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Abstract: In many statistical modeling frameworks, goodness-of-fit tests are typically administered
to the estimated residuals. In the time series setting, whiteness of the residuals is assessed using
the sample autocorrelation function. For many time series models, especially those used for financial
time series, the key assumption on the residuals is that they are in fact independent and not just
uncorrelated. In this paper, we apply the auto-distance correlation function (ADCF) to evaluate the
serial dependence of the estimated residuals. Distance correlation can discriminate between dependence
and independence and is applicable for multivariate data. The limit behavior of the test statistic based
on the ADCF is derived for a general class of time series models. One of the key aspects in this theory is
adjusting for the dependence that arises due to parameter estimation. This adjustment has essentially
the same form regardless of the model specification. We illustrate the results in simulated examples.
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1. Introduction

Goodness-of-Fit Testing for Time Series Models via Distance

?
Let {X,,j € Z} be a stationary time series of random variables with finite mean and variance. Given consec-

utive observations of this time series X1, ...

, X, we are interested in whether the sequence can plausibly be

viewed as generated from a parametric model, more precisely, whether { X} is generated from the recursion

Xj = f(Xfoo:j7Zj;/8)7

(1.1) [ogimode1

where X,,,.,, denotes the sequence {Xj,nl < j < na}, the Zj’s are iid with finite second moments, and
B € R? is the parameter vector. The objective of this paper is to provide a validity check of the model (1.1)

by inspecting the residuals.
A typical assumption for time series models is that the recursion (1.1) is casual and invertible, that is,

and

Xj = g(Zfoo:ﬁﬁ)

Zj=Z;j(B) = MX-:;;: B)

(1.2) egiiavert|

for some functions g and h. Here we write Z;(3) to indicate its dependency on 3. Given the observations
X1.n, let B be an estimator of 8. Then the innovations {Z;} can be approximated by

Zj = ZJ(B) = h(Xfoo:j;B%

(1.3) oaseitdes]

the residuals based on the infinite sequence {X;,j < n}. If the recursion (1.1) describes the generating
mechanism of {X;}, one would expect {Z;} to inherit the properties of {Z;}. In reality, we do not observe
X for j <0 and instead rely on the estimated residuals

Z] = h(Y—oo_]Hé)a jil,...7n,
1

(1.4) fegrres]
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where {Y}} is the infinite sequence with ¥; = X;, 1 <j <n and Y; =0 for j < 0. If the time series {X;} is
stationary and ergodic, the influence of X_ ..o in (1.3) becomes negligible for large j and Zj and Z ; become
indistinguishable.

While Zl, ceey Z,, are derived to approximate the iid innovation {Z;}, the sequence itself is not iid since
they are functions of ﬁ This has been noted for specific time series models in the literature. For example,
for ARMA model, corrections have been proposed for statistics based on the residuals, see Section 9.4
of Brockwell and Davis (1991). For the heteroscedastic GARCH models, the moment sum process of the
residuals were studied in Kulperger and Yu (2005). Still, if the model assumption is true, {Z;} should
possess a serial dependence structure consistent with the model.

In this paper, we evaluate the serial dependence of residuals using distance covariance. Distance covariance
is a usefull dependence measure with the ability to detect both linear and nonlinear dependence. It is zero
if and only if independence occurs. We study the auto-distance covariance function (ADCV) of the residuals
and derive its limit when the model is correctly specified. We show that the limiting distribution of the
ADCV of {Z;} differs from that of its iid counterpart {Z;} and quantify the difference. This is an extension
of Section 4 of Davis et al. (2018) which considered this problem for AR processes.

The remainder of the paper is structured as follows. An introduction to distance correlation and ADCV
along with some historical remarks are given in Section 2. In Section 3, we provide the limit result for
the ADCV of the residuals for a general class of time series models. To implement the theoretical results,
we justify the use of parametric bootstrap in Section 4. We then apply the result to ARMA and GARCH
models in Section 5 and 6 and illustrate with simulation studies. A simulated example where the data does
not conform with the model is also demonstrated in Section 7.

2. Distance covariance

Let X € RP and Y € R? be two random vectors, potentially of different dimensions. Then

X1Y <= oexy(st)=ex(s)ey(t),

where ¢ x y(s,t), px(s), oy (t) denote the joint and marginal characteristic functions of (X,Y"). The distance
covariance between X and Y is defined as

100 = [[ o0 = ex(s)er() *ulds.dt), (s.6) € B,

p+aq

where p is a suitable measure on RPT4. In order to ensure that T'(X,Y’; i) is well-defined, one of the following
conditions is assumed to be satisfied (Davis et al., 2018):

1. p is a finite measure;
2. p is an infinite measure such that

,/|]<D+q(1 A LS|V LA [H*)p(ds, dt) < oo

and
E[|XY|* 4+ | X|* +|Y]*] < oo, for some « € (0,2].

If u has a positive Lebesgue density on RPT4, then X and Y are independent if and only if T(X,Y;u) = 0.
For a stationary series {X}, the auto-distance covariance (ADCV) is given by

Th (X5 ) := T(Xo, Xnspt) = /2 ©x0,x, (5, 1) — px(s) px(t) QM(dSvdt% (s,t) € R

Given observations {X 5, 1<5< n}, the ADCV can be estimated by its sample version

(X 1) 1= /ﬂ( CX(s,1) * p(ds, dt),  (s,1) € R?,
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where
1 n—h 1 n—h 1 n—h
Cf(s,t) p— § iSXj+ith+h _ § eiSin E eith+h.
Jj=1 j=1 j=1

If we assume that p = pg X po and is symmetric about the origin, then under the conditions where T}, (X; 1)
exists, Tp(X; ) is computable in a alternative V-statistic like form, see Section 2.2 of Davis et al. (2018) for
details. It can be shown that if the X;’s are iid, the process y/nCxX (s,t) converges weakly,

VaCX 4 Gy, on C(K), (2.1)[eqien]
for compact set K C R?, and
nTh(X; ) $/|Gh|2u(ds,dt),

where GG}, is a zero-mean Gaussian process with covariance structure

F((Svt)v (8/,t/)) = COV(Gh(sat)th(Slvt,))
E[(iw ~px() @Ct’xw ~ox(0)
( ( s’>)(z:<f“Xh> —px(=t)].

i—i (s',Xo) _ ©x
The concept of distance covariance was firss proposed by Feuerverger (1993) for bivariate context and later
brought to popularity by Székely et al. (2007). The idea of ADCV was first introduced by Zhou (2012). For
distance covariance in time series context, we refer to Davis et al. (2018) for theory in a general framework.
Most literature on distance covariance focus on the specific weight measure p(s,t) with density propor-
tional to |s|~P~1[t|~¢~!. This distance covariance has the advantage of being scale and rotational invariant,
but imposes moment constraints on the variable sevaluated. In our case, as will be shown in Section 3, we
require a finite measure for 1 and shall use a Gaussian measure. In this case T}, (X; p) has the computable
form

n—h
R 1 R
Th(X5p) = n—h)y > X = X5, Xivn — Xjyn)

ij=1

(Xi — X, Xiqn — Xign)

_|_
£}
[ -
=
~
\g
=

i,7,k, =1
1 n—h
2(n ~h)? D (X = Xj, Xivn — Xign),
i,5,k=1

where fi(z,y) = [fxp(isz + ity)pu(ds, dt) is the Fourier transform with respect to p.

It should be ndted that the concept of distance covariance is closely related to Hilbert-Schmidt Inde-
pendence Criterion (HSIC), see Gretton et al. (2005). For example, the distance covariance with Gaussian
measure coincides with the HSIC with Gaussian kernel. In a recent (unpublished) work, Zhu and Li use
HSIC for testing the cross dependence between two time series.

3. General result

(sec:meta)

Let X1,...,X, be the observed sequence from a stationary time series {X;} generated from (1.1), and let
Zy,...,Zy be the estimated residual calculated through (1.4). In this section, we examine the ADCV of the
residuals

T(Z: 1) = |CZ)2 = /<|c u(ds, db),
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where
n— n— n—
1 Zh iz 1 Zh ;1 Zh ;
CZ S t —— iSZj+itZ_j+h = eiszji eith+h.
n n 4 n 4
Jj=1 Jj=1 Jj=1

To provide the limiting result for T}, (Z ; i), we require the following assumptions.

?<C°nd:m1>?(M1) Let F; be the o-algebra generated by { Xy, k < j}. We assume that the parameter estimate 3 is of the
form

n
\/ﬁ( Z X—Oojvﬂ +0P( )
where m is a vector-valued function of the infinite sequence X_.; such that
E[m(X—oo:j;B”Fj—l] - 07 E‘m(X—ooOwB)F < 0.

This representation can be readily found in most likelihood-based estimators, for example, the Yule-
Walker estimator for AR processes, quasi-MLE for GARCH processes, etc. By the martingale central
limit theorem, this implies that

for a random Gaussian vector Q.
M2) Assume that the function h in the invertible representation (1.2) is continuously differentiable, and
writing

?(cond: m2)?(

)
Li(8) = 550X o0 B), (3.1)[eq:bigL]

we have

E|Lo(8)]* < co.

?<c°nd:m3>?(M3) Assume the estimated residuals based on the finite sequence of observations, Zj, is close to the fitted
residuals based on the infinite sequence, Z;, such that

1 5 AL
7Z| J j‘ _Op(1)7 k=12
Jj=1
(thm:meta) Theorem 3.1. Let X1,..., X, be a sequence of observations generated from a causal and invertible time

series model (1.1). Let B be an estimator of 3 and let Zl, ey Z., be the estimated residuals calculated through
(1.4) satisfying conditions (M1)-(MS3). Further assume that the weight measure p satisfies

/,(2 [(XA[s]?) (LA ) + (s* + ) 1(|s| At > 1)] u(ds, dt) < oco. (3.2)[eq:7]

Then
PR d
nTn(Z; 1) 5 |Gh + &l

where Gy, is the limiting distribution for nTh(Z; w), the ADCYV based on the iid innovations Zy, ..., Zy,, and
the correction term is given by

En(s,t) == itQ"E [(1:20 —pz(s)) "“Ly(B)] (3.3)[eqixi]
with Q being the limit distribution of /n(B — B8) and Ly, as defined in (B.1).

The proof of the theorem is provided in Appendix A.
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Remark 3.2. Distance correlation, analogous to linear correlation, is the normalized version of distance

covariance, defined as
T(X,Y;
ROX.Yip) = —ae 0 gy
VIX, X5 )T (Y, Y5 )

The auto-distance correlation function (ADCF) bf a stationary series {X,} at lag h is given by

Rp(X;p) := R(Xo, Xn; 1),

and its sample version Rh(X ; ) can defined similarly. It can be shown that the ADCF for the residuals from
an AR(p) model has the limiting distribution (Davis et al., 2018):

S a |Gn+&ll2

NG S T (3.4) [sqzadct Tim]

and the result can be easily generalized to other models. In the following examples, we shall use ADCF in
place of ADCV.

4. Parametric bootstrap

(sec:boot) Messy notation!

The limit in (3.4) is not distribution-free and generally intractable. In order to use the result, we propose
to approximate the limit through parametric bootstrap, described in the following.

Given observations X, ..., X, let B be the parameter estimate and Zl, ey Z,, be the estimated residuals.
A set of bootstrapped residuals can be obtained as follows:

1. Sample iid Z7,..., Z} from the empirical distribution of {Zj}, i.e., with replacement from 217 RN/

2. Generate X7,..., X from the time series model with parameter value B and residual sequence
VAN /A
3. Re-fit the time series model. Obtained the parameter estimate 8* and the estimated residuals Z7, ..., Z*.

Let nRh(Z*,u) be the ADCF calculated from the bootstrapped residuals Zf, ..., 4. This procedure is
repeated B times to obtain nRELl)(ZA*,u), . ,n}A%;LB)(Z*, 1). When the sample size n is large, the empirical
distribution of {néﬁf)(Z*, 1)} provides an approximation for the limiting distribution of nRy,(Z; ). The
theoretical convergence of the bootstrapped ADCF is currently under investigation.

Given the following condition, we show in Theorem 4.1 that these statistics form a good representation

of the limit distribution of n1}(Z, 1), the ADCV of the actual fitted residuals.
?<°°nd‘mlp>%M1’) Let Fj;, F; be the o-algebra generated by { X,k < j} and {X},k < j}, respectively. We assume that

the parameter estimate ,é is of the form
R 1 &
V(B -pB) = 7 > (X i B) + 0p(1),
j=1

where m satisfies

E[m(X? .5 8)|Fj_1] = Em(X_oej; B)1Fj1] = 0, Esup|m(X”0;8)|* < co.

?{cond:m2p)TM2’) Assume that the function h in the invertible representation (1.2) is continuously differentiable, and

writing )
Lj(8) = 55X o B); (4.1)[eq:bigL]

we have
Esup [|L;(8)* < .
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?{cond:m3p)T\[3") Assume the estimated residuals based on the finite sequence of observations, Z*, is close to the fitted

- VA
residuals based on the infinite sequence, Z7, such that

1 - % 7%
NG > 1Z; - ZiF =0,(1), k=1,2.
Jj=1

(thm:boot) Theorem 4.1. Assume that the conditions (M1°), (M2’) and (M3’). Then the ADCV of the bootstrapped
residuals {Z7.,} satisfies
(2" 1) G+ &l

conditioning on the observed data X1,...,X,.

5. Example: ARMA (p,q)

(sec:arma) oy sider the causal, invertible ARMA (p, q) process that follows the recursion

p q
X = Z GiXe—i + Zi + Z(jztjy (5.1)[eq:arma]
i=1 j=1
where B = (¢1,...,0p,01,...,0,)T is the vector of parameters and {Z;} is the sequence of mean 0 and

uncorrelated innovation. Denote the AR and MA polynomials by ¢(z) = 1 — >0 | ¢;2" and 6(z) = 1 +
Z?(_l 0;27, and let B be the backward operator, i.e.,

BXy =X,
then the recursion (5.1) can be represented by
¢(B)X; = 0(B)Z;.
It follows from invertibility that ¢(z)/6(z) has the power series expansion
38 = ];) i (8)2",
where 377 |7;(8)| < oo, and

oo

Zy = 7Z(B) = Z i(B)Xi—;.-

=0

Given an estimate of the parameters ﬁ, the residuals based on the infinite sequence {X_..,} are given by

Zy = Zt(:é) = J(B)Xt—J
=0
Based on the observed data Xi,...,X,, the estimate residuals are
t—1
Z = Z<] (ﬂ)Xt_j. (52) eq:arma:residual
j=0

One choice for B is the pseudo-MLE based on Gaussian likelihood
1
L(B,0%) x o7 "%~ /2 exp{ﬁXZE_lxn},
o

where X,, = (X1,..., X,)T and the covariance ¥ = X(3) := Var(X,,)/o? is independent of 2. The pseudo-
MLE B and 62 are taken to be the values that maximize L(3,c?). It can be shown that ﬁ is consistent and
asymptotically normal even for non-Gaussian Z; (Brockwell and Davis, 1991).

We have the following result for the ADCV of ARMA residuals.
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(thn:arma) Corollary 5.1. Let {X;,1 < j < n} be observations from a causal and invertible ARMA (p,q) time series
and {Z;,1 < t < n} be the estimated residuals defined in (5.2). Assume that u satisfies (3.2), then

ni(Z: 1) 5 1Gn+ Gl
where (G, &) is a joint Gaussian process defined in R? with Gy, as specified in (2.1) and &, in (3.3).
The proof of Corollary 5.1 is given in Appendix C.

Remark 5.2. In the case where the distribution of Z; is in the domain of attraction of a a-stable law with
a € (0,2), and the parameter estimator 8 has convergence rate faster than n~1/2

, 1.e.,
an(B — B) = 0,(1), for some a, = o(n"1/?),
(Davis, 1996), the ADCV of the residuals has limit
&5 d
nTy(Z; 1) = |Gl

where the correction term &, disappears. For a proof, see Theorem 4.2 of Davis et al. (2018).

5.1. Simulation

We generate time series of length n = 2000 from an ARMA(2,2) model with standard normal innovations

and parameter values
B = (¢1,¢2,01,02) = (1.2,—-0.32,—0.2, —0.48).

For each simulation, an ARMA(2,2) model is fitted to the data. In Figure 1, we compare the empirical 5%
and 95% quantiles for the ADCF of

a) iid innovations from 1000 independent simulations;
b) estimated residuals from 1000 independent simulations;
c) estimated residuals from 1000 independent parametric bootstrap samples from one realization of {X;}.

In order to satisfy the requirement (3.2), the ADCFs are evaluated using the Gaussian weight measure
N(0,0.5%). Confirming the results in Theorem 3.1 and Corollary 5.1, the simulated quantiles of Ry,(Z; )
differ significantly from that of Ry, (Z; 1), especially when h is small. Given one realization of the time series,
the quantiles estimated by parametric boostrap correctly capture this effect.

ARMA(2,2)

- id
- sim
boot

ADCF

0.000 0.001 0.002 0.003 0.004 0.005
\

Lag

FiGc 1. Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated residuals; c) bootstrapped residuals;
from a ARMA(2,2) model.

(fig:arma)
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6. Example: GARCH(p,q)

(sec:garch) 1) hig section, we consider a GARCH(p,q) model,
Xy = 04Zy,

where the Z;’s are iid innovations with mean 0 and variance 1 and

i=1 =1

P q
of =0+ Y oiXP+ Zéjaf_j, ag >0, o; >0, 85 > 0. (6.1)[eq:cv:det]

Let 6 = (ap,a1,...,qp,B1,...,B,) denote the parameter vector. We write the conditional variance o7 =

02(0) to denote it as a function of 6.
TIterating the recursion in (6.1) gives

ot () +Z< X2,

for suitably defined functions ¢;’s (Berkes et al., 2003). Given an estimator 6, an estimator for 02(8) based
on {Xj;,j <t} can be written as

52 :=0%(0,) Z( W) X7,

and the unobserved residuals are given by
Zt = Xt/ﬁt.

In practice, 52 can be approximated by the truncated version

57 (6,) Z( > i

and the estimated residual Z; is given by
Zt = Xt/f)’t. (6.2) eq:garch:residua

Define the parameter space by
O ={u=(50,81,---,8p,t1,---,tg) 1 t1 + -+ t5 < po,u < min(u) < max(u) < a},

for some 0 < u < u, 0 < pg < 1 and qu < pg, and assume the following conditions:

?{cond:q1)? (Q1) The true value @ lies in the interior of ©.

?{eond:92)? (39) For some ¢ > 0,
lim «~P{|Zo| < 2} =0.
xr—r

?(cond:q3)7(Q3) For some § > 0,
E|Z()|4+6 < 00.

?{cond:q4)? (Q4) The GARCH(p,q) representation is minimal, i.e., the polynomials A(z) = Y7, ;2" and B(z) =
1—37"_, B;#’ do not have common roots.

Given observations {X;,1 < t < n}, Berkes et al. (2003) proposed a quasi-maximum likelihood estimator

given by
6, := argmax, g Z E(u)
t=1
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where
X7
262(u)’

Provided that (Q1)—(Q4) are satisfied, the quasi-MLE 8, is consistent and asymptotically normal.
For the ADCV of the residuals based on 6,,, we have the following result.

(thn: garch) Corollary 6.1. Let {X;,1 < j < n} be observations from a GARCH(p,q) time series and {Z;,1 <t <n}

be the estimated residuals defined in (6.2). Assume that (Q1)-(Q4) holds and that p satisfies (3.2), we have
(7 1) 5 1Gn + &l

where (G, &) is a joint Gaussian process defined in R? with Gy, as specified in (2.1) and &, in (3.3).
The proof of Corollary 6.1 is given in Appendix D.

6.1. Simulation

We generate time series of length n = 2000 from a GARCH(1,1) model with parameter values
B = (a0, 1, B1) = (0.5,0.1,0.8).

For each simulation, a GARCH(1,1) model is fitted to the data. In Figure 2, we compare the empirical 5%
and 95% quantiles for the ADCF of

a) iid innovations from 1000 independent simulations;
b) estimated residuals from 1000 independent simulations;
c) estimated residuals from 1000 independent parametric bootstrap samples from one realization of {X;}.

Again the ADCFs are based on the Gaussian weight measure N (0, 0.5?). The difference between the quantiles
of Ry, (Z;p) and Ry, (Z; ) can be observed. For the GARCH model, the correction has the opposite effect
than in the ARMA model — the ADCF for residuals are larger than that for iid variables, especially for small
lags.

GARCH(L,1)

0.020

- iid
- sim
boot

ADCF
0.010 0.015
| |

0.005
|

0.000

Lag

Fi1G 2. Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated residuals; c) bootstrapped residuals;
from a GARCH(1,1) model.

(fig:garch)
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7. Example: Non-causal AR(1)

In this section, we consider an example where the model is wrongly specified. We generate time series of
length n = 2000 from a non-causal AR(1) model with ¢ = 1.67 and t-distributed noise with degree of freedom
2.5. Then we fit a causal AR(1) model, where |¢| < 1, to the data and obtain the corresponding residuals.
Again the ADCF is evaluated using the Gaussian weight measure N(0,0.5?) and in Figure 3, we plot the
5% and 95% ADCF quantiles of:

a) estimated residuals from 1000 independent simulations;
b) estimated residuals from 1000 independent parametric bootstrap samples from one realization of {X;}.

The ADCEF's of the bootstrapped residuals provide an approximation for the limiting distribution of the
ADCEF of the residuals given the model is correctly specified. In this case, the ADCFs of the estimated
residuals significantly differ from the quantiles of that of the bootstrapped residuals. This indicates the time
series does not come from the assumed causal AR model.

Non-causal AR(1)

- iid
boot

ADCF

0.000 0.005 0.010 0.015 0.020 0.025

Lag

F1G 3. Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) bootstrapped residuals; from non-causal AR(1)
data fitted with a causal AR(1) model.

8. Conclusion

In this paper, we examined the serial dependence of estimated residuals for time series models via the auto-
distance covariance function (ADCV) and derived the asymptotic result for general classes of time series
models. We showed theoretically that the limiting behavior differs from the ADCYV for iid innovations by
a correction term. This indicated that adjustments should be made when testing the goodness-of-fit of the
model by inspecting the serial dependence of residuals. We illustrated the result on simulated examples of
ARMA and GARCH processes and discover that the adjustments could be in either direction — the quantiles
of ADCYV for residuals could be larger or smaller than that for iid innovations. We also studied an example
when a non-causal AR process is incorrectly fitted with a causal model and showed that ADCV correctly
detected model misspecification when applied to the residuals.
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In the following appendices, we provide proofs to Theorem 3.1 and Corollaries 5.1 and 6.1. Throughout
the proofs, ¢ denotes a general constant whose value may change from line to line.

Appendix A: Proof of Theorem 3.1

(app:meta) Proof. The proof proceeds in the following steps with the aids of Propositions A.1, A.2 and A.3. Write

nT(Z; 1) = |WnCZ |2 = |VnCZ — /nCZ + nCZ2,

where
. 1 n—h R . 1 n—nh 1 n—h A
CZ(S,t) [E— E isZj+itZivn E €iSij 2 :eithJrh
]:1 ]=1 ]:1
and
1 n—h 1 n—~h 1 n—h
CZ(s,t) P—— E isZ5+itZjen _ § :eiszji 2 :6”2”,1.
=1 = o

We first show in Proposition A.1 that
(V(CF = 7). V/nC) % (€. Gh),  on C(K),
where K is any compact set in R2. This implies
VnCZ % ¢+ Gy, on C(K).
For ¢ € (0,1), define the compact set
Ks={(s,t)[0 <s<1/6,0 <t <1/d}.
It follows from the continuous mapping theorem that

w [ 167 Putas,an % /( G+ & ds, di).
Kg s

To complete the proof, it remains to justify that we can take § | 0. For this it suffices to show that for any
e >0,

n—roo
8

;in%)limsupIP’ /( |\/7LCf|2u(ds,dt) > 6) =0,
— c

and

lim P /( |G+ &n 2 u(ds, dt) > 5) =0.
6—0 H

These are shown in Propositions A.2 and A.3, respectively.

(prop: joint:conv)

Proposition A.1. Given the conditions (M1)-(M3),

(V(CZ — CZ),\/nCZ) % (64,Gr),  on C(K),

for any compact K C R2.
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Proof. We first consider the marginal convergence of \/ﬁ(Cf — C?). Denote

1 n—h . .
En(87t) = \/ﬁ E (eiSZj"Fith#»h _ eiSZj+ith+h) )
=1

then
. 1 n—h
f(Cf(s,t) CZ(S t)) _ ( isZ;+itZjn 1SZj+1th+h)
n =
1 n—h 1 n—h
( 17 isZ-) - Z Wi n
— e J e J
=t < "
1 n—h 1 —h R
4 Z 0i5Z; ( it 2 n thJJrh)
(et Vi
n—h n—h

. 1 -

o BO0E Y e (AN gssecompien
E L0025 (A1) xiseconpen
We now derive the limit of F,(s,t). For fixed s and ¢,

n—h
En(s,t) T Z e 8Zi+itZitn (fs(zjzj)+7;t(zj+hzj+h) _ 1)
n—h

isZ;+itZjn zs\f(Z —Z;) + Zt\F( jan = Zjvn)) +0p(1),

Il
M}—\

:u
;-»—t

S|

ﬁst i+t Zin ZS\/7( )—‘,—th( j+h — 7+h))

<.
Il
—_

n—h
+*Z B2t (isy/n(Zy — Z5) + itvn(Zisn — Zjn)) + 0p(1)
Jj=1

3|~

=: Eni(s,t) + Ena(s,t) + op(1).

By assumption (M3),

n—h n—h
1 . 1 ) _ .
|Eni(s,t)] < |S|% D12 =7+ |t|% D N Zjsn = Zjnl 50, in C(K).
j=1 =1

It follows from a Taylor expansion that

n—h

1
n

EnQ(Sat) = \/E(B _ﬁ)T

j=1

<¢52j+itzj+h (isLj(ﬂ*) + itLj+h(5*)) ,

where 3* = ,8+e(,é —3) for some € € [0, 1]. Since L;(/3) is stationary and ergodic, it follows from the ergodic
theorem (see, for example, Corollary 2.1.8 of Samorodnitsky (2016)) Need uniform ergodic theorem that

=1

n—h
- ﬁhz (G5T4(8) + Ly (8)) B E [e 51250 (isLy (8) + ity 1,(8)] C (On(s,), i C(K).

Hence,
En(s,t) % QTCh(s,t), inC(K).
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Note that
1 n—h )
=Y el B py(t), in C(K),
n =
and
1 n—h ) 1 n—h 1 .
187 187; 1 :
- 7= ’ 7E’n. ) ’ K).
G 2ot H = 3 et e E(5,0) B oz(s), in C(K)
Jj=1 Jj=1
We have

Vi(CF = Cf) %5 QT (Cas,1) = Cals, 09z (t) = Cul(0,1)pz(s)) i C(K).

To further simplify the above expression, notice that L;(3) is a function of X_..; and independent of Z;,
by causality. Hence

Ci(s,t) = E|[¢"%isL;(B)|E [e"?+r] +E [¢fsZ 1 %nitL; 1, (8)]
Crls. 0)pz(t) + E [e & 2mnitThp (B)]

and

Q" (Ch(s,t) — Ch(s,0)pz(t) — Cr(0,t)pz(s))

(
_ QT (IE [('szj+it2j+;lit11j+h(l@)] o) [e ith+hZ‘tLj+h(ﬂ)] <,OZ(S)) = &u(s, ). (A.Z)

This justifies the marginal convergence of \/H(C'f - C?).
For the joint convergence of \/n(CZ — CZ) and \/nCZ, we recall assumption (M1)

and also note from the proof of Theorem 1 in Davis et al. (2018) that
Vi = \fz(( 7= p7()(eM7h = 07(1) + 0p(1) S G, in C(K).

By martingale central limit theorem,

Zm (X—o0:j3 B), \f Z B — g (s) (" — pz(t)) <

converges jointly to (Q, G4). This implies the joint convergence of V(B — B) and /nCZ. Since &, is non-
random and continuous, the joint convergence /nCZ and \/nC% — \/nCZ also follows.
O

(prop:a2) o L.
Proposition A.2. Under the conditions of Theorem 3.1,

lim lim sup P /( |\/7>LO,?|2u(ds,dt) > 5) =0.
H

=0 nooo

Proof. Using telescoping sums, Cf — CZ has the following decomposition,

n—h n—h

cr-or =, DIIESSUEES ST SURE ST
n n n _C 6] n 4 Jn‘_ J n & JTl,_ J
j=1 j=1 Jj=1 Jj=1 j=1
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1 n—h 1 n—h 6
+E Z ij + E Z VjA] = Zlnk(sat)v
j=1 j=1 k=1
where
U; = etsZi _ 0z(s), V= et Zin _ oz(t), Aj= eisZi _ 5%, B; = eitZi+n _ gitZisn

From a Taylor expansion,

A 2
2 1 -
n|In1(53t)| < n |AJBJ|
2
L iz,-2) (Zisn—Z54n)
< is(Zj—25) _ it(Zjrn—2Zjtrn) _
< nZ|€ i) —1le g 1] (
j=1
2
1 n—h R R
< o | 7= X (1AslIZy = Zil ) (YA 11 Zin = Zisnl)
=1 <
2 2
1 n—h ) 1 n—h )
< ¢ min | [¢? =2 _ |4 — 7] |t nZ|Zj+h—Zj+h| ;
"~ ( (]_1 <
n—h
Z; = Zjl| Zj+n — Zjtnl
=1 <
2 2
1 n—h ) 1 n—h )
< = )12 = 7 |t nZ|Zj+h—Zj+h| ;
"~ g (]=1 <
n—nh 1 n—
12 = Zil*—= > 1 Zjwn — Zinl?
j=1 j=1 (
Fork=1,2,

n—h n—h

1 2 ~ 1 .
¢ nZ|Zj—Zj\k+ﬁZ\Zj—Zj|k
(j:l j=1

=
1M
5,
|
N
S
AN

IN

1 R 1 n—h
op(1) +c WH\/E(B - ﬂ)”kﬁ Z IL;(8%)|1*
j=1

= 0,(1).
Therefore

L (s, 1) < min(|s[?, [t%, |st]*)Op(1) < (i(‘hA [s1) WAL + (5% +£2) LI A ft] > 1))%(1)7

where the O,(1) term does not depend on (s, t). This implies that

lim lim sup P /( n|Lu (s, t))? u(ds, dt) > E) =0.
=0 n—oo <
Similar arguments show that n|l,2(s, t)|? is bounded by min(|s|?, [t|?, |st|>)Op(1), n|I,3(s, t)|? and n|L,5(s, t)|?
are bounded by min([t|?,|st|*)O,(1), and n|l4(s,t)|? and n|l,e(s,t)|* are bounded by min(|s|?,|st|*)O0,(1),
and the result of the proposition follows. O
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{prop:a3) Proposition A.3. Under the conditions of Theorem 3.1,

lim P /( |G A+ &n2u(ds, dt) > 5) =0.
6—0 ¢

Proof. Note that

€6 0F < diPIQIPE % — gy (s) *ELa(B)?
< diPIQIPE (A IsP?) (Zo +E|Z)’| ELA(B)?
< IR (1A Js) Po1).

This implies

lim P /( &n)? u(ds, dt) > s> =0.
6—0 ¢

On the other hand, it was shown in Davis et al. (2018) that f(GhPu(ds, dt) exists as the limit of n1},(Z; p),.

Hence
lim P /( G 2p(ds, dt) > s> %07
6—0 c

s
and the proposition is proved. O

Appendix B: Proof of bootstrap consistency: A generalized theorem for triangular arrays

In this section, we generalize the convergence of ADCV for residuals for triangular arrays. The result for
bootstrap estimator in Theorem 4.1 follows as a special case.
Let {Z1.n,n} be a triangular array such that

Zin X F,, Vi=1,...,n,
where the distribution F,, converges to F’
F,%F
Let {3, } be a sequence of parameter vectors such that

Bn — B

For each n, let {X1.,,n} be a time series generated from the time series model (1.1) with parameter vector
Br, and innovation sequence {Z1.,, p },

Xjy1n= f(X—oo:j,na Ztn?ﬁn)'

Let ,é'n be the parameter estimate from {X1.n}, {Zlnn} be the fitted residuals calculated through (1.4),
and T (h) be the ADCV of {Zy.,.,} at lag h. We require the following conditions.

?{eond:nl)? (N1) Let F; and Fj, be the o-algebra generated by { Xy, k < j} and { Xy, k < j}, respectively. We assume
that the parameter estimate 3 is of the form

1 n
V(B —-B) = 7 ; (X—o:i B) + 0p(1),

\/ﬁ(/én - ﬁn) = \}ﬁgm(){—w:j,n;ﬂn) =+ Op(l)a

where m satisfies

E[m(Xfoo:j,n;ﬂ”fj*l,n] = E[m(Xfoo:j,n;ﬂ”fjfl] = 07 ESUP |m(Xfoo:O;/3n)|2 < 0.
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?{cond:n2)7 (N2) Assume that the function h in the invertible representation (1.2) is continuously differentiable, and

9
Lj(8) = 55 X-cciniB), (B.1)[eqbigL]

writing

we have
n 2
Esup |L3(8,)]2 < .

?{cond:n3)? (N3) For fixed j, let Z, in be the fitted residual based on the unobserved infinite sequence {X_n..; »} obtained
from (1.3), and Zm be the estimated residuals based on the finite sequence {Xj.;} obtained from
(1.4). Assume that Z;,, is close to Z;, such that

1 5 -
7 S NZjm = Zinl* = 0p(1), k=1,2.
j=1

Theorem B.1. Assume that (N1), (N2), (N3) and (3.2) holds, then
(thm:ta)

nTy(h) % |Gy + &l

Remark B.2. To prove Theorem 4.1, take 8, = ,é and Z;, = Z;. Here, conditional on the data, Z;’s are
iid and follow the empirical distribution from {Z.,,}, which converges to the distribution of Z.

Proof of Theorem B.1. Note that T)f(h) can be written as

T (h) = / (C2n (s,1) Pu(ds, dt) = /<|cZ O 4 CF P ds, d)

where
n—h n—h n—h
; 1 S it 1 et 1 S etz
CZn (S,t) — iSZjn+ith+}L7n _ - eistn,i eith+h’"
Jj=1 Jj=1 Jj=1
and
1 n—h 1 n—h
an(s,t) N E isZjn+itZjynn _ E st]ni § ethJJrh n
n
j=1 ] 1

The result is proved in two propositions. In Proposition B.3, we show the joint convergence
(VG V(G = CF) % (G, &), in C(K),
where K is any compact set in R2. This implies that
VnC4 4 Gy + &, in C(K).

Then we justify the convergence of the integral by showing

lim lim sup P / n|Cf"|2u(ds,dt) >e| =0.
=0 np—oo <
This is done in Proposition B.4.
(prop:b1) Proposition B.3. Given (N1), (N2) and (N3) are satisfied we have

(VnCZn \/n(CZn — CZm)) % (Gh &), in C(K).
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Proof. The proof is divided into the following steps.

Dealing with the triangular array. Consider a sequence Z, Z5, ... where Z; % F. For each 7, we have

Zin A Z;. By Skorohod representation theorem, there exists a sufficiently rich probability space (Q, A, 15)
where Q = {(w1,w2,...) : wj € Qo} for some Qp, and functions z : Qg = R, 2z, : Qg = R, such that for each

Js ) )

Zin = zn(wj) ~ Fn,  Zj = 2(wj) ~ F,

and
Zin ™3 Z;.
This argument is similar to that in Leucht and Neumann (2009). Since we are only concerned about the

distributional limit of nT*(h), we may assume without loss of generality that Z;, 3 Z; for each j.

Convergence of C#~. In this part we show that
cZ 4Gy, inCK).

From Proposition A.1, we have \/nCZ 4 G}, where

n—h n—h

C’f(s,t) — % Zﬁiszj+itzj+h _ % Z ezszji Z et Zitn

j=1 j=1

It suffices to show that
Vn(C# —c?) B0, in C(K).

Note that
1 1 n—h 1 n—h
CZ(s,t) DN U=y
(s, n Z n ]; In ; ]’

where U; := €% — p7(s) and V; 1= e'Zith — o 4(t) with EU;V; = EU; = EV; = 0. Similarly,

1 n—h 1 n—h 1 n—h
Cin(s,t) =~ > (’jann == Uin=>_ Vin,
j=1 j=1 j=1

where Uj,,(s) := e®Zin — ¢z (s) and Vj,(t) := e®Zithn — 5 (). Without loss of generality, here we only
show

n—h n—h
7]7:; jn _72 é\/*; ]'7L_(]j)£>()7 IHC(K)

For fixed s, the convergence follows since

3
|
=

(Ujn —U;) < E|Ujn — Uj|* =0,

Bl

Il
N

J

from bounded convergence. The finite dimensional convergence can be generalized using the Cramér-Wold
device. It remains to prove the tightness of ﬁZT:_lh(Um — Uj;). By Eq. 7.12 of Billingsley (1999), the
tightness of the process can be implied by

n—h
in > (Un(s) ~ Uys)) - % (Uin(s) = U;()) < |s—/|""O(1), for some & > 0.
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We have
2
Z]n = Uj(s) Zm ) = Ui(s")
2
< E|Ujn(s) = Uj(s) = (Ujn(s') — Uj($'))|
< 2E[eFin — e 72 4 200y, (5) — @z, (s + 2E[eH — e 2+ 2|05(s) — oz (s
Note that

]E|€istn _ eis’Zjn|2 < ]E‘ei(sfs VZjn 1‘2 < 2]E| n|2‘3 _ S,|2.

The rest of the term can be bounded similarly. And the tightness is proved.

Convergence of \/ﬁ(Bn — Br). In this part we show that

V(B = Ba) 5 Q. (B.2) [eq: conv:betaboot

Let {X1.,} be the time series generated from the time series model (1.1) with parameter vector 8 and
innovation sequence {Zi.,}. From the proof of Proposition A.1,

1 « d
e Z m(Xfoo:j; ﬂ) — Q
it
It suffices to show that
1 &« n
7 MO ) = 23 m(Xi ) (B.3) ogsconv mboot |
j=1 J=1

We have
\/»Z XfoOJmﬂn)_m(X*OOZj;/B))

1
= ﬁ E E|m(X_oo]7n,ﬁn) *m(X—OO]HB”z
i=1

+% Z E (m(X—oo:i,n; IBn) - m(X—fXNi; '6)) (m(X_Oo:j’n; ﬁn) - m(X_Oo:j; ﬁ))
= E |m(X:OOan, ,Bn) - m(X—oo:O; ﬂ)‘z
Z E [E [(“(X—oo:i,Mﬂn) —m(X_.;0)) (m(X—OOUETL;’@n) B m(X_OO:j;IB)) fiy}—in]] (

1<i<jdn

Since Em(X _oo.j.n; Brn) —m(X_ .55 8) Fi, Fin] = 0, the second term disappears. By causality, m(X_.0; 3)
can be expressed as a function of Z_...g and 3, and

a.s.

m(X—oo:O,nQﬁn) - m(X—oo:O;ﬁ) = rh(Z—oo:O,n§ﬁn) - rh(Z—oo:O;ﬁn) — 0.
Hence
E |m(Xfoo:0,n; ﬂn) - m(Xfoo:0§ /6)|2 —0
by condition (N1) and dominated convergence. This justifies (B.3) and hence (B.2).

Convergence of \/E(Cf" (s,t) — CZn(s,t)). In this part we show that

VR(CEn (s,t) — CZn(s,1)) % &, in C(K).
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Denote

1 n—h . )

E™(s,1) Z 018 Zin+itZjinn _ eiszjnﬂtzﬁh_,n) .

vn =

Then similar to (A.1), we have
R 1 n—h 1 n—h .
V(CE (s, t) = CFr (s, 1) = Ep(s,t) — Ep(s,0)= Y eZitnn — E1(0,1)— > e,
n n
j=1 j=1

From the decomposition of &, in (A.2), it suffices to show that

El(s,) % QTCh(s,1), inC(K).

We have
1 n—h _ R ~
EZ(S t = E ZﬁzszjrA»th th,n ZS\/>( n — Zjn) +it\/ﬁ(2j+}L7n _ j+h,n))
Jj=1
1n h
4+
n

j=1

ﬁ“ZJ’L+”ZJ+h”<zs\F W Zjn = Zin) + V0 Zjnn — Zisnn)) + 0p(1)
J
= El(s,t) + Ela(s,t) + 0p(1),

From condition (N3),

t o 2 -
B0l < L Z(zjn 2, B0, inC(K).
Jj=1

It suffices to show that E’(s,t) 4 QT Cy(s,t). By Taylor expansion,

Jj=1

n—nh
EZ2(3a t) = \/ﬁ(/én - /@n)T% Z <isz'jn+it2j+h’n (ZSL;L(B;;) + itL?—&-h(lB:))v

where 3 = €83, + (1 — e)ﬁn for some € € [0, 1]. We have shown in the previous part that

It remains to show that

n—h

1 . )
~> <’SZJ'"+”ZJ+’l~"(isL?(ﬂ %) +itL?,(85)) & Ch(s. 1), in C(K).
j=1
This follows from .
S A Ly () 4 iL541(8) B il 1)
j:1
and
1 n—h ‘ ) 1 n—h . ‘
= Z 0 15Zjn+itZisnn (isL7(By,) +itL} 1, (Br)) — - Z e 5ZititZisn (L (B) + itLj 4 (3))
j=1 j=1

< PES™ e 109
j=1

20, inC(K),
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from dominated convergence.

Joint convergence of \/nC%"(s,t) and \/E(C’nz"(s, t) — CZn(s,t)). The above proofs implies that
VG (s, t) = /nCl (s, t) % 0, in C(K),

and
V(CZn (s,8) — CZn(s,1)) — V/n(CZ (s,t) — CZ(s,1)) B0, in C(K).

The join convergence of /nCZ"(s,t) and Vn(CZa(s,t) — CZn(s,t)) follows from the joint convergence of
VnCZ(s,t) and /n(CZ(s,t) — CZ(s,t)) in Proposition A.1. O

(prop:b2) Proposition B.4.

lim lim sup P /( n|C§"|2u(ds,dt) > 5) =0.
=0 np—ooo s

Proof. This follows the same steps in the proof of Proposition A.2 by replacing all Zj with Zjn and Z; with
Zin. O

Appendix C: Proof of Corollary 5.1

{app:arma) Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 3.1.
(M1): Tt can be shown that the pseudo-MLE for 3 satisfies the representation in (M1). We refer to Chapter
10.8 of Brockwell and Davis (1991) for details.

(M2): From
¢(B)
Zy = Q(B) Xt = h(Xfoo tw@)
we have 5 . '
8¢ih(X—oo:t7ﬁ): @Xt:@)(t—i; ’L':l,...7p7
while 5 Bio(B) i ,
0, h(X coit,B) = @ (B))QXtZH(B)ZtZQ(B)Zt_j’ 71=1,...,q.
Hence
0 1 -
LO(IB) = %h(Xfoo:O;ﬂ) = @(th. . Xfp,Z, Ce Z,q) .

By the definition of invertibility, there exists a power series for 1/6(z) such that

1 o0
eI

with 3°7° [§;(8)| < co. Therefore

E||Lo (8 ||2<pZ\5J |2EX0|2+qZ(<J B)[E|Zo[? < oc.
k=0

(M3): Note that

(oo}

Zy— 7y = Z(g (B)X:—;.

=t
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n oo o7} JjAn

%Z(&—Ztkg 1 ZZC” ) Xij :Zm(ﬂ Z|Xt]\

3

t=1 j=t

For any m < n,

j=m-+

1 n » R k m R m n
NG Z(zt ~Z < Y ImB)F 2 I+ Z(mw f 21X iI" =Lt I (C1)[eaiTin]
t=1 j=0
Consider the coeflicients ; (B)’S. By causality, the power series

ORI

converges for all |z| < 1+ ¢ for some € > 0. Then there exists a compact set Cg containing B such that for
any B € Cg, Z;io 7;(83)z7 converges for all |2| < 1+ ¢/2. In particular,
m(B)(1+€/4) =0, j— oo,
and there exists K > 0 such that
7 (B)] < K(1+e€/4)”
It follows that

oo

Z(rj(é)v@ <00, k=12

J=0

Now for (C.1), I converges to zero in probability for fixed m, while I converges to zero uniformly as m — oo.

This implies that
1 n
Z( Z o 0, k=1,2.
n

t=1

Appendix D: Proof of Corollary 6.1

{app:garch) Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 3.1.
(M1): Given conditions (Q1)—(Q4), Berkes et al. (2003) showed that 68,, has limiting distribution

n 2
Vil -0) = 350 7) <W,Bal><rop<1> . N(0,ByAsB;Y),
n

oo 242 (2[00

where

(M2): We have

Xt
Z:(0) = h(X_oo:4,0 ’
t( ) ( J ) Ut(e)
and ) g o »
Lo(0) = 2 h(X_0:0:0) = — 55 05(0) _ _ Zo oga;(0)
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Lemma 3.1 of Kulperger and Yu (2005) showed that

log 02 F
E(supaOgUt(U)> < oo, foranyk > 0.
uco du
Hence
1/2
dloga2(0) ° 1 dloga2(9) *
E||L 2_g Ly 080000) " 1 g g 9l0gog(0) )
Lo@)? =& 52,70 " < o gz B <0

(M3): Theorem 1.3 and Lemma 3.5 of Kulperger and Yu (2005) show, respectively, that

| N
— 2 — Zi| = 0, (1),
Vi

and
n

Z(Zt — Zy| = 0,(1).

t=1

Hence

t=1

n
1nZ(Zt Zy|? <7Z|Zt Zt|Z|Zt Zi| = 0p(1).
t=1
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