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Abstract: In many statistical modeling frameworks, goodness-of-fit tests are typically administered 
to the estimated residuals. In the time series setting, whiteness of the residuals is assessed using 
the sample autocorrelation function. For many time series models, especially those used for financial 
time series, the key assumption on the residuals is that they are in fact independent and not just 
uncorrelated. In this paper, we apply the auto-distance correlation function (ADCF) to evaluate the 
serial dependence of the estimated residuals. Distance correlation can discriminate between dependence 
and independence and is applicable for multivariate data. The limit behavior of the test statistic based 
on the ADCF is derived for a general class of time series models. One of the key aspects in this theory is 
adjusting for the dependence that arises due to parameter estimation. This adjustment has essentially 
the same form regardless of the model specification. We illustrate the results in simulated examples. 

Keywords and phrases: distance covariance, time series models, estimated residuals, goodness-of-fit 
testing, serial dependence. 

1. Introduction 

?hsec:introi? 
Let {Xj , j ∈ Z} be a stationary time series of random variables with finite mean and variance. Given consec-
utive observations of this time series X1, . . . , Xn, we are interested in whether the sequence can plausibly be 
viewed as generated from a parametric model, more precisely, whether {Xj } is generated from the recursion 

Xj := f(X−∞:j , Zj ; β), (1.1) eq:model 

where Xn1:n2 denotes the sequence {Xj , n1 ≤ j ≤ n2}, the Zj ’s are iid with finite second moments, and 
β ∈ Rd is the parameter vector. The objective of this paper is to provide a validity check of the model (1.1) 
by inspecting the residuals. 
A typical assumption for time series models is that the recursion (1.1) is casual and invertible, that is, 

Xj = g(Z−∞:j ; β) 

and 
Zj = Zj (β) = h(X−∞:j ; β) (1.2) eq:invert 

for some functions g and h. Here we write Zj (β) to indicate its dependency on β. Given the observations 
X1:n, let β̂ be an estimator of β. Then the innovations {Zj } can be approximated by 

Z̃j := Zj (β̂) = h(X−∞:j ; β̂), (1.3) eq:tildez 

the residuals based on the infinite sequence {Xj , j ≤ n}. If the recursion (1.1) describes the generating 
mechanism of {Xj }, one would expect {Z̃ 

j } to inherit the properties of {Zj }. In reality, we do not observe 
Xj for j ≤ 0 and instead rely on the estimated residuals 

Ẑj := h(Y−∞:j ; β̂), j = 1, . . . , n, (1.4) eq:res 
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where {Yj } is the infinite sequence with Yj = Xj , 1 ≤ j ≤ n and Yj = 0 for j ≤ 0. If the time series {Xj } is 
stationary and ergodic, the influence of X−∞:0 in (1.3) becomes negligible for large j and Ẑ 

j and Z̃ 
j become 

indistinguishable. 
ˆ ˆWhile Z1, . . . , Zn are derived to approximate the iid innovation {Zj }, the sequence itself is not iid since 

ˆthey are functions of β. This has been noted for specific time series models in the literature. For example, 
for ARMA model, corrections have been proposed for statistics based on the residuals, see Section 9.4 
of Brockwell and Davis (1991). For the heteroscedastic GARCH models, the moment sum process of the 
residuals were studied in Kulperger and Yu (2005). Still, if the model assumption is true, {Ẑj } should 
possess a serial dependence structure consistent with the model. 
In this paper, we evaluate the serial dependence of residuals using distance covariance. Distance covariance 

is a usefull dependence measure with the ability to detect both linear and nonlinear dependence. It is zero 
if and only if independence occurs. We study the auto-distance covariance function (ADCV) of the residuals 
and derive its limit when the model is correctly specified. We show that the limiting distribution of the 
ADCV of {Ẑj } differs from that of its iid counterpart {Zj } and quantify the difference. This is an extension 
of Section 4 of Davis et al. (2018) which considered this problem for AR processes. 
The remainder of the paper is structured as follows. An introduction to distance correlation and ADCV 

along with some historical remarks are given in Section 2. In Section 3, we provide the limit result for 
the ADCV of the residuals for a general class of time series models. To implement the theoretical results, 
we justify the use of parametric bootstrap in Section 4. We then apply the result to ARMA and GARCH 
models in Section 5 and 6 and illustrate with simulation studies. A simulated example where the data does 
not conform with the model is also demonstrated in Section 7. 

2. Distance covariance 

hsec:dcori 
Let X ∈ Rp and Y ∈ Rq be two random vectors, potentially of different dimensions. Then 

X ⊥ Y ⇐⇒ ϕX,Y (s, t) = ϕX (s) ϕY (t), 

where ϕX,Y (s, t), ϕX (s), ϕY (t) denote the joint and marginal characteristic functions of (X, Y ). The distance 
covariance between X and Y is defined as Z 

2 
T (X, Y ; µ) = ϕX,Y (s, t) − ϕX (s) ϕY (t) µ(ds, dt) , (s, t) ∈ Rp+q, 

Rp+q 

where µ is a suitable measure on Rp+q. In order to ensure that T (X, Y ; µ) is well-defined, one of the following 
conditions is assumed to be satisfied (Davis et al., 2018): 

1. µ is a finite measure; 
2. µ is an infinite measure such that Z 

(1 ∧ |s|α)(1 ∧ |t|α)µ(ds, dt) < ∞ 
Rp+q 

and 
E[|XY |α + |X|α + |Y |α] < ∞, for some α ∈ (0, 2]. 

If µ has a positive Lebesgue density on Rp+q, then X and Y are independent if and only if T (X, Y ; µ) = 0. 
For a stationary series {Xj }, the auto-distance covariance (ADCV) is given by Z 

2 
Th(X; µ) := T (X0, Xh; µ) = ϕX0,Xh (s, t) − ϕX (s) ϕX (t) µ(ds, dt) , (s, t) ∈ R2 . 

R2 

Given observations {Xj , 1 ≤ j ≤ n}, the ADCV can be estimated by its sample version Z 
2 

T̂h(X; µ) := CX (s, t) µ(ds, dt) , (s, t) ∈ R2 ,n 
R2 
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where 
n−h n−h n−hX X X1 1 1isXj +itXj+h isXj itXj+hCX (s, t) := e − e e .n n n n 
j=1 j=1 j=1 

If we assume that µ = µ1 × µ2 and is symmetric about the origin, then under the conditions where Th(X; µ) 
exists, T̂  

h(X; µ) is computable in a alternative V -statistic like form, see Section 2.2 of Davis et al. (2018) for √ 
details. It can be shown that if the Xj ’s are iid, the process nCX (s, t) converges weakly, n 

d√ 
nCX → Gh on C(K), (2.1)n 

for compact set K ⊂ R2 , and Z 
dˆnTh(X; µ) → |Gh|2 µ(ds, dt), 

where Gh is a zero-mean Gaussian process with covariance structure 

0 0Γ((s, t), (s , t0)) = cov(Gh(s, t), Gh(s , t0))�� �� �
i hs,X0i − ϕX (s) 

i ht,Xhi − ϕX (t)= E e e � �� ��0 0−i hs ,X0i − ϕX (−s 0) −i ht ,Xhi − ϕX (−t0)× e e . 

The concept of distance covariance was first proposed by Feuerverger (1993) for bivariate context and later 
brought to popularity by Székely et al. (2007). The idea of ADCV was first introduced by Zhou (2012). For 
distance covariance in time series context, we refer to Davis et al. (2018) for theory in a general framework. 
Most literature on distance covariance focus on the specific weight measure µ(s, t) with density propor-

tional to |s|−p−1|t|−q−1 . This distance covariance has the advantage of being scale and rotational invariant, 
but imposes moment constraints on the variable sevaluated. In our case, as will be shown in Section 3, we 

ˆrequire a finite measure for µ and shall use a Gaussian measure. In this case Th(X; µ) has the computable 
form 

n−hX1 
T̂  
h(X; µ) = µ̂(Xi − Xj , Xi+h − Xj+h)

(n − h)2 
i,j=1 

n−hX1 
+ µ̂(Xi − Xj , Xk+h − Xl+h)
(n − h)4 

i,j,k,l=1 

n−hX1 −2 µ̂(Xi − Xj , Xi+h − Xk+h),
(n − h)3 

i,j,k=1 R 
where µ̂(x, y) = exp(isx + ity)µ(ds, dt) is the Fourier transform with respect to µ. 
It should be noted that the concept of distance covariance is closely related to Hilbert-Schmidt Inde-

pendence Criterion (HSIC), see Gretton et al. (2005). For example, the distance covariance with Gaussian 
measure coincides with the HSIC with Gaussian kernel. In a recent (unpublished) work, Zhu and Li use 
HSIC for testing the cross dependence between two time series. 

3. General result 

hsec:metai 
Let X1, . . . , Xn be the observed sequence from a stationary time series {Xj } generated from (1.1), and let 
ˆ ˆZ1, . . . , Zn be the estimated residual calculated through (1.4). In this section, we examine the ADCV of the 
residuals Z 

ˆ ˆZ ZT̂  
h(Ẑ; µ) := kC k2 = |C |2 µ(ds, dt),n µ n 

eq:gh 
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where 
n−h n−h n−hX X X1 1 1Ẑ isẐj +itẐj+h isẐj itẐj+hC (s, t) := e − e e .n n n n 
j=1 j=1 j=1 

To provide the limiting result for T̂h(Ẑ; µ), we require the following assumptions. 

?hcond:m1i?(M1) Let Fj be the σ-algebra generated by {Xk, k ≤ j}. We assume that the parameter estimate β̂ is of the 
form 

n√ 1 X 
n(β̂ − β) = √ m(X−∞:j ; β) + op(1), 

n 
j=1 

where m is a vector-valued function of the infinite sequence X−∞:j such that 

E[m(X−∞:j ; β)|Fj−1] = 0, E|m(X−∞:0; β)|2 < ∞. 

This representation can be readily found in most likelihood-based estimators, for example, the Yule-
Walker estimator for AR processes, quasi-MLE for GARCH processes, etc. By the martingale central 
limit theorem, this implies that 

d√ 
n(β̂ − β) → Q, 

for a random Gaussian vector Q. 
?hcond:m2i?

(M2) Assume that the function h in the invertible representation (1.2) is continuously differentiable, and 
writing 

∂ 
Lj (β) := h(X−∞:j ; β), (3.1) eq:bigL

∂β 

we have 
EkL0(β)k2 < ∞. 

?hcond:m3i?(M3) Assume the estimated residuals based on the finite sequence of observations, Ẑj , is close to the fitted 
residuals based on the infinite sequence, Z̃j , such that 

nX1 √ |Ẑj − Z̃j |k = op(1), k = 1, 2. 
n 

j=1 

hthm:metai Theorem 3.1. Let X1, . . . , Xn be a sequence of observations generated from a causal and invertible time 
series model (1.1). Let β̂ be an estimator of β and let Ẑ1, . . . , Ẑ 

n be the estimated residuals calculated through 
(1.4) satisfying conditions (M1)–(M3). Further assume that the weight measure µ satisfies Z � �

2(1 ∧ |s|2) (1 ∧ |t|2) + (s + t2) 1(|s| ∧ |t| > 1) µ(ds, dt) < ∞. (3.2) eq:7 
R2 

Then 
d 

nT̂h(Ẑ; µ) → kGh + ξhk2 ,µ 

ˆwhere Gh is the limiting distribution for nTh(Z; µ), the ADCV based on the iid innovations Z1, . . . , Zn, and 
the correction term is given by �� � �

isZ0 itZh Lh(β)ξh(s, t) := itQT E e − ϕZ (s) e , (3.3) eq:xi 

with Q being the limit distribution of 
√ 
n(β̂ − β) and Lh as defined in (B.1). 

The proof of the theorem is provided in Appendix A. 
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Remark 3.2. Distance correlation, analogous to linear correlation, is the normalized version of distance 
covariance, defined as 

T (X, Y ; µ)
R(X, Y ; µ) := p ∈ [0, 1]. 

T (X, X; µ)T (Y, Y ; µ) 

The auto-distance correlation function (ADCF) of a stationary series {Xj } at lag h is given by 

Rh(X; µ) := R(X0, Xh; µ), 

and its sample version R̂h(X; µ) can defined similarly. It can be shown that the ADCF for the residuals from 
an AR(p) model has the limiting distribution (Davis et al., 2018): 

kGh + ξhk2 

nR̂ 
h(Ẑ; µ) →

d µ 
, (3.4) eq:adcf:limit

T0(Z; µ) 

and the result can be easily generalized to other models. In the following examples, we shall use ADCF in 
place of ADCV. 

4. Parametric bootstrap 

hsec:booti 
Messy notation! 
The limit in (3.4) is not distribution-free and generally intractable. In order to use the result, we propose 

to approximate the limit through parametric bootstrap, described in the following. 
Given observations X1, . . . , Xn, let β̂ be the parameter estimate and Ẑ1, . . . , Ẑ 

n be the estimated residuals. 
A set of bootstrapped residuals can be obtained as follows: 

ˆ1. Sample iid Z1 
∗ , . . . , Z∗ from the empirical distribution of {Ẑj }, i.e., with replacement from Ẑ1, . . . , Zn.n 

2. Generate X1 
∗ , . . . , X∗ from the time series model with parameter value β̂ and residual sequencen 

Z1 
∗ , . . . , Z∗ .n 

3. Re-fit the time series model. Obtained the parameter estimate β̂∗ and the estimated residuals Ẑ 
1 
∗ , . . . , Ẑ∗ .n 

Let nR̂h(Ẑ
∗ , µ) be the ADCF calculated from the bootstrapped residuals Ẑ 

1 
∗ , . . . , Ẑ∗ . This procedure isn 

(1) (B)
repeated B times to obtain nR̂ (Ẑ∗ , µ), . . . , nR̂ (Ẑ∗ , µ). When the sample size n is large, the empiricalh h 

(b)ˆ Z∗ ˆdistribution of {nR ( ˆ , µ)} provides an approximation for the limiting distribution of nRh(Ẑ; µ). Theh 

theoretical convergence of the bootstrapped ADCF is currently under investigation. 
Given the following condition, we show in Theorem 4.1 that these statistics form a good representation 

of the limit distribution of nT̂h(Ẑ, µ), the ADCV of the actual fitted residuals. 

?hcond:m1pi?(M1’) Let Fj , F∗ be the σ-algebra generated by {Xk, k ≤ j} and {X∗, k ≤ j}, respectively. We assume thatj k 

the parameter estimate β̂ is of the form 

n√ 1 X 
n(β̂ − β) = √ m(X−∞:j ; β) + op(1), 

n 
j=1 

where m satisfies 

E[m(X ∗ β)|Fj 
∗
−1] = E[m(X−∞:j ; β)|Fj−1] = 0, E sup |m(X ∗ β)|2 < ∞.−∞:j ;

ˆ 
−∞:0;

ˆ 
n 

?hcond:m2pi?(M2’) Assume that the function h in the invertible representation (1.2) is continuously differentiable, and 
writing 

L ∗ 
j (β) := 

∂ 
h(X ∗ 

−∞:j ; β),∂β 
(4.1) 

we have 
E sup kL ∗ 

0( ̂β)k2 < ∞. 
n 

eq:bigL 
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?hcond:m3pi? Ẑ∗(M3’) Assume the estimated residuals based on the finite sequence of observations, j , is close to the fitted 
residuals based on the infinite sequence, Z̃ 

j 
∗ , such that 

nX1 √ |Ẑ 
j 
∗ − Z̃ 

j 
∗ |k = op(1), k = 1, 2. 

n 
j=1 

hthm:booti Theorem 4.1. Assume that the conditions (M1’), (M2’) and (M3’). Then the ADCV of the bootstrapped 
residuals {Ẑ∗ } satisfies1:n 

d 
nT̂h(Ẑ

∗ , µ) → kGh + ξhk2 ,µ 

conditioning on the observed data X1, . . . , Xn. 

5. Example: ARMA(p,q) 

hsec:armai Consider the causal, invertible ARMA(p, q) process that follows the recursion 
p qX X 

Xt = φiXt−i + Zt + θj Zt−j , (5.1) 
i=1 j=1 

where β = (φ1, . . . , φp, θ1, . . . , θq)
T is the vector of parameters and {Zt} is the sequence of mean 0 andPp iuncorrelated innovation. Denote the AR and MA polynomials by φ(z) = 1 − φiz and θ(z) = 1 +P i=1 

q jθj z , and let B be the backward operator, i.e.,j=1 

BXt = Xt−1, 

then the recursion (5.1) can be represented by 

φ(B)Xt = θ(B)Zt. 

It follows from invertibility that φ(z)/θ(z) has the power series expansion 
∞Xφ(z) i = πj (β)z ,

θ(z) 
j=0 P∞

where |πj (β)| < ∞, andj=0 
∞X 

Zt = Zt(β) = πj (β)Xt−j . 
j=0 

Given an estimate of the parameters β̂, the residuals based on the infinite sequence {X−∞:n} are given by 
∞X 

Z̃t := Zt(β̂) = πj (β̂)Xt−j . 
j=0 

Based on the observed data X1, . . . , Xn, the estimate residuals are 

t−1X 
Ẑ 
t = πj (β̂)Xt−j . (5.2) 

j=0 

One choice for β̂ is the pseudo-MLE based on Gaussian likelihood 

1 
XT Σ−1XnL(β, σ2) ∝ σ−n|Σ|−1/2 exp{ },n2σ2 

where Xn = (X1, . . . , Xn)
T and the covariance Σ = Σ(β) := Var(Xn)/σ

2 is independent of σ2 . The pseudo-
MLE β̂ and σ̂2 are taken to be the values that maximize L(β, σ2). It can be shown that β̂ is consistent and 
asymptotically normal even for non-Gaussian Zt (Brockwell and Davis, 1991). 
We have the following result for the ADCV of ARMA residuals. 

eq:arma 

eq:arma:residuals 
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hthm:armai 
Corollary 5.1. Let {Xt, 1 ≤ j ≤ n} be observations from a causal and invertible ARMA(p,q) time series 
and {Ẑ 

t, 1 ≤ t ≤ n} be the estimated residuals defined in (5.2). Assume that µ satisfies (3.2), then 

d 
nT̂  

h(Ẑ; µ) → kGh + ξhk2 ,µ 

where (Gh, ξh) is a joint Gaussian process defined in R2 with Gh as specified in (2.1) and ξh in (3.3). 

The proof of Corollary 5.1 is given in Appendix C. 

Remark 5.2. In the case where the distribution of Zt is in the domain of attraction of a α-stable law with 
α ∈ (0, 2), and the parameter estimator β̂ has convergence rate faster than n−1/2 , i.e., 

an(β̂ − β) = Op(1), for some an = o(n −1/2), 

(Davis, 1996), the ADCV of the residuals has limit 

d 
nT̂h(Ẑ; µ) → kGhk2 ,µ 

where the correction term ξh disappears. For a proof, see Theorem 4.2 of Davis et al. (2018). 

5.1. Simulation 

We generate time series of length n = 2000 from an ARMA(2,2) model with standard normal innovations 
and parameter values 

β = (φ1, φ2, θ1, θ2) = (1.2, −0.32, −0.2, −0.48). 

For each simulation, an ARMA(2,2) model is fitted to the data. In Figure 1, we compare the empirical 5% 
and 95% quantiles for the ADCF of 

a) iid innovations from 1000 independent simulations; 
b) estimated residuals from 1000 independent simulations; 
c) estimated residuals from 1000 independent parametric bootstrap samples from one realization of {Xt}. 

In order to satisfy the requirement (3.2), the ADCFs are evaluated using the Gaussian weight measure 
N(0, 0.52). Confirming the results in Theorem 3.1 and Corollary 5.1, the simulated quantiles of R̂h(Ẑ; µ) 
differ significantly from that of R̂ 

h(Z; µ), especially when h is small. Given one realization of the time series, 
the quantiles estimated by parametric boostrap correctly capture this effect. 
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Fig 1. Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated residuals; c) bootstrapped residuals; 
from a ARMA(2,2) model. 
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6. Example: GARCH(p,q) 

hsec:garchi In this section, we consider a GARCH(p,q) model, 

Xt = σtZt, 

where the Zt’s are iid innovations with mean 0 and variance 1 and 

p qX X 
σt 
2 = α0 + αiXt 

2 
−i + βj σt 

2 
−j , α0 > 0, αi ≥ 0, βj ≥ 0. (6.1) 

i=1 j=1 

Let θ = (α0, α1, . . . , αp, β1, . . . , βq) denote the parameter vector. We write the conditional variance σ2 = t 

σ2 
t (θ) to denote it as a function of θ. 
Iterating the recursion in (6.1) gives 

∞X 
σ2(θ) = c0(θ) + ci(θ)X

2 
t t−i, 

i=1 

for suitably defined functions ci’s (Berkes et al., 2003). Given an estimator θ̂, an estimator for σ2(θ) basedt 

on {Xj , j ≤ t} can be written as 

∞X 
σ̃2 := σ2(θ̂  

n) = c0(θ̂  
n) + ci(θ̂  

n)X
2 

t t t−i, 
i=1 

and the unobserved residuals are given by 
Z̃t = Xt/σ̃t. 

In practice, σ̃2 can be approximated by the truncated version t 

tX 
σ̂2(θ̂  

n) := c0(θ̂  
n) + ci(θ̂  

n)Xt 
2 
−i,t 

i=1 

and the estimated residual Ẑ 
t is given by 

Ẑt = Xt/σ̂t. (6.2) 

Define the parameter space by 

Θ = {u = (s0, s1, . . . , sp, t1, . . . , tq) : t1 + · · · + tq ≤ ρ0, u ≤ min(u) ≤ max(u) ≤ ū}, 

for some 0 < u < ū, 0 < ρ0 < 1 and qu < ρ0, and assume the following conditions: 
?hcond:q1i? 

(Q1) The true value θ lies in the interior of Θ. 
?hcond:q2i? (Q2) For some ζ > 0, 

lim x −ζ P{|Z0| ≤ x} = 0. 
x→0 

?hcond:q3i? (Q3) For some δ > 0, 
E|Z0|4+δ < ∞. P?hcond:q4i? p i(Q4) The GARCH(p, q) representation is minimal, i.e., the polynomials A(z) = and B(z) = i=1 αizPp

1 − βj z
j do not have common roots. j=1 

Given observations {Xt, 1 ≤ t ≤ n}, Berkes et al. (2003) proposed a quasi-maximum likelihood estimator 
given by 

nX 
θ̂n := arg max lt(u),u∈Θ 

t=1 

eq:cv:def 

eq:garch:residuals 
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where 
1 X2 

tlt(u) := − log σ̂2(u) − .t2 2σ̂2(u)t 

Provided that (Q1)–(Q4) are satisfied, the quasi-MLE θ̂  
n is consistent and asymptotically normal. 

ˆFor the ADCV of the residuals based on θn, we have the following result. 
hthm:garchi 

Corollary 6.1. Let {Xt, 1 ≤ j ≤ n} be observations from a GARCH(p,q) time series and {Ẑ 
t, 1 ≤ t ≤ n}

be the estimated residuals defined in (6.2). Assume that (Q1)–(Q4) holds and that µ satisfies (3.2), we have 

d 
nT̂h(Ẑ; µ) → kGh + ξhk2 ,µ 

where (Gh, ξh) is a joint Gaussian process defined in R2 with Gh as specified in (2.1) and ξh in (3.3). 

The proof of Corollary 6.1 is given in Appendix D. 

6.1. Simulation 

We generate time series of length n = 2000 from a GARCH(1,1) model with parameter values 

β = (α0, α1, β1) = (0.5, 0.1, 0.8). 

For each simulation, a GARCH(1,1) model is fitted to the data. In Figure 2, we compare the empirical 5% 
and 95% quantiles for the ADCF of 

a) iid innovations from 1000 independent simulations; 
b) estimated residuals from 1000 independent simulations; 
c) estimated residuals from 1000 independent parametric bootstrap samples from one realization of {Xt}. 

Again the ADCFs are based on the Gaussian weight measure N(0, 0.52). The difference between the quantiles 
of R̂ 

h(Ẑ; µ) and R̂ 
h(Z; µ) can be observed. For the GARCH model, the correction has the opposite effect 

than in the ARMA model – the ADCF for residuals are larger than that for iid variables, especially for small 
lags. 
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Fig 2. Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) estimated residuals; c) bootstrapped residuals; 
from a GARCH(1,1) model. 
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7. Example: Non-causal AR(1) 

hsec:noncausali In this section, we consider an example where the model is wrongly specified. We generate time series of 
length n = 2000 from a non-causal AR(1) model with φ = 1.67 and t-distributed noise with degree of freedom 
2.5. Then we fit a causal AR(1) model, where |φ| < 1, to the data and obtain the corresponding residuals. 
Again the ADCF is evaluated using the Gaussian weight measure N(0, 0.52) and in Figure 3, we plot the 
5% and 95% ADCF quantiles of: 

a) estimated residuals from 1000 independent simulations; 
b) estimated residuals from 1000 independent parametric bootstrap samples from one realization of {Xt}. 

The ADCFs of the bootstrapped residuals provide an approximation for the limiting distribution of the 
ADCF of the residuals given the model is correctly specified. In this case, the ADCFs of the estimated 
residuals significantly differ from the quantiles of that of the bootstrapped residuals. This indicates the time 
series does not come from the assumed causal AR model. 
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iid
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Fig 3. Empirical 5% and 95% quantiles of the ADCF for a) iid innovations; b) bootstrapped residuals; from non-causal AR(1) 
data fitted with a causal AR(1) model. 

hfig:ncari 

8. Conclusion 

In this paper, we examined the serial dependence of estimated residuals for time series models via the auto-
distance covariance function (ADCV) and derived the asymptotic result for general classes of time series 
models. We showed theoretically that the limiting behavior differs from the ADCV for iid innovations by 
a correction term. This indicated that adjustments should be made when testing the goodness-of-fit of the 
model by inspecting the serial dependence of residuals. We illustrated the result on simulated examples of 
ARMA and GARCH processes and discover that the adjustments could be in either direction – the quantiles 
of ADCV for residuals could be larger or smaller than that for iid innovations. We also studied an example 
when a non-causal AR process is incorrectly fitted with a causal model and showed that ADCV correctly 
detected model misspecification when applied to the residuals. 
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happ:metai 

hprop:joint:convi 

In the following appendices, we provide proofs to Theorem 3.1 and Corollaries 5.1 and 6.1. Throughout 
the proofs, c denotes a general constant whose value may change from line to line. 

Appendix A: Proof of Theorem 3.1 

Proof. The proof proceeds in the following steps with the aids of Propositions A.1, A.2 and A.3. Write 

√ √ √ √ˆ ˆZ Z nT̂  
h(Ẑ; µ) =: k nC k2 = k nC − nCZ + nCZ k2 ,n µ n n n µ 

where 
n−h n−h n−hX X X

ˆ 1 1 1Z isẐj +itẐj+h isẐj itẐj+hC (s, t) := e − e en n n n 
j=1 j=1 j=1 

and 
n−h n−h n−hX X X1 1 1isZj +itZj+h isZj itZj+hCZ (s, t) := e − e e .n n n n 
j=1 j=1 j=1 

We first show in Proposition A.1 that 

√ √ˆ dZ( n(C − CZ ), nCZ ) → (ξh, Gh), on C(K),n n n 

where K is any compact set in R2 . This implies 

√ 
Z nC 
ˆ →d 

ξh + Gh, on C(K).n 

For δ ∈ (0, 1), define the compact set 

Kδ = {(s, t)|δ ≤ s ≤ 1/δ, δ ≤ t ≤ 1/δ}. 

It follows from the continuous mapping theorem that Z Z 
ˆ dZ n |C |2 µ(ds, dt) → |Gh + ξh|2 µ(ds, dt).n 

Kδ Kδ 

To complete the proof, it remains to justify that we can take δ ↓ 0. For this it suffices to show that for any 
ε > 0, !Z √ 

Ẑlim lim sup P | nC |2 µ(ds, dt) > ε = 0,n
δ→0 n→∞ Kc 

δ 

and !Z 
lim P |Gh + ξh|2 µ(ds, dt) > ε = 0. 
δ→0 Kc 

δ 

These are shown in Propositions A.2 and A.3, respectively. 

Proposition A.1. Given the conditions (M1)–(M3), 

ˆ dZ( 
√ 
n(C − CZ ), 

√ 
nCZ ) → (ξh, Gh), on C(K),n n n 

for any compact K ⊂ R2 . 
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√ 
ẐProof. We first consider the marginal convergence of n(C − CZ ). Denoten n 

n−h � �X1 isẐj +itẐj+h isZj +itZj+hEn(s, t) := √ e − e , 
n 

j=1 

then 

√ 
Ẑ n(C (s, t) − CZ (s, t))n n = 

1 √ 
n−hX� � 

is Ẑj +it Ẑj+h isZj +itZj+he − e 
n 

j=1 

1 − √ 
n−h n−hX� � X1is Ẑj isZj itZj+he − e e 

n n 
j=1 j=1 

n−hX1 1is Ẑj− e √ 
n−hX� � 

it Ẑj+h itZj+he − e 
n n 

j=1 j=1 

= 
n−h n−hX X1 1itZj+h is ẐjEn(s, t) − En(s, 0) e − En(0, t) e . (A.1) 

n n 
j=1 j=1 

We now derive the limit of En(s, t). For fixed s and t, 

1 X � �n−h 
isZj +itZj+h is(Ẑj −Zj )+it(Ẑ 

j+h−Zj+h) − 1En(s, t) = √ e e 
n 

j=1 

1 
n−h √ √X 

isZj +itZj+h (is= e n(Ẑ 
j − Zj ) + it n(Ẑ 

j+h − Zj+h)) + op(1), 
n 

j=1 

n−h
1 X √ √

isZj +itZj+h (is= e n(Ẑj − Z̃j ) + it n(Ẑj+h − Z̃j+h)) 
n 

j=1 

n−h 
1 X √ √

isZj +itZj+h (is+ e n(Z̃j − Zj ) + it n(Z̃j+h − Zj+h)) + op(1) 
n 

j=1 

=: En1(s, t) + En2(s, t) + op(1). 

By assumption (M3), 

n−h n−hX X1 1 p|En1(s, t)| ≤ |s|√ |Ẑj − Z̃j | + |t|√ |Ẑj+h − Z̃j+h| → 0, in C(K). 
n n 

j=1 j=1 

It follows from a Taylor expansion that 

n−h√ 1 X 
isZj +itZj+h (isLj (β ∗ ) + itLj+h(β ∗ )) ,En2(s, t) = n(β̂ − β)T e 

n 
j=1 

where β∗ = β + �(β̂ − β) for some � ∈ [0, 1]. Since Lj (β) is stationary and ergodic, it follows from the ergodic 
theorem (see, for example, Corollary 2.1.8 of Samorodnitsky (2016)) Need uniform ergodic theorem that 

n−h 
1 X p � � 

e isZj +itZj+h (isLj (β) + itLj+h(β)) → E e isZj +itZj+h (isLj (β) + itLj+h(β)) =: Ch(s, t), in C(K). 
n 

j=1 

Hence, 
d

En(s, t) → QT Ch(s, t), in C(K). 

eq:decomp:en 
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Note that 
n−hX1 pitZj+he → ϕZ (t), in C(K), 

n 
j=1 

and 
n−h n−hX X1 1 1 pis ˆ isZje Zj = e + √ En(s, 0) → ϕZ (s), in C(K). 

n n n 
j=1 j=1 

We have 
ˆ dZ

√ 
n(C − CZ ) → QT (Ch(s, t) − Ch(s, 0)ϕZ (t) − Ch(0, t)ϕZ (s)) , in C(K).n n 

To further simplify the above expression, notice that Lj (β) is a function of X−∞:j and independent of Zj+h 

by causality. Hence � � � � � �
isZj isLj (β) 

itZj+h isZj +itZj+h itLj+h(β)Ch(s, t) = E e E e + E e � �
isZj +itZj+h itLj+h(β)= Ch(s, 0)ϕZ (t) + E e , 

and 

QT (Ch(s, t) − Ch(s, 0)ϕZ (t) − Ch(0, t)ϕZ (s))� � � � � �
isZj +itZj+h itLj+h(β) 

itZj+h itLj+h(β)= QT E e − E e ϕZ (s) = ξh(s, t). (A.2) 

√ 
ẐThis justifies the marginal convergence of n(C − CZ ).n n√ √

ẐFor the joint convergence of n(C − CZ ) and nCZ , we recall assumption (M1)n n n 

n√ 1 X 
n(β̂ − β) = √ m(X−∞:j ; β) + op(1) 

n 
j=1 

and also note from the proof of Theorem 1 in Davis et al. (2018) that 

n√ 1 X 
disZj itZj+hnCZ = √ (e − ϕZ (s))(e − ϕZ (t)) + op(1) → Gh, in C(K).n n 

j=1 

By martingale central limit theorem, ⎛ ⎞ 
n n−hX X⎝ 1 1 isZj itZj+h ⎠√ m(X−∞:j ; β), √ (e − ϕZ (s))(e − ϕZ (t)) 

n n 
j=1 j=1 

√ √ 
converges jointly to (Q, Gh). This implies the joint convergence of n(β̂ − β) and nCZ . Since ξh is non-n√ √ √ 
random and continuous, the joint convergence nCZ and nCẐ − nCZ also follows. n n n 

hprop:a2i 
Proposition A.2. Under the conditions of Theorem 3.1, !Z √ 

Ẑ |2lim lim sup P | nC µ(ds, dt) > ε = 0.n
δ→0 n→∞ Kc 

δ 

ẐProof. Using telescoping sums, C − CZ has the following decomposition, n n 

n−h n−h n−h n−h n−h n−h n−hX X X X X X X
ˆ 1 1 1 1 1 1 1ZC − CZ = Aj Bj − Aj Bj − Uj Bj − Vj Ajn n n n n n n n n 

j=1 j=1 j=1 j=1 j=1 j=1 j=1 

eq:xi:cal 



 
� 

15 Goodness-of-Fit Testing for Time Series Models via Distance Correlation 

1 1
n−h n−h 6 

+ Uj Bj + Vj Aj =: Ink(s, t), 
n n 

j=1 j=1 k=1 

where 

isZj itZj+h isẐj isZj itẐ 
j+h itZj+hUj = e − ϕZ (s), Vj = e − ϕZ (t), Aj = e − e , Bj = e − e . 

From a Taylor expansion, 

XXX 

⎛⎝ ⎞⎠ 2 
n−h 

|Aj Bj |
n 

j=1 

X1 
n|In1(s, t)|2 √≤ 

⎛⎝ ⎞⎠ 2 
n−h 

n 
j=1 

n−h 

|e 

X 
X1 is( ˆ it( ˆZj −Zj ) − 1||e Zj+h−Zj+h) − 1|√≤ 

⎛⎝ ⎞⎠ 2� �� �1 
1 ∧ |s||Ẑj − Zj | 1 ∧ |t||Ẑj+h − Zj+h|√≤ c 

n 
j=1 ⎛ ⎜⎝ 
⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ 2 2 

n−h 

j=1 

X 
|Ẑj − Zj | 

Xn−h 

j=1 

1 √ 
1 √ |Ẑj+h − Zj+h||s|2 , |t|2≤ c min , 

n n ⎞ ⎟⎠ 
⎛⎝ ⎞⎠ 2 X−hn 

n 
j=1 

1 |st|2 |Ẑj − Zj ||Ẑj+h − Zj+h|√ 

⎛ ⎜⎝ 
⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ 2 2 Xn−h 

j=1 

|Ẑj − Zj | 
Xn−h 

j=1 

1 √ 
1 √|s|2 , |t|2 |Ẑj+h − Zj+h|≤ c min , 

n n ⎛⎝ ⎞⎠ ⎞⎠Xn−h 

j=1 

Xn−h 

j=1 

1 √ 
1 √|st|2 |Ẑj − Zj |2 |Ẑj+h − Zj+h|2 

n n 

For k = 1, 2, ⎛⎝ ⎞⎠Xn−h 

j=1 

Xn−h 

j=1 

Xn−h 

j=1 

|Z̃j − Zj |k
1 √ 

1 √ 
1 |Ẑj − Zj |k |Ẑj − Z̃j |k √≤ +c 

n n n 

Xn−h 

n 
j=1 

1 √ 1 k n(β̂ − β)kk kLj (β ∗ )kk≤ op(1) + c 
n(k−1)/2 

= Op(1). 

Therefore � 
n|In1(s, t)|2 ≤ min(|s|2 , |t|2 , |st|2)Op(1) ≤ 2(1 ∧ |s|2) (1 ∧ |t|2) + (s + t2) 1(|s| ∧ |t| > 1) Op(1), 

where the Op(1) term does not depend on (s, t). This implies that !Z 
lim lim sup P n|In1(s, t)|2 µ(ds, dt) > ε = 0. 
δ→0 n→∞ Kc 

δ 

Similar arguments show that n|In2(s, t)|2 is bounded by min(|s|2 , |t|2 , |st|2)Op(1), n|In3(s, t)|2 and n|In5(s, t)|2 

are bounded by min(|t|2 , |st|2)Op(1), and n|In4(s, t)|2 and n|In6(s, t)|2 are bounded by min(|s|2 , |st|2)Op(1), 
and the result of the proposition follows. 
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hprop:a3i 
Proposition A.3. Under the conditions of Theorem 3.1, !Z 

lim P |Gh + ξh|2 µ(ds, dt) > ε = 0. 
δ→0 K 

Proof. Note that 

c
δ 

2isZ0|ξ(s, t)|2 ≤ c|t|2kQk2E e − ϕZ (s) E|Lh(β)|2 ih� � 2≤ c|t|2kQk2E 1 ∧ |s|2 (Z0 + E|Z|) E|Lh(β)|2 � � 
≤ |t|2 1 ∧ |s|2 Op(1). 

This implies !Z 
lim P 
δ→0 Kc

δ

|ξh|2 µ(ds, dt) > ε = 0. 

On the other hand, it was shown in Davis et al. (2018) that 
Hence Z 

R 
ˆ|Gh|2µ(ds, dt) exists as the limit of nTh(Z; µ),. ! 

lim P 
δ→0 K 

and the proposition is proved. 

c
δ

|Gh|2 µ(ds, dt) > ε = 0, 

Appendix B: Proof of bootstrap consistency: A generalized theorem for triangular arrays 

In this section, we generalize the convergence of ADCV for residuals for triangular arrays. The result for 
bootstrap estimator in Theorem 4.1 follows as a special case. 
Let {Z1:n,n} be a triangular array such that 

iid
Zjn ∼ Fn, ∀j = 1, . . . , n, 

where the distribution Fn converges to F 

Fn →
d 
F. 

Let {βn} be a sequence of parameter vectors such that 

βn → β. 

For each n, let {X1:n,n} be a time series generated from the time series model (1.1) with parameter vector 
βn and innovation sequence {Z1:n,n}, 

Xj+1,n = f(X−∞:j,n, Ztn; βn). 

ˆLet βn be the parameter estimate from {X1:n,n}, {Ẑ1:n,n} be the fitted residuals calculated through (1.4), 
∗and Tn (h) be the ADCV of {Ẑ 

1:n,n} at lag h. We require the following conditions. 
?hcond:n1i? (N1) Let Fj and Fjn be the σ-algebra generated by {Xk, k ≤ j} and {Xkn, k ≤ j}, respectively. We assume 

that the parameter estimate β̂ is of the form 
n√ 1 X 

n(β̂ − β) = √ m(X−∞:j ; β) + op(1), 
n 

j=1 

nX√ 
n(β̂ 

n − βn) = √ 
1 

m(X−∞:j,n; βn) + op(1), 
n 

j=1 

where m satisfies 

E[m(X−∞:j,n; β)|Fj−1,n] = E[m(X−∞:j,n; β)|Fj−1] = 0, E sup |m(X−∞:0; βn)|2 < ∞. 
n 
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?hcond:n2i? (N2) Assume that the function h in the invertible representation (1.2) is continuously differentiable, and 
writing 

∂ 
Ln
j (β) := h(X−∞:j,n; β), (B.1)

∂β 

we have 
E sup kLn 

0 (βn)k2 < ∞. 
n 

?hcond:n3i? (N3) For fixed j, let Z̃jn be the fitted residual based on the unobserved infinite sequence {X−∞:j,n} obtained 
ˆfrom (1.3), and Zjn be the estimated residuals based on the finite sequence {X0:j,n} obtained from 

ˆ(1.4). Assume that Z̃jn is close to Zjn such that 

nX1 √ |Ẑjn − Z̃jn|k = op(1), k = 1, 2. 
n 

j=1 

Theorem B.1. Assume that (N1), (N2), (N3) and (3.2) holds, then 
hthm:tai 

d∗ nT (h) → kGh + ξhk2 .n µ 

ˆ = Z∗Remark B.2. To prove Theorem 4.1, take βn = β and Ztn t . Here, conditional on the data, Z∗’s aret 

iid and follow the empirical distribution from {Ẑ 
1:n}, which converges to the distribution of Z. 

∗Proof of Theorem B.1. Note that T (h) can be written asn Z Z 
ˆ ˆ 

T ∗ (h) = |CZn (s, t)|2 µ(ds, dt) = |CZn − CZn + CZn |2 µ(ds, dt)n n n n n 

where 
n−h n−h n−hX X X

ˆ 1 1 1Zn isẐjn+itẐj+h,n isẐjn itẐj+h,nC (s, t) := e − e en n n n 
j=1 j=1 j=1 

and 
n−h n−h n−hX X X1 1 1isZjn+itZj+h,n isZjn itZj+h,nCZn (s, t) := e − e e .n n n n 
j=1 j=1 j=1 

The result is proved in two propositions. In Proposition B.3, we show the joint convergence 

ˆ dZn( 
√ 
nCZn , 

√ 
n(C − CZn )) → (Gh, ξh), in C(K),n n n 

where K is any compact set in R2 . This implies that 

√ 
ZnnC 
ˆ →d 

Gh + ξh, in C(K).n 

Then we justify the convergence of the integral by showing !Z 
ˆ |2Znlim lim sup P n|C µ(ds, dt) > ε = 0.n 

δ→0 n→∞ Kc 
δ 

This is done in Proposition B.4. 
hprop:b1i 

Proposition B.3. Given (N1), (N2) and (N3) are satisfied we have 

ˆ dZn( 
√ 
nCZn , 

√ 
n(C − CZn )) → (Gh, ξh), in C(K).n n n 

eq:bigL 
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Proof. The proof is divided into the following steps. 

iid
Dealing with the triangular array. Consider a sequence Z1, Z2, . . . where Zj ∼ F . For each j, we have 

d ˜ ˜Zjn → Zj . By Skorohod representation theorem, there exists a sufficiently rich probability space (Ω̃, A, P ) 
where Ω̃ = {(ω1, ω2, . . .) : ωj ∈ Ω0} for some Ω0, and functions z : Ω0 → R, zn : Ω0 → R, such that for each 
j, 

Z̃jn = zn(ωj ) ∼ Fn, Z̃j = z(ωj ) ∼ F, 

and 
a.s.

Z̃jn → Z̃j . 

This argument is similar to that in Leucht and Neumann (2009). Since we are only concerned about the 
a.s.

distributional limit of nT ∗(h), we may assume without loss of generality that Zjn → Zj for each j.n 

Convergence of CZn . In this part we show thatn 

d
CZn → Gh, in C(K).n 

√ d
From Proposition A.1, we have nCZ → Gh, wheren 

n−h n−h n−hX X X1 1 1 
CZ isZj +itZj+h isZj itZj+h(s, t) := e − e e .n n n n 

j=1 j=1 j=1 

It suffices to show that 
p√ 

n(CZn − CZ ) → 0, in C(K).n n 

Note that 
n−h n−h n−hX X X1 1 1 

CZ (s, t) :=n Uj Vj − Uj Vj , 
n n n 

j=1 j=1 j=1 

isZj itZj+hwhere Uj := e − ϕZ (s) and Vj := e − ϕZ (t) with EUj Vj = EUj = EVj = 0. Similarly, 

n−h n−h n−hX X X1 1 1 
CZn (s, t) := UjnVjn − Ujn Vjn,n n n n 

j=1 j=1 j=1 

isZjn itZj+h,nwhere Ujn(s) := e − ϕZn (s) and Vjn(t) := e − ϕZn (t). Without loss of generality, here we only 
show ⎛ ⎞ 

n−h n−h n−h√ ⎝ 1 X 1 X 1 X p 
n Ujn − Uj ⎠ = √ (Ujn − Uj ) → 0, in C(K). 

n n n 
j=1 j=1 j=1 

For fixed s, the convergence follows since 

2 
n−hX1

E √ (Ujn − Uj ) ≤ E|Ujn − Uj |2 → 0, 
n 

j=1 

from bounded convergence. The finite dimensional convergence can be generalized using the Cramér-Wold 
1 Pn−h

device. It remains to prove the tightness of √ (Ujn − Uj ). By Eq. 7.12 of Billingsley (1999), the 
n j=1 

tightness of the process can be implied by 

2 
n−h n−hX X1 1

E √ (Ujn(s) − Uj (s)) − √ (Ujn(s 0) − Uj (s 0)) ≤ |s − s 0|δ+1O(1), for some δ > 0. 
n n 

j=1 j=1 
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We have 
2 

n−h n−hX X1 1
E √ (Ujn(s) − Uj (s)) − √ (Ujn(s 0) − Uj (s 0)) 

n n 
j=1 j=1 

2≤ E |Ujn(s) − Uj (s) − (Ujn(s 0) − Uj (s 0))|
isZjn − e is

0 isZj is0 0)|2≤ 2E|e Zjn |2 + 2|ϕZn (s) − ϕZn (s 0)|2 + 2E|e − e Zj |2 + 2|ϕZ (s) − ϕZ (s . 

Note that 
E|e isZjn − e is

0Zjn |2 ≤ E|e i(s−s 0)Zjn − 1|2 ≤ 2E|Zjn|2|s − s 0|2 . 

The rest of the term can be bounded similarly. And the tightness is proved. 

Convergence of 
√ 
n(β̂ 

n − βn). In this part we show that 

√ 
n( ˆ 

d
βn − βn) → Q. (B.2) eq:conv:betaboot 

Let {X1:n} be the time series generated from the time series model (1.1) with parameter vector β and 
innovation sequence {Z1:n}. From the proof of Proposition A.1, 

nX1 d√ m(X−∞:j ; β) → Q. 
n 

j=1 

It suffices to show that 
n nX X1 1 p√ m(X−∞:j,n; βn) − √ m(X−∞:j ; β) → 0. (B.3) eq:conv:mboot 

n n 
j=1 j=1 

We have 
2 

nX1
E √ (m(X−∞:j,n; βn) − m(X−∞:j ; β)) 

n 
j=1 

nX1 2 
= E |m(X−∞:j,n; βn) − m(X−∞:j ; β)|

n 
j=1 X2 
+ E (m(X−∞:i,n; βn) − m(X−∞:i; β)) (m(X−∞:j,n; βn) − m(X−∞:j ; β)) 
n 
1≤i<j≤n 

2 
= E |m(X−∞:0,n; βn) − m(X−∞:0; β)|

2 X � � �� 
+ E E (m(X−∞:i,n; βn) − m(X−∞:i; β)) (m(X−∞:j,n; βn) − m(X−∞:j ; β)) Fi, Fin . 
n 
1≤i<j≤n 

Since E[m(X−∞:j,n; βn)−m(X−∞:j ; β) Fi, Fin] = 0, the second term disappears. By causality, m(X−∞:0; β) 
can be expressed as a function of Z−∞:0 and β, and 

a.s. 
m(X−∞:0,n; βn) − m(X−∞:0; β) = m̃(Z−∞:0,n; βn) − m̃(Z−∞:0; βn) → 0. 

Hence 
2E |m(X−∞:0,n; βn) − m(X−∞:0; β)| → 0 

by condition (N1) and dominated convergence. This justifies (B.3) and hence (B.2). 

√ 
ẐnConvergence of n(C (s, t) − CZn (s, t)). In this part we show thatn n 

√ ˆ dZnn(C (s, t) − CZn (s, t)) → ξn, in C(K).n n 
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Denote 
n−h � �X 

En 1 isẐjn+itẐj+h,n isZjn +itZj+h,n(s, t) := √ e − e .n n 
j=1 

Then similar to (A.1), we have 

n−h n−hX X√ ˆ 1 1Zn itZj+h,n Zjn n(C (s, t) − CZn (s, t)) = En(s, t) − En(s, 0) e − En(0, t) e is ˆ 
.n n n n n n n 

j=1 j=1 

From the decomposition of ξh in (A.2), it suffices to show that 

d
En(s, t) → QT Ch(s, t), in C(K).n 

We have 

n−h 
1 X √ √ 

En(s, t) = e isZjn+itZj+h,n (is n(Ẑ 
jn − Z̃ 

jn) + it n(Ẑ 
j+h,n − Z̃ 

j+h,n))n n 
j=1 

n−h
1 X √ √

isZjn+itZj+h,n (is+ e n(Z̃ 
jn − Zjn) + it n(Z̃ 

j+h,n − Zj+h,n)) + op(1) 
n 

j=1 

=: En
n 
1(s, t) + En

n 
2(s, t) + op(1). 

From condition (N3), 
n|s| + |t| X p|En

n 
1(s, t)| ≤ √ |Ẑ 

jn − Z̃ 
jn| → 0, in C(K). 

n 
j=1 

d
It suffices to show that En

n 
2(s, t) → QT Ch(s, t). By Taylor expansion, 

n−h 

En √ 
)T 1 X 

isZjn+itZj+h,n (isLn 
n2(s, t) = n(β̂ 

n − βn e j (βn 
∗ ) + itLn

j+h(βn 
∗ )), 

n 
j=1 

where β∗ = �βn + (1 − �)β̂ 
n for some � ∈ [0, 1]. We have shown in the previous part thatn 

d√ 
n(β̂ 

n − βn) → Q. 

It remains to show that 

n−hX 
isZjn+itZj+h,n (isLn1
e j (β ∗ ) + itLn

j+h(β ∗ )) →p 
Ch(s, t), in C(K).n n n 

j=1 

This follows from 
n−hX 

isZj +itZj+h (isLj (β) + itLj+h(β)) 
1

e →p 
Ch(s, t) 

n 
j=1 

and 

n−h n−hX X1 isZjn+itZj+h,n (isLn 1 isZj +itZj+h (isLj (β) + itLj+h(β))e j (β ∗ ) + itLn
j+h(β ∗ )) − en n n n 

j=1 j=1 

n|s| + |t| X 
≤ |Ln

j (β ∗ ) − Lj (β)|n n 
j=1 

→p 
0, in C(K), 
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from dominated convergence. 

√ √ 
ẐnJoint convergence of nCZn (s, t) and n(C (s, t) − CZn (s, t)). The above proofs implies thatn n n 

p√ 
nCZn (s, t) −

√ 
nCZ (s, t) → 0, in C(K),n n 

and 
ˆ ˆ pZn Z

√ 
n(C (s, t) − CZn (s, t)) −

√ 
n(C (s, t) − CZ (s, t)) → 0, in C(K).n n n n 

√ √ 
ẐnThe join convergence of nCZn (s, t) and n(C (s, t) − CZn (s, t)) follows from the joint convergence ofn n n√ √ 

ẐnCZ (s, t) and n(C (s, t) − CZ (s, t)) in Proposition A.1.n n n 

hprop:b2i Proposition B.4. !Z 
Ẑnlim lim sup P n|C |2 µ(ds, dt) > ε = 0.n 

δ→0 n→∞ Kc 
δ 

Proof. This follows the same steps in the proof of Proposition A.2 by replacing all Ẑ 
j with Ẑ 

jn and Zj with 
Zjn. 

Appendix C: Proof of Corollary 5.1 

happ:armai 
Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 3.1. 
(M1): It can be shown that the pseudo-MLE for β satisfies the representation in (M1). We refer to Chapter 
10.8 of Brockwell and Davis (1991) for details. 
(M2): From 

φ(B)
Zt = Xt =: h(X−∞:t, β),

θ(B) 

we have 
∂ Bi 1 

h(X−∞:t, β) = Xt = Xt−i, i = 1, . . . , p, 
∂φi θ(B) θ(B) 

while 
∂ Bj φ(B) Bj 1 

h(X−∞:t, β) = Xt = Zt = Zt−j , j = 1, . . . , q. 
∂θi (θ(B))2 θ(B) θ(B) 

Hence 
∂ 1

)TL0(β) = h(X−∞:0; β) = (X−1, . . . , X−p, Z−1, . . . , Z−q . 
∂β θ(B) 

By the definition of invertibility, there exists a power series for 1/θ(z) such that 

∞X1 
= ξj (β)z

j ,
θ(z) 

j=0 P∞
with |ξj (β)| < ∞. Thereforej=0 

∞ ∞X X 
EkL0(β)k2 ≤ p |ξj (β)|2E|X0|2 + q |ξj (β)|2E|Z0|2 < ∞. 

j=0 k=0 

(M3): Note that 
∞X 

Z̃t − Ẑ 
t = πj (β̂)Xt−j . 

j=t 
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For k = 1, 2, 

n n ∞ ∞ j∧nX k XX k X X1 1 1 k˜√ Zt − Ẑ 
t ≤ √ πj (β̂)Xt−j = |πj (β̂)|k √ |Xt−j | . 

n n n 
t=1 t=1 j=t j=0 t=1 

For any m < n, 

n m m ∞ nX k X X X X1 1 1k k˜√ Zt − Ẑ 
t ≤ |πj (β̂)|k √ |Xt−j | + |πj (β̂)|k √ |Xt−j | =: I1 + I2. (C.1) 

n n n 
t=1 j=0 t=1 j=m+1 t=1 

Consider the coefficients πj (β̂)’s. By causality, the power series 

∞Xφ(z) j= πj (β)z 
θ(z) 

j=0 

converges for all |z| < 1 + � for some � > 0. Then there exists a compact set Cβ containing β such that for 
ˆ P∞ jany β ∈ Cβ, πj (β̂)z converges for all |z| < 1 + �/2. In particular,j=0 

πj (β̂)(1 + �/4)j → 0, j →∞, 

and there exists K > 0 such that 
|πj (β̂)| ≤ K(1 + �/4)−j . 

It follows that 
∞X 
|πj (β̂)|k < ∞, k = 1, 2. 

j=0 

Now for (C.1), I1 converges to zero in probability for fixed m, while I2 converges to zero uniformly as m →∞. 
This implies that 

nX k1 p√ Z̃ 
t − Ẑ 

t → 0, k = 1, 2. 
n 

t=1 

Appendix D: Proof of Corollary 6.1 

happ:garchi 
Proof. In the following we verify conditions (M1), (M2), (M3) in Theorem 3.1. 
(M1): Given conditions (Q1)–(Q4), Berkes et al. (2003) showed that θ̂  

n has limiting distribution 

n � � √ 1 X 1 ∂ log σt 
2(θ) 

, B−1 d 
n(θ̂  

n − θ) = √ (1 − Zt 
2) 0 + op(1) → N(0, B0 

−1A0B0 
−1), 

n 2 ∂θ 
t=1 

where � � � � 
∂l0(θ) ∂2l0(θ)

A0 = cov , B0 = E . 
∂θ ∂θ2 

(M2): We have 
Xt

Zt(θ) = h(X−∞:j , θ) = ,
σt(θ) 

and 
∂ X0 ∂σ0

2(θ) 1 ∂ log σ0
2(θ)

L0(θ) = h(X−∞:0; θ) = − = − Z0 . 
∂θ 2σ3(θ) ∂θ 2 ∂θ0 

eq:I1I2 
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Lemma 3.1 of Kulperger and Yu (2005) showed that � �k
∂ log σ2(u)tE sup < ∞, for any k > 0. 

∂uu∈Θ 

Hence !1/22 4
1 ∂ log σ0

2(θ) 1 ∂ log σ0
2(θ)

EkL0(θ)k2 = E Z0 ≤ E|Z0|4E < ∞. 
2 ∂θ 4 ∂θ 

(M3): Theorem 1.3 and Lemma 3.5 of Kulperger and Yu (2005) show, respectively, that 

nX1 √ |Ẑ 
t − Z̃ 

t| = op(1), 
n 

t=1 

and 
nX 
|Ẑ 

t − Z̃ 
t| = Op(1). 

t=1 

Hence 
n n nX X X1 1 √ |Ẑ 

t − Z̃ 
t|2 ≤ √ |Ẑ 

t − Z̃ 
t| |Ẑ 

t − Z̃ 
t| = op(1). 

n n 
t=1 t=1 t=1 
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