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Abstract 

In this paper we are concerned with the analysis of heavy-tailed data when a portion 
of the extreme values is unavailable. This research was motivated by an analysis of the 
degree distributions in a large social network. The degree distributions of such networks 
tend to have power law behavior in the tails. We focus on the Hill estimator, which 
plays a starring role in heavy-tailed modeling. The Hill estimator for this data exhibited 
a smooth and increasing “sample path” as a function of the number of upper order 
statistics used in constructing the estimator. This behavior became more apparent as 
we artifcially removed more of the upper order statistics. Building on this observation 
we introduce a new version of the Hill estimator. It is a function of the proportion θ of 
the upper order statistics used in the estimation, but also depends on the proportion δ 
of unavailable extremes values. We establish functional convergence of the normalized 
Hill estimator to a Gaussian process. An estimation procedure is developed based 
on the limit theory to estimate the number of missing extremes and extreme value 
parameters including the tail index and the bias of Hill’s estimate. We illustrate how 
this approach works in both simulations and real data examples. 

Keywords: Hill estimator; Heavy-tailed distributions; Missing extremes; Functional conver-
gence 
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1 Introduction 

In studying data exhibiting heavy-tailed behavior, a widely used model is the family of 
distributions that are regular varying. A distribution F is regular varying if 

F̄ (tx) −α→ x (1)
F̄ (t) 

¯ as t → ∞ for all x > 0, where α > 0 and F (t) = 1 − F (t) is the survival function. The 
parameter α is called the tail index or the extreme value index, and it controls the heaviness 
of the tail of the distribution. This is perhaps the most important parameter in extreme 
value theory and a great deal of research has been devoted to its estimation. The most used 
and studied estimate of α is based on the Hill estimator for its reciprocal γ = 1/α (see [14], 
[12] and [10] for further discussion on this estimator). The Hill estimator is defned by 

kX1 
Hn(k) = log X(i) − log X(k+1),

k 
i=1 

where X(1) ≥ X(2) ≥ · · · ≥ X(n) are the order statistics of an independent and identically 
distributed (iid) sample X1, X2, . . . , Xn ∼ F (x). As an illustration, the left panel of Figure 
1 shows the Hill plot of 1000 iid observations from a Pareto distribution with γ = 2 (F (x) = 

−0.51 − x for x ≥ 1 and 0 otherwise). In general, one chooses k for which the Hill plot 
remains relatively horizontal and uses the corresponding value of Hn(k) as the estimate for 
γ. 

If the largest several observations in the data are removed, the Hill curve behaves very 
di˙erently. For example, when the 100 largest observations of the previous Pareto sample 
have been removed, the Hill plot renders a much smoother curve that is generally increasing. 
As seen in the right panel of Figure 1, the Hill plot has no region in which it is horizontal. 
Hence the choice of k in the Hill estimator is problematic in the presence of missing extremes, 
especially if the number of missing is unknown. The principle objective of this paper is to 
estimate the number of missing extremes simultaneously with other relevant parameters, 
including the tail index α. 
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Figure 1: Hill plot of iid Pareto (α = 0.5) variables (n = 1000). x-axis: number k of upper 
order statistics used in the calculation. y-axis: Hn(k). Left: without removal. Right: top 
100 removed 
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As a real-world example, a similar phenomenon is observed when we study the tail 
behavior of the in- and out-degrees in a large social network. We looked at data from a 
snapshot of Google+, the social network owned and operated by Google, taken on October 
19, 2012. The data contain 76,438,791 nodes (registered users) and 1,442,504,499 edges 
(directed connections). The in-degree of each user is the number of other users following 
the user and the out-degree is the number of others followed by the user. The degree 
distributions in natural and social networks are often heavy-tailed (see [17]). The resulting 
Hill plot for the in-degrees of the Google+ data (the frst plot in Figure 2) resembles the curve 
of the Hill plot for the Pareto observations with the largest extremes removed. This raises 
the question of whether some extreme in-degrees of the Google+ data are also unobserved. 
For example, some users with extremely large in-degrees may have been excluded from the 
data. This pattern of a smooth curve becomes even more pronounced when we apply an 
additional removal of the top 500 and 1000 values of the in-degree (the second and the third 
plots in Figure 2). 
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Figure 2: Hill plots of in-degrees of the Google+ network. Left: without removal. Middle: 
500 largest values removed. Right: 1000 largest values removed 

In addition to detecting possible manipulation of data in the tail, modeling and analyzing 
data in the presence of missing extremes can also be applied to a variety of felds. For 
example, in studying natural disasters such as earthquakes, forest fres and foods, extreme 
values might be missing due to diÿculty in data collection. In actuarial sciences, claims of 
extremely large amounts might be covered by a reinsurance company and not included in 
the claims ([13], [4]). 

In order to understand the behavior of the Hill curves of samples in which some of the 
top extreme values have been removed, we introduce a new parametrization to the Hill 
estimator. Specifcally, we defne a functional version of the Hill estimator without extremes 
(HEWE) as a function of θ, the proportion of upper order statistics used in the estimation, 
calculated based on the assumption that a portion δ of extremes is unavailable. This new 
parametrization allows one to explore missing extremes both visually and theoretically. The 
Hill estimator curve of the data without the top extremes exhibits a strikingly smooth and 
increasing pattern, in contrast to the fuctuating shapes when no extremes are missing. And 
the di˙erences in the shape of the curves are explained by the functional properties of the 
limiting process of the HEWE. Under a second-order regular varying condition, we show 
that the HEWE, suitably normalized, converges in distribution to a continuous Gaussian 
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process with mean zero and covariance depending on δ and parameters of the distribution 
F including the tail index α. 

Based on the likelihood function of the limiting process, an estimation procedure is 
developed for δ and the parameters of the distribution, in particular, the tail index α. The 
proposed approach may also have value in assessing the fdelity of the data to the heavy-
tailed assumptions. Specifcally, one would expect consistency of the estimation of the tail 
index when more extremes are artifcially removed from the data. 

A natural question is whether the observed phenomenon, such as those illustrated in the 
Hill plots in Figure 2, is an artifact of the data coming from a light-tailed distribution. In 
fact, our method is robust to the light-tailed case and can di˙erentiate between the case of 
heavy-tailed data with missing extremes and light-tailed data. A theoretical justifcation can 
be found in [9], in which the consistency of the Hill estimator when α = ∞ was established. 
We also include an example in the simulation section to demonstrate the good performance 
of the proposed method when applied to light-tailed data. 

There has been recent work ([1], [2, 3]) that involves adapting classical extreme value 
theory to the case of truncated Pareto distributions. The truncation is modeled via an 
unknown threshold parameter and the probability of an observation exceeding the threshold 
is zero. Maximum likelihood estimators (MLE) are derived for the threshold and the tail 
index. 

Our focus here is to study the path behavior of the HEWE if any arbitrary number of 
largest values are unavailable. Moreover, the estimation procedure we propose has a built-in 
mechanism to compensate for the bias introduced by non-Pareto heavy-tailed distributions. 
Ultimately, the HEWE provides a graphical and theoretical method for estimation and 
assessment of modeling assumptions. An R Shiny web application has been built to in-
teractively estimate and evaluate results from user uploaded data (see the supplementary 
material for details). 

In addition, we feel the proposed approach may shed some useful insight on classical 
extreme value theory even when extreme values are not missing in the observed data. It is 
possible to remove a number of top extreme values artifcially and study the e˙ect of the 
artifcial removal on the estimation of the tail index. In this case we know the true value of 
δ. 

This paper is organized as follows. Section 2 introduces the HEWE process and states 
the main result of this paper dealing with the functional convergence of the HEWE to a 
continuous Gaussian process. Section 3 explains the details of the estimation procedure 
based on the asymptotic results. Section 4 demonstrates how our estimation procedure 
works on simulated data from both Pareto and non-Pareto distributions. We also illustrate 
this procedure on a light-tailed distribution. Section 5 applies our procedure to several 
interesting real data sets. All the proofs are postponed to the Appendix. 

2 Functional Convergence of HEWE 

In this section we set up the framework for studying the reparametrized Hill estimator. To 
start, let X1, X2, . . . be iid random variables with distribution function F satisfying the 
regular varying condition (1). Let X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics of 
X1, . . . , Xn. For integer kn ∈ {1, . . . , n}, the HEWE process is defned for a fxed δ ≥ 0 to 
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be the function of θ > 0 given by ( 
1 Pbθknc log X(bδknc+i) − log X(bδknc+bθknc+1), θ ≥ 1/kn,bθknc i=1Hn(θ; δ) = (2)

0, θ < 1/kn. 

To see the idea behind this defnition, imagine that the top bδknc observations are not 
available in the data set and the Hill estimator is computed based on bθknc extreme order 
statistics of the remaining observations. Viewed as a function of the observable part of the 
sample, Hn is the usual Hill estimator based on the bθknc upper order statistics. A special 
case is when δ = 0 and no extreme values are missing, then Hn(θ; δ = 0) corresponds to the 
usual Hill estimator based on the upper bθknc observations. 

Here we treat δ as a fxed unknown parameter and (2) a single-parameter process Hn(θ; δ) 
indexed by θ. Hn(θ; δ) will play a key role in estimating relevant parameters such as δ and 
α. The estimation is based on the asymptotic distribution of Hn(θ; δ) and is described in 
detail in Section 3. 

In order to obtain the functional convergence of Hn(θ; δ), a second-order regular variation 
condition, which provides a rate of convergence in (1) is needed. This condition can be found, 
for example, in [10], and it states that for x > 0, 

log U(tx) − log U(t) − γ log x xρ − 1 
lim = , (3)
t→∞ A(t) ρ 

where ρ ≤ 0, U(t) = F ←(1−1/t) and A is a positive or negative function with limt→∞ A(t) = 
0. Assume that the sequence kn →∞ used to defne Hn satisfes p

lim knA(n/kn) = λ, (4) 
n→∞ 

where λ is a fnite constant. Note conditions (3) and (4) imply that n/kn →∞ and that A 
is a regular-varying function with index ρ. 

Distributions that satisfy the second-order condition include the Cauchy, Student’s tν , 
stable, Weibull and extreme value distributions (for more discussion on the second-order 

−α¯condition, see, for example, [11] and [12]). In fact, any distribution with F (x) = c1x + 
c2x

−α+αρ(1 + o(1)) as x → ∞, where c1 > 0, c2 6= 0, α > 0 and ρ < 0, satisfes the 
second-order condition with the indicated values of α and ρ ([10]). 

−αPareto distributions with tail index α > 0 (F̄ (x) = x for x ≥ 1 and zero otherwise), 
however, do not satisfy the second-order condition, as the numerator on the left side of (3) 
is zero when t is large enough. As will be seen later, the results can be readily extended to 
the case of Pareto distributions by replacing terms involving ρ with zero. 

We now state the main result of this paper which establishes the functional convergence 
of the HEWE to a Gaussian process. 

Theorem 2.1. Assume the second-order condition (3) holds and (4) is satisfed for a given 
sequence kn and λ. Then 
(a) there exist versions of Hn(θ; δ) and a standard Brownian Motion W defned on the same 
probability space such that as n →∞, 

ˆ δ+θ � � � � � �γ δ n 1 
Hn(θ; δ) = γgδ(θ) + √ 1 − dW (x) + A bδ,ρ(θ) + o √ , a.s. (5)

θ kn δ x kn kn 
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holds uniformly in (δ, θ) on compact subsets of [0, ∞) × (0, ∞), where ( 
1, δ = 0, 

gδ(θ) = � � 
θ1 − δ log + 1 , δ > 0,θ δ ( 

1 1 δ = 0,1−ρ (δ+θ)ρ , 
bδ,ρ(θ) = 1+(θ/δ)ρ−(θ/δ+1)ρ 

1 δ > 0.(θ/δ)(1−ρ)ρ (δ+θ)ρ , 

(b) For all δ ≥ 0, p � � 
d

kn Hn(·; δ) − γgδ (·) − λbδ,ρ(·) → γGδ (·) 

in D(0, ∞), where ˆ δ+θ � �1 δ 
Gδ (θ) = 1 − dW (x) (6)

θ xδ 

is a Gaussian process with mean zero and covariance function ⎧ � �� �⎨ 1 δ(θ1∧θ2)� � θ1 ∧ θ2 − 2δ log 1 + θ1∧θ2 + , δ > 0θ1θ2 δ δ+(θ1∧θ2 )Cov Gδ(θ1), Gδ (θ2) = ⎩ 1 , δ = 0.θ1∨θ2 

Remark. Theorem 2.1 states the weak convergence of Hn(·; δ) for all fxed δ ≥ 0. In fact, we 
have shown a stronger result (see Appendix) on the weak convergence of Hn(δ, θ) := Hn(θ; δ) 
viewed now as a random feld indexed by the pair (δ, θ): � �p g̃(·, ·) d 1 

kn Hn(·, ·) − − λb̃ρ(·, ·) → G̃(·, ·) (7)
α α 

in D([0, ∞) × (0, ∞)), where g̃ and ̃bρ have the same forms of gδ and bδ,ρ, respectively, and ´ δ+θ
G̃(δ, θ) = (1/θ) (1 − δ/x)dW (x) with mean zero and the following covariance function. 

δ 
If δ1 ∨ δ2 > 0, � �

˜ ˜Cov G(δ1, θ1), G(δ2, θ2)� 
1 

= (δ1 + θ1) ∧ (δ2 + θ2) − (δ1 ∨ δ2)
θ1θ2 � � � 

(δ1 + θ1) ∧ (δ2 + θ2) δ1δ2 δ1δ2− (δ1 + δ2) log + − . 
δ1 ∨ δ2 δ1 ∨ δ2 (δ1 + θ1) ∧ (δ2 + θ2) 

If δ1 = δ2 = 0, � � 1˜ ˜Cov G(0, θ1), G(0, θ2) = . 
θ1 ∨ θ2 

Remark. For fxed θ, the functions gδ and bδ,ρ are continuous at δ = 0. For iid Pareto 
variables X1, X2, . . . with tail index α > 0, the result of Theorem 2.1 still holds with the 
bias term bδ,ρ replaced by zero. 

Figure 3 shows the Hill estimates of the same sample from the Pareto distribution with 
α = 0.5 as in Figure 1 overlaid with several mean curves. We chose kn = 100 with the top 
100 observations removed from the original sample. This implies δ = 1. In the left panel 
of Figure 3, the Hill estimates are overlaid with the mean curves gδ(θ)/α of the Gaussian 
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process with di˙erent values of δ while fxing the true value of α = 0.5. The right panel of 
Figure 3 shows the mean curves with di˙erent values of α while fxing the true value δ = 1. 
In both plots, the Hill plot is closest to the mean curve corresponding to the true value of 
the parameter. 
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Figure 3: Fitting mean curves with di˙erent values of parameters to the Hill plot for the 
Pareto sample as in Figure 1. Left: fxing α = 0.5. Right: fxing δ = 1 

In order to demonstrate the variability generated by the limiting Gaussian process, we 
compare the Hill plots for samples from Pareto and Cauchy distributions with their Gaussian 
process approximations given by Theorem 2.1. Figure 4 presents the Hill plots for the same 
Pareto sample as in Figures 1 and 3, without removal of extremes (left) and with the top 100 
observations removed (right), along with 50 independent realizations from the corresponding 
Gaussian processes with bias bδ,ρ ≡ 0. 
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Figure 4: Observed Hill plots for the Pareto sample (bold lines) and realizations from 
corresponding Gaussian processes (thin lines). Left: with the original sample. Right: top 
100 extreme values removed 

Figure 5 shows the Hill plots for a Cauchy sample (n = 1000, kn = 100, α = 1 and 
ρ = −2), without removal of extremes and with the top 100 extremes removed, along with 
50 independent realizations from the corresponding Gaussian processes with non-zero bρ. 
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Figure 5: Observed Hill plots for a Cauchy sample (bold lines) and realizations from cor-
responding Gaussian processes (thin lines). Left: with the original sample. Right: top 100 
extreme values removed 

3 Parameter Estimation 

Let X1, X2, . . . Xn be a sample from a distribution F satisfying the second-order regular 
variation condition (3), and let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the increasing order 
statistics of {Xi}. Suppose the bδknc largest observations are unobserved in the data and 
the value of δ is unknown. 

In this section, we develop an approximate maximum likelihood estimation procedure 
for the unknown parameters δ, α and ρ given the observed data. The procedure is based 
on the asymptotic distribution of Hn(θ; δ). For typographical convenience we suppress the 
dependence of δ and use the notation Hn(θ). 

By Theorem (2.1), the joint distribution of (Hn(θ1), . . . ,Hn(θs)) for fxed (θ1, . . . , θs) 
can be approximated, when kn is large, by a distribution with density function at h = 
(h1, . . . , hs) given by � � �> � �� 

1 1 gδ bδ,ρ gδ bδ,ρ 
Σ−1p exp − h − − √ h − − √ , (8)

α α,δ kn(2π)s|Σα,δ | 2 kn α 

where ( 
1, δ = 0,

{gδ}i = � � 
1 − δ log θi + 1 , δ > 0,θi δ ( 

1 λ 
ρ , δ = 0,1−ρ θi{bδ,ρ}i = 1+(θi/δ)ρ−(θi/δ+1)ρ 

λ δ > 0,(θi/δ)(1−ρ)ρ (δ+θi)ρ , 

and ( 
1 1 , δ = 0,α2 kn θi∨θjΣα,δ(i, j) = � �(θi∧θj )

2 θi∧θj1 v , δ > 0,α2 kn δθiθj δ 

with 
1 2 log(θ + 1) 1 

v(θ) = − + . 
θ θ2 θ(θ + 1) 

Note here we redefne bδ,ρ to include the term λ for simplicity in notation. 
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To further simplify the calculation for the maximum likelihood estimator of α, δ and ρ, 
let 

θi−1
Ti = Hn(θi) − Hn(θi−1),

θi 

where θ0 = 0 is introduced for convenience. Note that the Ti are asymptotically independent 
with the joint density function at t = (t1, . . . , ts) being 

1 
� 

1 � �> ˜ � �� 

Σ−1q exp − t − m t − m , (9)α,δ2
(2π)s|Σ̃ 

α,δ| 

where � � � �1 θi−1 1 θi−1 
mi = {gδ}i − {gδ}i−1 + √ {bδ,ρ}i − {bδ,ρ}i−1

α θi kn θi 

and Σ̃ 
α,δ is a diagonal matrix, in which ( � � 

− θi−11 1 , δ = 0,α2kn θi θ2˜ iΣα,δ (i, i) = � � � � θi−1 
�2 � �� 

1 θi θi−1v − v , δ > 0.α2knδ δ θi δ 

The log-likelihood corresponding to the density (9) is 

s sX X 
C + s log(α) + 

1 
log(wi) − 

1 
α2kn wi(ti − mi)

2 , (10)
2 2 

i=1 i=1 

where C is a constant independent of α, δ and ρ. For δ > 0, �� � � � �2 � �� 
θi θi−1 θi−1 

wi = δ v − v . 
δ θi δ 

For δ = 0, �� � 
1 θi−1 

wi = 1 − . 
θ2θi i 

For fxed α and δ, the only part of the log-likelihood (10) that needs to be optimized is 
the weighted sum of squares 

sX 
wi(ti − mi)

2 , (11) 
i=1 

and it is minimized over the values of ρ and λ. Note the value of λ depends on the choice 
of kn through (4). When kn is fxed, λ is viewed as an independent nuisance parameter and 
appears in mi via � � 

1 θi λ √ {bδ,ρ}i − {bδ,ρ}i−1 = √ {fδ,ρ}i, 
kn θi−1 kn 

where ( 
− θi−1 11 1 

ρ θi 

1 
θρ , δ = 0,1−ρ θ 1−ρ i−1{fδ,ρ}i = i 

− θi−11+(θi/δ)ρ−(θi /δ+1)ρ 
1 1+(θi−1/δ)ρ−(θi−1/δ+1)ρ 

1 δ > 0.(θi/δ)(1−ρ)ρ (δ+θi)ρ θi (θi−1/δ)(1−ρ)ρ (δ+θi−1 )ρ , 
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Minimizing (11) over λ and ρ results in 

s � � � ˆ �2X 1 θi−1 λα,δ,ρ 
ρ̂α,δ = arg min wi ti − {gδ}i − {gδ }i−1 − √ {fδ,ρ}i , 

ρ≤0 α θi kni=1 

where P � � sp ti − ({gδ}i − θi−1 {gδ}i−1)/α {fδ,ρ}ii=1 wi θiλ̂ 
α,δ,ρ = kn Ps . 

i=1 wi{fδ,ρ}2 
i 

Note that this estimation approach, in which λ is viewed as a nuisance parameter, adjusts 
for the choice of kn automatically. If a di˙erent kn is selected, the estimate of λ will adapt 
to refect this change. 

Once we have found the optimal values of ρ and λ, we optimize the resulting expression 
in (10) by examining its values on a fne grid of (α, δ). Alternatively, an iterative procedure 
can be used, where in each step one of α, δ, ρ is updated given values of the other two 
parameters until convergence of the log-likelihood function. 

4 Simulation Studies 

In this section we test our procedure on simulated data. In each of the following simulations, 
we generate 200 independent samples of size n from a regular-varying distribution function 
with tail index α. Given a kn, we remove the largest bδknc observations from each of the 
original samples and apply the proposed method to the samples after the removal. 

For comparison, we also apply the method in [2] to the same samples. In [2], α and the 
threshold T over which the observations are discarded are estimated with the MLE based on 
the truncated Pareto distribution. The odds ratio of the truncated observations under the 
un-truncated Pareto distribution is estimated by solving an equation involving the estimates 
of α and T . Finally, the number of truncated observations is calculated given the odds ratio 
and the observed sample size. 

For each combination of distribution and parameters, we start from θ1 = 5/kn and 
let θi = θi−1 + 1/kn for 1 < i ≤ s. We consider a sequence of di˙erent endpoints θskn 

to examine the infuence of the range of order statistics included in the estimation. For 
each value of θs, we solve for the estimates of α and δ based on the asymptotic density of 
(Hn(θ1), . . . ,Hn(θs)) following the procedure described in Section 3. 

Simulations from both Pareto and non-Pareto distributions show that the proposed 
method provides reliable estimates of the tail index and performs particularly well in esti-
mating the number of missing extremes. The advantages of the proposed method become 
more apparent in dealing with non-Pareto samples. 

4.1 Pareto Distribution 

First we examine Pareto samples with n = 500 and α = 0.5. Let kn = 50 and δ = 1 so 
that δkn = 50 top extreme observations are removed from the original data. Figures 6 and 
7 show the averaged estimates of α and δkn as well as the estimated mean squared errors 
(MSE) with di˙erent θskn. Estimates by the proposed method are plotted in solid lines while 
those by the method in [2] are in dashed lines. The proposed method overestimates the tail 
index α, especially when the number of upper order statistics included in the estimation is 
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small. This is not unexpected, as the method does not assume the data are from a Pareto 
distribution and thus does not beneft from the extra information that the bias term in the 
likelihood should be zero. However, the proposed method estimates the number of missing 
extreme values accurately, and the estimation is robust to di˙erent numbers of upper order 
statistics included. 
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Figure 7: Estimated tail index and MSE for Pareto samples. n = 500, α = 0.5, kn = 50, 
δ = 1 

We also examine the eÿcacy of the estimation procedure for 200 independent Pareto 
samples without any extreme values missing (δ = 0). Figure 8 shows that both methods 
give accurate estimates of the tail index and are able to estimate the number of missing 
extremes to be close to zero. 
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Figure 8: Averages of estimated number of missing extremes and tail index for 200 Pareto 
samples. n = 500, α = 0.5, kn = 50, δ = 0 

4.2 Non-Pareto Examples 

Next we examine the scenarios when the data are not from a Pareto distribution. Obser-
vations used here are generated from Cauchy and Student’s t-distributions. The following 
results show that the proposed method continues to perform well in estimating the num-
ber of missing extremes, even for distributions whose tail indices are more challenging to 
estimate when the top extremes are unobserved. 

4.2.1 Cauchy Distribution 

Figures 9 and 10 show averaged estimates for 200 independent Cauchy samples with the 
largest 100 observations removed from each sample. 
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Figure 10: Averages of estimated tail index and MSE for 200 Cauchy samples. n = 2000, 
α = 1, kn = 100, δ = 1 

Figure 11 shows the estimates for 200 independent Cauchy samples without any extremes 
missing. Both methods produce accurate results for the zero number of missing extremes 
and the tail index. 
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Figure 11: Averages of estimated number of missing extremes and tail index for 200 Cauchy 
samples. n = 2000, α = 1, kn = 100, δ = 0 

4.2.2 Student’s t2.5 Distribution 

Figures 12 and 13 show the estimates for 200 independent samples from the Student’s t-
distribution with degrees of freedom df = 2.5. The tail index α = df . In each sample there 
are n = 10000 observations originally. Let kn = 200 and δ = 1 so that the largest 200 
observations have been removed from each of the original samples. 
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Figure 12: Averages of estimated number of missing extremes and MSE for 200 Student’s 
t2.5 samples. n = 10, 000, α = 2.5, kn = 200, δ = 1 
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Figure 13: Averages of estimated tail index and 
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n = 10000, α = 2.5, kn = 200, δ = 1 

4.3 Light-tailed Example 

Simulations in the above sections focused on heavy-tailed samples. One might ask if the Hill 
curve of a light-tailed sample would exhibit similar patterns as the Hill plot of a heavy-tailed 
sample with missing extremes and whether the proposed method is capable of identifying 
the di˙erent cases. 

Here we demonstrate that the proposed method can indeed di˙erentiate between the 
light- and heavy-tailed cases with an example of light-tailed data without any missing values. 
The left panel of Figure 14 is the Hill plot based on a sample of 500 from the standard 
exponential distribution. Although the curve is generally increasing, it is not as smooth 
as in the case of heavy-tailed data with missing extremes. In the right panel of Figure 14, 
the Hill plot is overlaid with mean curves of Gaussian processes estimated using di˙erent 
parts of the observed Hill curve based on the method in Section 3. The estimates of missing 
extremes range from 0 to 3.6, which refect the truth that there are no extreme values 
missing from the data. The true value of γ = 0 and the proposed method is also able to 
estimate γ with relatively small values. 
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Figure 14: Left: Hill plot for a standard exponential sample of size n = 500, γ = 0. Right: 
Hill plot overlaid with estimated mean curves of Gaussian processes using kn = 20. Selection 

ˆ ˆ ˆ ˆ1: δkn = 0.3, γ̂ = 0.14. 2: δkn = 0.3, γ̂ = 0.14. 3: δkn = 0.2, γ̂ = 0.13. 4: δkn = 3.6 , 
γ̂ = 0.31 

5 Applications 

We now apply the proposed method to real data. In practice, the number of missing extreme 
values and the reason for their absence are usually unknown. The consistency of an estima-
tion procedure can be tested by artifcially removing a number of additional extremes from 
the observed data. Consistency requires that, in a certain range, such additional removal 
should not have a major e˙ect on the estimated tail index. Further, the estimated number 
of the originally missing upper order statistics should stay, approximately, the same after 
accounting for the artifcially removed observations. Here we examine a massive Google+ 
social network dataset and a moderate-sized earthquake fatality dataset, and in both cases 
the proposed procedure provides reasonable results. 

5.1 Google+ 

We frst apply our method to the data from the Google+ social network introduced in 
Section 1. The data contain one of the largest weakly connected components of a snapshot 
of the network taken on October 19, 2012. A weakly connected component of the network 
is created by treating the network as undirected and fnding all nodes that can be reached 
from a randomly selected initial node. There are 76,438,791 nodes and 1,442,504,499 edges 
in this component. The quantities of interest are the in- and out-degrees of nodes in the 
network, which often exhibit heavy-tailed properties (see, for example, [17]). 

We use, as the data set for estimation purposes, the largest 5000 values of the in-degree. 
We choose kn = 200. Next, we repeat the estimation procedure after artifcially removing 
400 largest of the 5000 values of the in-degree. In the estimation, we start from θ1 = 1/kn 

and let θi = θi−1 +1/kn for 1 < i ≤ s. As in the simulation studies, we consider a sequence 
of di˙erent endpoints θskn and obtain estimates corresponding to di˙erent values of θskn. 
For comparison, we also apply the estimation procedure of [2] to the dataset. 

Figures 15 and 16 show, respectively, the estimates of the number of missing extremes 
and the tail index of the in-degree, before and after the artifcial removal. It can be seen by 
comparing the plots on the left and right panels of Figure 15 that the estimates given the 
proposed method, which are around 150 before and 550 after the artifcial removal, refect 
reasonably well the additional removal of 400 top values. The tail index is mostly estimated 
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to be in the range of 0.5 − 0.6 and the estimates are reasonably consistent before and after 
the artifcial removal (Figure 16). 
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Figure 15: Estimated number of missing extremes. Left: with the original 5000 observations. 
Right: top 400 values removed 
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Figure 16: Estimated tail index. Left: with the original 5000 observations. Right: top 400 
values removed 

5.2 Earthquakes 

While power-law distributions are widely used to model natural disasters such as earth-
quakes, forest fres and foods, some studies ([5, 6, 7], [8], [2, 3]) have observed evidence of 
truncation in the data available for such events. Causes for the truncation are complex. Pos-
sible explanations include physical limitations on the magnitude of the events ([8]), spatial 
and temporal sampling limitations and changes in the mechanisms of the events ([5, 6, 7]). In 
addition, improved detection and rescue techniques might have led to reduction in disaster-
related fatalities occurred in recent years. 

We apply our method to the dataset of earthquake fatalities (http://earthquake. 
usgs.gov/earthquakes/world/world_deaths.php) published by the U.S. Geological Sur-
vey, which was also used for demonstration in [2]. The dataset is of moderate sample size. 
It contains information of 125 earthquakes causing 1,000 or more deaths from 1900 to 2014. 
In the estimation procedure we choose kn = 10. Initially the procedure is applied to the 
original data set. Then we repeat the procedure after artifcially removing 10 largest of 
the 125 values. In the estimation, we start from θ1 = 1/kn and let θi = θi−1 + 1/kn for 
1 < i ≤ s. We consider a sequence of di˙erent endpoints θskn and estimate the number 
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of missing extremes and the tail index with di˙erent values of θskn. Since the top k order 
statistics in the data after removing the top 10 extreme values are the top k + 10 in the 
original data without the 10 largest observations, in comparing results before and after the 
removal, the range of θskn for the data after the removal is shifted to the left by 10. 

Figures 17 and 18 show the estimates of the number of missing extremes and the tail 
index of the fatalities. The number of missing extremes is estimated to be around 15 − 20 
for the original data. After removing the top 10 earthquakes with the most fatalities, the 
estimates are now around 25 − 30, which refect reasonably well the additional removal 
(see the left and right panels of Figure 17). The estimates of the tail index are reasonably 
consistent and remain to be in the range of 0.25 − 0.3 after the additional removal (Figure 
18). 
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Figure 17: Estimated number of missing extremes. Left: with the original 125 observations. 
Right: with top 10 values removed 
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Figure 18: Estimated tail index. Left: with the original 125 observations. Right: with top 
10 values removed 
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Appendix 

5.3 Proof of Theorem 2.1 

Defne 
jX 

Sj = Ei (12) 
i=1 

where Ei are iid standard exponential random variables. Then by Corollary 1.6.9 of [15], � � ��� � 
d Sn+1 Sn+1

(X(1), . . . , X(n)) = U , . . . , U . 
S1 Sn 

With the second-order condition (3), we have from (4.1) - (4.4) of [12] that for all j = 
1, . . . , bθknc, 

U(Sn+1/Sbδknc+j ) � Sbδknc+bθkn c+1 
� 

log − γ log
U(Sn+1/Sbδknc+bθknc+1) Sbδknc+j� � � � �� n (1 + θ/δ)ρ − 1 n − A = o A a.s. 

δkn + θkn ρ δkn + θkn 

uniformly in (δ, θ) ∈ [0,M ] × [m, M ] for any 0 < m < M . It follows that 

bXθknc 
1 

Hn(θ; δ) = log U(Sn+1/Sbδknc+j ) − log U(Sn+1/Sbδknc+bθknc+1)bθknc j=1 

bXθkn c 
1 � Sbδknc+bθknc+1 

� 
= γ log

bθknc j=1 
Sbδknc+j � � bXθknc h� �ρ i � � ��1 n θkn + δkn + 1 n 

ρ−1+ A − 1 + o A a.s.. 
bθknc δkn + θkn δkn + j knj=1 

Since the Ej 
∗ := j log(Sj+1/Sj ) are iid standard exponential random variables ([15]), observe 

that 
bXθknc bδknc+bθknc� � �1 � Sbδknc+bθknc+1 1 X bδknc 

log = 1 − E ∗ 
jbθknc j=1 

Sbδknc+j bθknc j
j=bδknc+1 

bδknc+bθknc bδknc+bθkncX � � X1 bδknc bδknc 1 
= 1 − (Ej 

∗ − 1) + 1 − 
bθknc j bθknc j

j=bδknc+1 j=bδknc+1 � � pδ θ 
= I + 1 − log + 1 + o(1/ kn)

θ δ Pbδknc+bθkncuniformly in (δ, θ) ∈ [0,M ] × [m, M ], where I = (1 − bδknc/j)(E∗ − 1)/bθknc.j=bδknc+1 j 

Using the Komlós - Major - Tusnády approximation ([16]), there exists a standard Brownian 
˜motion W such that 

ˆ bδkn c+bθknc � � p1 bδkncI = 1 − dW̃ (y) + o(1/ kn), a.s. 
bθknc bycbδknc+1 
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Consider the time change x = y/kn and let W (x) = W̃ (xkn)/ 
√ 
kn, then 

ˆ δ+θ � � p1 δ
I = √ 1 − dW (x) + o(1/ kn), a.s. 

θ kn δ x 

Summarizing, � � �� ˆ δ+θ pδ θ γ δ 
Hn(θ; δ) = γ 1 − log + 1 + √ (1 − )dW (x) + o(1/ kn) + II, a.s. 

θ δ θ kn δ x 

where � � bXθknc h� �ρ i1 n 1 θkn + δkn + 1 
II = A − 1 . 

bθknc δkn + θkn ρ δkn + j
j=1 

The Riemann sum 

bXθknc �� �ρ � ˆ 1 � �ρ
1 δkn + θkn + 1 δ/θ + 1 − 1 → dx − 1,

bθknc δkn + j δ/θ + x0j=1 

which is 
1 + (θ/δ)ρ − (θ/δ + 1)ρ 

(θ/δ)(1 − ρ) 

if δ > 0 and ρ/(1 − ρ) if δ = 0. The error between the Riemann sum and the limit can be 
bounded by � � �ρ� 

1 δ/θ + 1 1 
1 − ≤ . 

bθknc δ/θ bθknc 
Since A is regular varying with index ρ, � � � � �� n 1 1 + (θ/δ)ρ − (θ/δ + 1)ρ n

II = A + o A ,
kn (δ + θ)ρ (θ/δ)(1 − ρ)ρ kn 

√ √ 
where A(n/kn) ∼ O(1/ kn) for λ > 0 in (4) and A(n/kn) ∼ o(1/ kn) for λ = 0. Therefore 
Part (a) follows. 

To show Part (b), we have from (3) and the fact that A is regular-varying with index ρ, p � � n λ 
knA → (13)

δkn + θkn (δ + θ)ρ 

and thus p
knII → λbδ,ρ(θ) (14) 

and p � � 
d

kn Hn(·; δ) − γgδ(·) − λbδ,ρ(·) → γGδ(·). 

The covariance function h ̂  δ+θ1∧θ2 � � i� � 1 δ
Cov Gδ(θ1), Gδ (θ2) = Var 1 − dW (x) 

xθ1θ2 δ ˆ δ+θ1 ∧θ2 � �21 δ 
= 1 − dx 

xθ1θ2 δ 
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⎧ � �� �⎨ 1 δ(θ1∧θ2)θ1 ∧ θ2 − 2δ log 1 + θ1∧θ2 + , δ > 0θ1θ2 δ δ+(θ1∧θ2 )= ⎩ 1 , δ = 0.θ1∨θ2 

The covariance function of the two-parameter process G̃(δ, θ) can be shown similarly. 
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SUPPLEMENTARY MATERIAL 

R Code for simulations and real data examples: Code for R algorithms used to pro-
duce illustrations in Sections 1 and 2 and estimation results in Sections 4 and 5. (.r 
fles) 

Earthquake fatality data set: Data set used in the illustration in Section 5. (comma-
separated values (CSV) fle) 

R Shiny web application: https://jingjing.shinyapps.io/hewe2. This application 
can be applied to the user’s own data to estimate parameters with real-time computa-
tion and to interactively visualize results based on user inputs. Moreover, the user can 
artifcially remove a number of extreme values from the data and compare estimation 
results before and after the removal. 

Acknowledgements 

The authors would like to thank Zhi-Li Zhang for providing the Google+ data. This research 
is funded by ARO MURI grant W911NF-12-1-0385. 

References 

[1] Inmaculada B Aban, Mark M Meerschaert, and Anna K Panorska. Parameter Es-
timation for the Truncated Pareto Distribution. Journal of the American Statistical 
Association, 101(473):270–277, March 2006. 

[2] Jan Beirlant, Isabel Fraga Alves, and Ivette Gomes. Tail ftting for truncated and 
non-truncated Pareto-type distributions. Extremes, 19(3):429–462, 2016. 

[3] Jan Beirlant, Isabel Fraga Alves, and Tom Reynkens. Fitting tails a˙ected by trunca-
tion. arXiv.org, page arXiv:1606.02090, June 2016. 

[4] Souad Benchaira, Djamel Meraghni, and Abdelhakim Necir. Tail product-limit pro-
cess for truncated data with application to extreme value index estimation. Extremes, 
19(2):219–251, 2016. 

[5] S M Burroughs and S F Tebbens. Upper-truncated power law distributions. Fractals, 
09(02):209–222, 2001. 

[6] S M Burroughs and S F Tebbens. Upper-truncated Power Laws in Natural Systems. 
Pure and Applied Geophysics, 158(4):741–757, 2001. 

[7] S M Burroughs and S F Tebbens. The Upper-Truncated Power Law Applied to 
Earthquake Cumulative Frequency-Magnitude Distributions: Evidence for a Time-
Independent Scaling Parameter. Bulletin of the Seismological Society of America, 
92(8):2983–2993, December 2002. 

[8] D R Clark. A note on the upper-truncated Pareto distribution. Casualty Actuarial 
Society E-Forum, 2013. 

21 

https://jingjing.shinyapps.io/hewe2
https://arXiv.org


[9] Richard Davis and Sidney Resnick. Tail Estimates Motivated by Extreme Value Theory. 
The Annals of Statistics, 12(4):1467–1487, December 1984. 

[10] Laurens de Haan and Ana Ferreira. Extreme value theory. Springer Series in Operations 
Research and Financial Engineering. Springer, New York, 2006. 

[11] H Drees. On smooth statistical tail functionals. Scandinavian Journal of Statistics, 
25(1):187–210, March 1998. 

[12] Holger Drees, Laurens de Haan, and Sidney Resnick. How to Make a Hill Plot. The 
Annals of Statistics, 28(1):254–274, February 2000. 

[13] Paul Embrechts, Claudia Kl uppelberg, and Thomas Mikosch. Modelling extremal 
events, volume 33 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 
Berlin, Heidelberg, 1997. 

[14] Bruce M Hill. A Simple General Approach to Inference About the Tail of a Distribution. 
The Annals of Statistics, 3(5):1163–1174, September 1975. 

[15] E Kaufmann and R D Reiss. Strong Approximation of the Hill Estimator Process. 
Statistics and Probability Letters, 39:347–354, 1998. 

[16] J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent 
rv’s, and the sample df. ii. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte 
Gebiete, 34(1):33–58, Mar 1976. 

[17] Mark Newman. Networks: An Introduction. Oxford University Press, March 2010. 

22 


	Introduction
	Functional Convergence of HEWE
	Parameter Estimation
	Simulation Studies
	Pareto Distribution
	Non-Pareto Examples
	Cauchy Distribution
	Student's  t2.5  Distribution

	Light-tailed Example

	Applications
	Google+
	Earthquakes
	Proof of Theorem 2.1


