by γ =1 − α − β. To avoid trivial cases, we will also assume α,β,γ < 1 for the rest of the paper. For MLE estimation we restrict the parameter space for δin,δout to be [., K], for some suﬃciently small .> 0 and large K. In particular, the true value of δin,δ
	(1) (2)
	be contained in (., K). Let et =(v,v) be the newly created edge when the random graph evolves from 
	tt 
	G(t − 1) to G(t). We sometimes refer to t as the time rather than the number of edges. 
	Assume we observe the initial graph G(n0), and the edges {et}in the order of their formation. For t = n0 +1,...,n, the values of the following variables are known: 
	n
	t=n
	0
	+1 

	• N(t), the number of nodes in graph G(t); 
	(t−1) (t−1)
	• D(v), D(v), the in-and out-degree of node v in G(t − 1), for all v ∈ V (t − 1);
	in out 
	• Jt, the scenario under which et is created. 
	Then the likelihood function is 
	L(α, β, δin,δout| G(n0), (et)) 
	n
	t=n
	0
	+1

	n(t−1) (2) {Jt=1}
	!
	1

	Y 
	D(v)+ δin
	in t 
	= α 
	= α 
	t − 1+ δinN(t − 1)

	t=n0 +1 
	1{Jt =2}
	!

	n. (t−1) (2) .. (t−1) (1) .
	Y 
	D(v)+ δin D(v
	in t out t out t − 1+ δinN(t − 1) t − 1+ δoutN(t − 1)
	× β 
	)+ δ

	t=n0+1 
	n(t−1) (1) {Jt =3}
	!
	1

	Y 
	D(v)+ δout
	out t
	× (1 − α − β) (3.1)
	t − 1+ δoutN(t − 1)
	t=n0+1 
	and the log likelihood function is 
	logL(α, β, δin,δout| G(n0), (et)) (3.2) 
	n
	t=n
	0
	+1

	nnn
	XX X 
	= log α 1{J=1} + log β 1{J=2} + log(1 − α − β) 1{J=3} 
	t
	t
	t

	t=n0+1 t=n0+1 t=n0+1 n.. n..
	XX 
	(t−1)(2) (t−1) (1)
	+ log D(v)+ δin 1{J∈{1,2}} + log D(v)+ δout 1{J∈{2,3}}
	t
	t

	in t out t t=n0+1 t=n0+1 nn
	XX 
	− log(t − 1+ δinN(t − 1))1{J∈{1,2}} − log(t − 1+ δoutN(t − 1))1{J∈{2,3}}. t=n0+1 t=n0+1 
	t
	t

	The score functions for α, β, δin,δout are calculated as follows: 
	nn
	XX
	∂ 11 
	log L(α, β, δin,δout| G(n0), (et))= 1{J=1} − 1{J=3}, (3.3)
	n
	t=n
	0
	+1
	t
	t 

	∂α α 1 − α − β 
	t=n0+1 t=n0 +1 nn
	XX
	∂ 11 
	log L(α, β, δin,δout| G(n0), (et))= 1{J=2} − 1{J=3}, (3.4)
	n
	t=n
	0 
	+1
	t
	t

	∂β β 1 − α − β 
	t=n0+1 t=n0+1 
	∂ 
	log L(α, β, δin,δout| G(n0), (et)) (3.5) 
	n
	t=n
	0
	+1
	∂δin 

	nn
	XX
	1 N(t − 1) 
	= 1{Jt∈{1,2}} − 1{Jt∈{1,2}},
	(t−1) (2) 
	t − 1+ δinN(t − 1)
	D(v)+ δin
	t=n0+1 in tt=n0 +1 
	∂ 
	log L(α, β, δin,δout| G(n0), (et))
	n
	t=n
	0
	+1
	∂δout 

	nn
	XX
	1 N(t − 1) 
	= 1{Jt∈{2,3}} − 1{Jt∈{2,3}}. 
	(t−1) (1)
	D(v)+ δout out
	t − 1+ δ
	N(t − 1)

	t=n0+1 out tt=n0+1 
	Note that the score functions (3.3), (3.4) for α and β do not depend on δin and δout. One can show that the Hessian matrix of the log-likelihood for (α, β) is positive deﬁnite. Thus setting (3.3) and (3.4) to zero gives the unique MLE estimates for α and β. 
	n
	X
	1 
	αˆ= 1{J=1}, (3.6) 
	MLE 
	t

	n − n0 
	n − n0 

	t=n0+1 n
	X
	1 
	ˆMLE 
	β

	= 1{J=2}. (3.7) 
	t

	n − n0 
	n − n0 

	t=n0+1 
	These estimates are strongly consistent by applying the strong law of large numbers for the {Jt} sequence. Next, consider the ﬁrst term of the score function for δin in (3.5), and we have 
	n∞n
	X XX
	11 
	o
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	(t−1) (2) tD(v)=i,Jt ∈{1,2}
	1
	{J
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	(t−1) 
	(2)

	in t
	D(v)+ δin 
	i + δ
	in

	t=n0+1 in ti=0 t=n0+1 
	no 
	(t−1) (2) (2)
	Observe that D(v)= i, Jt ∈{1, 2} describes the event that the in-degree of node v∈ V (t − 1) is 
	in tt 
	i at time t − 1 and is augmented to i + 1 at time t. For each i ≥ 1, such an event happens at some stage t ∈{n0 +1,n0 +2,...,n} only for those nodes with in-degree ≤ i at time n0 and in-degree >i at time n. Let Nij (n) denote the number of nodes with in-degree i and out-degree j at time n, and N(n) and N
	in
	in 

	i >ito be the number of nodes with in-degree equal to i and greater than i, respectively, so that, 
	(n) 
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	in in in
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	On the other hand, when i = 0, D(v)=0,Jt ∈{1, 2} occurs for some t if and only if all of the 
	in t 
	following three events happen: 
	(2)
	(i) vhas in-degree > 0 at time n;
	t 
	(2)
	(ii) vdoes not have in-degree > 0 at time n0;
	t 
	(2)
	(iii) vwas not created under the γ-scheme (otherwise it would have been born with in-degree 1). 
	t 
	This implies: 
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	Setting the score function (3.5) for δin to 0 and dividing both sides by n − n0 leads to 
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	where the only unknown parameter is δin. In Section 3.1.2, we show that the solution to (3.9) actually maximizes the likelihood function in δin. Similarly, the MLE for δout can be solved from 
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	Remark 3.1. The arguments leading to (3.8) allow us to rewrite the likelihood function (3.1): 
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	3.1.2. Consistency of MLE 
	3.1.2. Consistency of MLE 
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	We remarked after (3.6) and (3.7) that ˆand converge almost surely to α and β. We now prove that the MLE of (δin,δout) is also strongly consistent. Note that if we initiate the network with G(n0) (for both n0 and N(n0) ﬁnite), then almost surely for all i, j ≥ 0, 
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	the graph is initiated with ﬁnitely many nodes and no edges, that is, n0 = 0 and N(0) ≥ 1. In particular, these assumptions imply the sum of the in-degrees at time n is equal to n. 
	Let Ψn(·), Φn(·) be the functional forms of the terms in the log-likelihood function (3.2) involving δin and δout respectively, normalized by 1/n, i.e. 
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	The following theorem gives the consistency of the MLE of δin and δout. 
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	From [3], there exists a proper probability distribution {fij } such that almost surely 
	Nij (n) pij
	Nij (n) pij

	→ fij =: , (n →∞). (3.11)
	N(n)1 − β 
	Deﬁne 
	α + β 
	a1(λ) := , λ> 0. 
	1+ λ(1 − β) 
	1+ λ(1 − β) 

	P
	in
	and denote p:= pij . From [3, Equation (3.10)], 
	j 

	i 
	α
	in 
	p = ,
	0 
	0 
	1+ a1(δin)δin 
	1+ a1(δin)δin 


	.. 
	Γ(i + δin)Γ(1 + δin + a1(δin)) αδin γ
	−1

	in 
	p =+ ,i ≥ 1.
	i 
	1+ a1(δin)δin 
	Γ(i +1+ δin + a1(δin)
	−1
	)Γ(1 + δin) 
	a1(δin) 

	P
	in inin
	We write p(δin) to emphasize the dependence on δin. Deﬁne p(δin):= (δin) and 
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	Here is an outline of the proof. We think of ψ in (3.12) as a limit version of ψn given in (3.10). Lemma 3.3 shows that ψ(·) has a unique zero at δin, and ψ(λ) is positive to the left of δin and negative to the right of δin. Then Lemma 3.4 shows that sup|ψn(λ) − ψ(λ)|→0 almost surely. The result of the theorem follows by a straightforward argument. 
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	Lemma 3.3. For λ> 0, the function ψ(λ) in (3.12) has a unique zero at δin and, ψ(λ) > 0 when λ<δin and ψ(λ) < 0 when λ>δin. 
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	where C(λ) > 0 for all λ> 0. Therefore ψ(·) has a unique zero at δin and ψ(λ) > 0 when λ<δin and ψ(λ) < 0 when λ>δin. 
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	The second term in (3.19) converges to 0 almost surely by strong law of large numbers, and the third term in (3.19) can be written as 
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	In particular, I(θ) is the asymptotic Fisher information matrix for the parameters, and hence the MLE estimator is eﬃcient. 
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	This proves (3.29) and completes the proof of Lemma 3.8. 
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	3.2. Estimation based on one snapshot 
	3.2. Estimation based on one snapshot 
	Based only on the single snapshot G(n), we propose a parameter estimation procedure. Since no information on the initial graph G(n0) is available, we assume that n0 and N(n0) are negligible compared to n and N(n).
	Ł.Ł . 
	in out
	N
	N

	Among the suﬃcient statistics for (α, β, δin,δout) derived in Remark 3.1, (n), (n) are
	>i>j
	i≥0j≥0 computable from G(n), but the (Jt)are not. However, when n is large, we can use the following approximations according to the proof of Lemma 3.4: 
	n
	t=1 
	-

	n
	X
	1 
	1{Jt=3} ≈ 1 − α − β, 
	n 
	t=n0+1 
	and 
	n
	X
	1 1 − β 
	N(t)

	1{J∈{1,2}} ≈ (α + β) . 
	t

	nt + δinN(t) 
	1+ δin(1 − β)

	t=n0 +1 Replacing them in (3.9), we estimate δin in terms of α and β by solving Xin
	N

	(n)/n 1 − α − β 
	∞
	(α + β)(1 − β)

	>i
	−− =0. (3.32) 
	i + δin δin 1 + (1 − β)δin 
	i=0 

	Note that a strongly consistent estimator of β can be obtained directly from G(n): a.s.
	N(n) 

	˜
	β =1 − −→ β. 
	n 
	in
	To obtain an estimate for α, we make use of the recursive formula for {p} in (3.13a): 
	i 
	.. 
	in
	(α + β)δin 

	1+ p = α, (3.33)
	0
	1 + (1 − β)δin in in
	by N

	and replace p(n)/n for large n,
	00 
	.. 
	in
	N

	(α + β)δin (n)
	(α + β)δin (n)

	0
	0

	1+ = α. (3.34)
	1 + (1 − β)δin n 
	Plug the strongly consistent estimator βinto (3.32) and (3.34), and we now show that solving the system of equations: 
	˜

	X
	∞
	in 
	N

	(n)/n 1 − α − β
	˜
	(α + β
	˜
	)(1 − β
	˜
	)

	>i
	−− =0, (3.35a)i + δin δin 1 + (1 − β)δin
	˜

	i=0 
	! 
	in
	N

	(α + β
	(α + β
	˜
	)δin (n)

	0
	0

	1+ 
	1+ 
	1+ 
	= α, (3.35b) 

	1 + (1 − β)δin n 
	˜


	gives the unique solution (˜α, δin) which is strongly consistent for (α, δin). 
	˜

	Theorem 3.9. The solution (˜α, δin) to the system of equations in (3.35) is unique and strongly consistent for (α, δin), i.e. 
	˜

	a.s.a.s.
	˜
	α˜−→ α, δin −→ δin. 
	P 
	Proof. First observe that iN(n) sums up to the total number of edges n, so 
	i 
	i 
	in

	XX 
	= 
	∞
	nn 
	i=0 i=0 
	We can re-write (3.35a) as 
	∞
	in 
	N

	>i
	iNin 
	i
	(n) 
	(n) 
	(n) 
	(n) 

	=1. 

	!! 
	. 

	∞
	X 
	δin i + δin δin 
	∞
	XX
	∞
	1 − β
	˜

	in 
	N

	(n)/n
	>i
	1 
	1 
	1 

	α + β
	˜

	− 
	− 
	−

	= 
	= 
	1+ δin(1 − β)
	˜


	i=0 
	.. . 
	!

	in 
	N

	>i
	in 
	N

	>i
	(n)/n 
	(n)/n 1 
	−
	= 
	= 
	δin(1 + δin(1 − β))
	˜


	δin i + δin
	δin i + δin
	δin i + δin
	i=0 

	i=0 

	in .. 
	N

	>i
	>i
	(n) 

	1+ δin(1 − β) =: fn(δin), (3.36) 
	i 
	˜

	∞X 
	= 
	ni + δin
	i=1 
	and (3.35b) as 
	. ... . 
	in in
	N
	N

	(n)(n)
	(n)(n)

	in
	00 
	δ

	α + β= + β1 − =: gn(δin). nn 1 + (1 − β)δin Then δin can be obtained by solving fn(δ) − gn(δ)=0,δ ∈ [., K]. Similar to the proof of Theorem 3.2, we deﬁne the limit versions of fn, and gn as follows: 
	˜
	˜
	˜
	˜

	∞
	X 
	i
	in
	f(δ) := p (1 + δ(1 − β)),
	>i 
	i + δ 
	i=1 
	.. . 
	�. δ
	in in 
	g(δ) := p + β 1 − p ,δ ∈ [., K].
	00 
	1 + (1 − β)δ 
	1 + (1 − β)δ 

	Now we apply the re-parametrization 
	.. 
	δ 11 
	η := ∈ , =: I (3.37)
	1+ δ(1 − β) .
	1+ δ(1 − β) .
	−1 
	+1 − βK
	−1 
	+1 − β 

	to f and g, such that 
	f(η) := f(δ(η)) = 
	˜

	∞
	X 
	,
	1+(i− (1 − β))η 
	−1 

	i=1 
	in
	p
	>i 
	in
	p+ β
	p+ β

	0 
	0 

	g˜(η) := g(δ(η)) = . 
	1 − ηpin 
	0 
	Note that for all η ∈I: 
	• Set bi(η) := (i− (1 − β))η, then 1 + bi(η) > 0 for all i ≥ 1. So f(η) > 0 on I; 
	−1 
	˜

	1 ∞ in
	P

	• f(η) ≤ ≤ 1 + (1 − β)K< ∞.
	˜
	>i 

	1−(1−β)ηi=0 
	p

	Meanwhile, ˜g is also well deﬁned and strictly positive for η ∈I because 1/p> 1/(1 − β) > η. (3.38)
	in 

	0 
	The ﬁrst inequality holds since: 
	in
	1/p> 1/(1 − β) ⇔ p< 1 − β
	in 

	00 
	α 
	⇔ < 1 − β 
	(α+β)δin
	(α+β)δin

	1+ 
	1+(1−β)δin 
	(1 − β)(α + β)δin

	⇔ α + β< 1+ 
	1 + (1 − β)δin 
	⇔ α + β< 1 + (1 − β)δin. 
	We know α + β< 1 by our model assumption, thus verifying (3.38). Deﬁne for η ∈I, 
	!−1
	X
	∞
	g˜(η) 1+(i− (1 − β))η 
	−1 

	in 
	1 − ηpin 
	>i 
	0

	11 
	p
	˜
	h(η) := 
	− 
	− 
	−

	= 
	,
	in
	f(η) 
	f(η) 
	˜

	+ β

	p
	0
	0
	i=1 

	X
	X 
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	We now show that h is concave and h(η) → 0 as η → 0, then the uniqueness of the solution follows. First observe that 
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	by the Cauchy-Schwarz inequality. Hence h is concave on I. 
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	From Lemma 3.3, ψ(δin) = 0 where ψ(·) is as deﬁned in (3.12). Hence we have f(δin)= α + β in a similar derivation to that of (3.36). Also from (3.33), we have g(δin)= α + β. Hence, δin is a solution to f(δ)= g(δ). 
	Under the δ 7→ η reparametrization in (3.37), we have that f(ηin)=˜g(ηin) where ηin := δin/(1+δin(1−β)), and also 
	˜

	X
	∞
	inin in
	lim f(η)= p=1 − p = β + p = lim g˜(η).
	˜
	>i 

	>00 
	η↓0 η↓0 
	i=1 
	This, along with the concavity of h, implies that ηin is the unique solution to h(η) = 0, or equivalently, to f(η)=˜g(η) on I. 
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	Let fn(η) := fn(δ(η)), ˜gn(η) := gn(δ(η)). We can show in a similar fashion that ˜η := δin/(1 − δin(1 − β)) is the unique solution to fn(η)= g˜n(η). Using an analogue of the arguments in the proof of Theorem 3.4, we have 
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	and therefore ˜η −→ ηin. Since δ 7→ η is a one-to-one transformation from [., K] to I, we have that δin is 
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	the unique solution to fn(δ)= gn(δ) and that δin −→ δin. On the other hand, ˜α can be solved uniquely by plugging δin into (3.36) and is also strongly consistent, which completes the proof. 
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	The parameters δout and ˜γ can be estimated by a mirror argument. We summarize the estimation procedure for (α, β, γ, δin,δout) from the snapshot G(n) as follows: 
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	Note that though this procedure does not guarantee ˜α + β+˜α, γ are
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	γ = 1 precisely, all three estimators ˜β, ˜
	a.s.
	strongly consistent, so ˜α + β+˜γ −→ 1. 
	˜

	4. Simulation study 
	We now apply the estimation procedures described in Sections 3.1 and 3.2 to simulated data, which allows us to compare the estimation results using the full evolution of the network with that using just one snapshot. Algorithm 1 is used to simulate realizations of the preferential attachment tnetwork. 


	4.1. MLE 
	4.1. MLE 
	For the ﬁrst scenario of having full evolution of the network, we simulate 5000 independent replications of the preferential attachment network with 10edges under the true parameter 
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	θ =(α, β, δin,δout) = (0.3, 0.5, 2, 1). 
	For each realization, the MLE estimate of the parameters is computed and standardized according to its asymptotic limit (3.21), i.e., by 
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	The QQ plots of the normalized estimates are shown in Figure 4.1, all of which line up quite well with the y = x line (the red line). This reaﬃrms the asymptotic theory in Theorem 3.5. We can obtain conﬁdence intervals for θ by replacing the variance with estimated asymptotic variance of θn given by 
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	Fig 4.1. Normal QQ-plots for normalized estimates in (4.1) under 5000 replications of a preferential attachment network with 10edges and θ = (0.3, 0.5, 2, 1). The ﬁtted lines in black are the traditional qq-lines used to check normality of the estimates. The red line is the y = x line in all plots. 
	Fig 4.1. Normal QQ-plots for normalized estimates in (4.1) under 5000 replications of a preferential attachment network with 10edges and θ = (0.3, 0.5, 2, 1). The ﬁtted lines in black are the traditional qq-lines used to check normality of the estimates. The red line is the y = x line in all plots. 
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	4.2. One snapshot 
	4.2. One snapshot 
	We use the same simulated data as in Section 4.1, and obtain parameter estimates θn α, δin,δout) using 
	˜
	˜
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	:= (˜β, only the ﬁnal snapshot, following the procedure described at the end of Section 3.2. The same normalization is applied by the true mean and true variance of the full MLE: 
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	Fig 4.2. Normal QQ-plots for the normalized estimates in (4.2) under 5000 replications of a preferential attachment network with 10edges and θ = (0.3, 0.5, 2, 1). The ﬁtted lines in black are the traditional qq-lines used to check normality of the estimates. The red line is the y = x line in all plots. 
	Fig 4.2. Normal QQ-plots for the normalized estimates in (4.2) under 5000 replications of a preferential attachment network with 10edges and θ = (0.3, 0.5, 2, 1). The ﬁtted lines in black are the traditional qq-lines used to check normality of the estimates. The red line is the y = x line in all plots. 
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	where (θn)i denotes the i-th components of θn. 
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	˜

	Figure 4.2 gives QQ-plots for the normalized estimates from the snapshots. Again, the ﬁtted lines in black are the traditional qq-lines and the red lines are the y = x line. The estimates of all four parameters look normal, but the slope of the QQ-lines for ˜α, δin,δout are much steeper than the diagonal line, which gives an indication of the relative eﬃciency of θn compared to θn. The asymptotic relative eﬃciencies (ARE) are 
	˜
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	Comparing Figure 4.2 to Figure 4.1, we see that though using one snapshot gives consistent estimation, it inﬂates the estimator variance for all parameters except for β, where the true MLE (3.7) can be estimated directly from G(n). This is as expected since knowing only the ﬁnal snapshot provides far less information than the whole network history. 
	Given a single realization, the variance of the estimates can be estimated through resampling as follows. Using the estimated parameter θ, we simulate 10independent replications of the network with 10edges. Next, the model is ﬁtted to each simulated network and the resulting parameter estimates, denoted by 
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	are collected. The sample variance of θn can then be used as an approximation for the variance of θ. The ARE can be estimated by: 
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	all of which correspond well with (4.3). Hence the (1 − ε)-conﬁdence interval for θ, assuming asymptotic normality, can be approximated by 
	r 
	.. 
	(θn)i ± zε/2 Var (θn)i for i =1,..., 4, 
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	where zε/2 is the upper ε/2 quantile of N(0, 1). 
	5. Real network example 
	In this section, we explore ﬁtting a preferential attachment model to a social network. As illustration, we chose the Dutch Wiki talk network dataset, available on KONECT (/ wiki_talk_nl). The nodes represent users of Dutch Wikipedia, and an edge from node A to node B refers to user A writing a message on the talk page of user B at a certain time point. The network consists of 225,749 nodes (users) and 1,554,699 edges (messages). All edges are recorded with timestamps. 
	http://konect.uni-koblenz.de/networks

	In order to accommodate all the edge formulation scenarios appeared in the dataset, we extend our model by appending the following two interaction schemes (Jn =4, 5) in addition to the existing three (Jn =1, 2, 3) described in Section 2.1. 
	• 
	• 
	• 
	If Jn = 4 (with probability ξ), append to G(n − 1) two new nodes v, w ∈ V (n) \ V (n − 1) and an edge connecting them (v, w). 

	• 
	• 
	If Jn = 5 (with probability ρ), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and self loop (v, v) onto itself. 


	These scenarios have been observed in other social network data, such as the Facebook wall post network (), etc. They occur in small proportions and can be easily accommodated by a slight modiﬁcation in the model ﬁtting procedure. The new model has parameters (α, β, γ, ξ, δin,δout), and ρ is implicitly deﬁned through ρ =1 − (α + β + γ + ξ). Similar to the derivations in Section 3.1, the MLE estimators for α, β, γ, ξ are 
	http://konect.uni-koblenz.de/networks/facebook-wosn-wall
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	Fig 5.1. In-and out-degree frequencies of the full Wiki talk network (red) and 20 simulated ﬁtted linear preferential attachment networks with constant parameters (green). 
	Fig 5.1. In-and out-degree frequencies of the full Wiki talk network (red) and 20 simulated ﬁtted linear preferential attachment networks with constant parameters (green). 
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	We ﬁrst naively ﬁt the linear preferential attachment model to the full network using MLE. The MLEs are 
	(ˆα, γ,ρ, δout)= 
	ˆ
	ˆ
	ˆ
	ˆ

	β, ˆξ, ˆδin, 
	(3.08 × 10, 8.55 × 10, 1.39 × 10, 4.76 × 10, 3.06 × 10, 0.547, 0.134). 
	−3 
	−1 
	−1 
	−5 
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	To evaluate the goodness-of-ﬁt, 20 network realizations are simulated from the ﬁtted model. We overlaid the in-and out-degree frequencies of the original network with that of the simulations. If the model ﬁts the data well, the degrees of the data should lie within the range formed by that of the simulations. From Figure 5.1, we see that while the data roughly agrees with the simulations in the out-degree frequencies, the deviation in the in-degree frequencies is noticeable. 
	To better understand the discrepancy in the in-degree frequencies, we examined the link data and their time stamps and discovered bursts of messages originating from certain nodes over small time intervals. According to Wikipedia policy [23], certain administrating accounts are allowed to sent group messages to multiple users simultaneously. These bursts presumably represent broadcast announcements generated from these accounts. These administrative broadcasts can also be detected when we apply the linear p
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	{G(nk−1),...,G(nk − 1)},k =1,..., 20 . 
	For each of the 20 data sets, we ﬁt a preferential attachment model using MLE. The resulting estimates (δin,δout) are plotted against the corresponding timeline on the upper left panel of Figure 5.2. Notice that δin exhibits large spikes at various times. Recall from (2.1), a large value of δin indicates that the probability of an existing node v receiving a new message becomes less dependent on its in-degree, i.e., previous popularity. These spikes appear to be directly related to the occurrences of group 
	ˆ
	ˆ
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	Figure
	Fig 5.2. Local parameter estimates of the linear preferential attachment model for the full and reduced Wiki talk network. Upper left: (δˆin,δˆout) for the full network. Upper right, lower left, lower right: (δˆin,δˆout), β, ˆ(ˆξ, ˆ
	Fig 5.2. Local parameter estimates of the linear preferential attachment model for the full and reduced Wiki talk network. Upper left: (δˆin,δˆout) for the full network. Upper right, lower left, lower right: (δˆin,δˆout), β, ˆ(ˆξ, ˆ


	(ˆγ), α, ˆρ) for the reduced network, respectively. 
	We identiﬁed 37 users who have sent, at least once, 40 or more consecutive messages in the message history. This is evidence that group messages were sent by this user. We presume these nodes are administrative accounts; they are responsible for about 30% of the total messages sent. Since their behavior cannot be regarded as normal social interaction, we exclude the messages from these accounts from the dataset in our analysis. We also removed nodes with zero in-and out-degrees. 
	The re-estimated parameters after the data cleaning are displayed in the other three panels of Figure 5.2. Here all parameter estimates are quite stable through time. This suggests that the network is less likely to contain large-scale group messages which stands out among normal individual interactions. 
	The reduced network now contains 112,919 nodes and 1,086,982 edges, to which we ﬁt the linear preferential attachment model. The ﬁtted parameters based on MLE for our reduced dataset are 
	-

	(ˆα, γ,ρ, δin,δout)= 
	ˆ
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	ˆ
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	β, ˆξ, ˆ
	(6.95 × 10, 8.96 × 10, 9.10 × 10, 1.44 × 10, 5.61 × 10, 0.174, 0.257). 
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	Again the degree distributions of the data and 20 simulations from the ﬁtted model are displayed in Figure 
	Again the degree distributions of the data and 20 simulations from the ﬁtted model are displayed in Figure 
	5.3. The out-degree distribution of the data agrees reasonably well with the simulations. For the in-degree distribution, the ﬁt is better than that for the entire dataset (Figure 5.1). However, for smaller in-degrees, the ﬁtted model over-estimates the in-degree frequencies. We speculate that in many social networks, the out-degree is inlined with that predicted by the preferential attachment model. An individual node would be more likely to reach out to others if having done so many times previously. For 

	Figure
	Fig 5.3. In-and out-degree distributions of the reduced Wiki talk network (red) and 20 simulated ﬁtted linear preferential attachment networks with constant parameters (green). 
	Fig 5.3. In-and out-degree distributions of the reduced Wiki talk network (red) and 20 simulated ﬁtted linear preferential attachment networks with constant parameters (green). 


	While the linear preferential attachment model is perhaps too simplistic for the Wiki talk network dataset, it has the ability to illuminate some gross features, such as the out-degrees, as well as to capture important structural changes such as the group message behavior. As a result, it may be used as a building block for more ﬂexible models. Modiﬁcation to the existing model formulation and more careful analysis of changepoints in parameters is a direction for future research. 
	6. Parameter estimation using asymptotics 
	So far we have seen procedures to ﬁt the linear preferential attachment model under two data scenarios. Both procedures produce consistent and asymptotically normal estimators, but are heavily dependent on the correctness of the model. For real social network data, this adherence to the model assumptions is hard to guarantee and the issue becomes how much does one trust the correctness of the model. 
	In this section, we propose a semi-parametric asymptotic method through estimating the one-dimensional tail indices of both in-and out-degrees using extreme value analysis. This estimation procedure uses only the portion of the nodes with large degrees in the network data. For simulated data from a known model, these estimates do not perform as well as MLE; yet when the underlying model is misspeciﬁed, this procedure should be useful. 
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	We ﬁrst give an overview of a method based on extreme value theory, and then apply it to the linear preferential attachment setting in Section 6.2 as a benchmark. 
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	in the sense of M-convergence, see [5, 9, 15] for details. Without loss of generality, we assume all scaling functions are continuous and strictly increasing. The phrasing in (6.1) implies the marginal distributions have regularly varying tails. 
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	where ˜ν = ν ◦ T with T (x, y)=(x,y). The advantage of the standard form is that one can estimate the angular component of the transformed measure [16]. Of course, in order to apply the transformation T , one needs to know the tail indices ι1 and ι2. From the data, we estimate these quantities using a method proposed in [4] that we refer to as the ‘minimum distance method’. We now give a brief summary of this method. 
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	Given a sample of n iid observations, Z1,...,Zn from a power law distribiution, the minimum distance method suggests using the thresholded data consisting of the k upper-order statistics, Z(1) ≥ ... ≥ Z(k), for estimating ι. The tail index can be estimated based on these order statistics by the Hill estimator deﬁned by 
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	To select k, we ﬁrst compute the Kolmogorov-Smirnov (KS) distance between the empirical distribution of the upper k observations and the power-law distribution with index ˆι(k): 
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	and we estimate the tail index and threshold by ˆι(k) and Z(k∗) respectively. This estimator performs well if the thresholded portion comes from a Pareto tail and also seems eﬀective in a variety of non iid scenarios. 
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	Returning to data satisfying (6.1), after determining marginal tail indices and standardizing the data according to (6.2), we apply a polar coordinate transform to the limit measure ν˜that factorizes into a product of a Pareto measure and an angular measure. The angular measure here is one way to describe the asymptotic dependence structure of the standardized (X, Y ) (cf. [16, Section 6.1.4]). For models alternative to the one given in Section 2, applying parametric or non-parametric estimators to the angu
	This semi-parametric asymptotic method may be more robust against modeling error and gives more ﬂexibility in the choice of models. In contrast, the full MLE and one-snapshot methods rely heavily on the precise model assumptions and may not be accurate when the model is not correctly speciﬁed. 
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	For the preferential attachment model speciﬁed in Section 2.1, the limiting degree distribution (pij ) is jointly regularly varying in i and j [19] with power law marginals given by 
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	Therefore instead of estimating (ˆα, δin,δout), one may calculate (ˆβ, ˆιin, ˆιout), where ˆιin, ˆιout are estimates 
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	β, α, for the tail indices of the in-and out-degrees that can be obtained by applying the minimum distance method. In addition, similar to the one-snapshot case, β is estimated by β=1 − N(n)/n. 
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	With β, ˆιin, ˆιout determined, the only parameter remaining to be estimated is α and we obtain ˆα from the asymptotic angular density as mentioned in Section 6.1. Let (I,O) be the pair of random variables that follows the limiting degree distribution pij deﬁned in (3.11) and recall the results from [19]: as t →∞, 
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	Applying the power function followed by a switch to polar coordinates, i.e., (I,O) 7→ (arctan(O/I),), where a := c2/c1 =(ιin − 1)/(ιout − 1), the distribution of arctan(O/I) given I+ O>r0 converges to a random variable Θ as r0 →∞. By [19, Section 4.1.2], the pdf of Θ is given by 
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	Given the degree counts for all nodes (Ii,Oi), we estimate ˆα by maximizing the likelihood of f(θ) based on the observations (Ii,Oi) for which I+ O>r0 for a large threshold r0.
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	There are two issues when applying the minimum distance method to network data. First, the data is node-based and not like those collected from independent repeated sampling. Secondly, the degree counts are discrete and do not exactly comply with the Pareto assumption made in the minimum distance method. Our analysis shows that even if we ignore these two issues, the tail estimates obtained still perform reasonably well. However, if the model is correct, the asymptotic based estimates are dominated by MLE m
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	6.3.1. Tail estimates 
	We start with simulating one preferential attachment network with 10edges under the true parameter (α, β, δin,δout) = (0.3, 0.5, 2, 1), so the theoretical values of the tail indices are (ιin,ιout) =(1+1/c1, 1+ 1/c2) = (3.5, 3.14). The Hill plots correspond to the ﬁrst 2000 upper order statistics of in-and out-degrees are included in Figure 6.1. Let iand jbe the number of order statistics used for estimating ιin and ιout. The minimum distance method suggests choosing (i,j) = (386, 213), which corresponds to 
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	Figure
	Fig 6.1. Hill plots for in-(left) and out-degrees (right). The black dashed lines represent the theoretical values of the tail indices, and the red dashed lines reﬂect the estimation results using the minimum distance method. 
	Fig 6.1. Hill plots for in-(left) and out-degrees (right). The black dashed lines represent the theoretical values of the tail indices, and the red dashed lines reﬂect the estimation results using the minimum distance method. 





	6.3.2. Asymptotic method 
	6.3.2. Asymptotic method 
	Table 6.1 presents some numerical results using the asymptotic method on simulated data. For each set of parameter values (α, β, δin,δout), a network with n = 10edges is simulated and the true value of (ιin,ιout) is computed by (6.5). Then we estimate (ιin,ιout) by both the minimum distance method, denoted by (ˆιin, ˆιout), and from the one-snapshot method applied to the parametric model (cf. Section 4.2), denoted by (˜ιin, ˜ιout). 
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	With (ˆιin, ˆιout), ˆα is then estimated from the angular density. There are two underlying assumptions made here. First, given degree counts (Ii,Oi) for each node, we are assuming that n is large enough that the joint distribution of in-and out-degrees is close to that of the limit pair (I,O) which follows the mass function pij . Moreover, after choosing a large r0, we also assume that the distribution of arctan(O/I), conditioned on I+ O>r, has converged to the limit distribution of the angular component Θ
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	In our experiment, r0 is chosen to be the upper 99.9%-quantile of (I+O) (which includes approximately 
	2a 
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	600 observations here, according to our choice of β), and we then ﬁt the limit density f(θ) to the transformed data arctan(Oi/I) for which I+ O>r.
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	n (α, β, ιin,ιout) α, ιin, ˆιout) (˜β, ˜ιin, ˜ιout)
	ˆ

	(ˆβ, ˆα, 
	˜

	10(0.3, 0.4, 2.857, 2.857) (0.266, 0.400, 2.837, 2.729) (0.300, 0.400, 2.858, 2.859) 10(0.3, 0.4, 3.286, 3.286) (0.302, 0.399, 3.258, 3.261) (0.302, 0.399, 3.290, 3.295) 10(0.3, 0.4, 5, 5) (0.300, 0.400, 4.486, 4.852) (0.302, 0.400, 5.051, 5.013) 10(0.3, 0.4, 3.286, 4.143) (0.328, 0.400, 3.365, 4.516) (0.300, 0.400, 3.283, 4.156) 10(0.1, 0.4, 4.2, 2.778) (0.050, 0.400, 4.304, 2.719) (0.100, 0.400, 4.215, 2.778) 10(0.4, 0.4, 3, 3.667) (0.431, 0.400, 3.021, 3.518) (0.400, 0.400, 3.005, 3.668) 
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	6 
	6 
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	Table 6.1 
	Estimates for (ιin,ιout) using both minimum distance and one-snapshot methods. 
	For simulated data where we know the model is correct, one-snapshot parametric estimation described in Section 3.2 gives more accurate estimates in all cases than the asymptotic methods which may suﬀer from three possible sources of errors. The ﬁrst is that both (6.3) and (6.4) hold only asymptotically for large in-/out-degrees, so the proportion of observations that exceeds the estimated threshold might be small. For example, in the case where (α, β, ιin,ιout) = (0.3, 0.4, 5, 5), the largest in-(out-)degre
	-

	Secondly, as noted before, estimating αˆfrom (6.6) not only depends on the accuracy of ˆιin and ˆιout, but also on whether n is large enough that (6.2) thought of as an approximation is valid. Has the network evolved long enough? Thirdly, the polar-transformed data arctan(Oi/I) for which I+ O>ris not 
	i
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	generated from the angular density f(θ) directly. This double limit approximation introduces yet another layer of uncertainty and Table 6.1 reveals that ˆα is very inaccurate when the true value of α is relatively small (e.g., the ﬁfth row where α =0.1). 
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