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SUMMARY 

We propose two peaks-over-threshold methods for discrete random variables, and show that 15 

they can provide accurate tail probability estimates in simulated and real data. 

Some key words: Extreme value theory; Tail approximation; Count data; Discrete distribution; Generalized Pareto 
distribution; Zipf distribution; Peaks over threshold. 

1. INTRODUCTION 

Extreme quantile estimation is an important but diffcult problem in statistics, especially when 20 

the quantile is beyond the range of the data. In the univariate case, an approach that often works 
well in practice is to model observations above a large threshold with a parametric family of 
distributions which can be motivated as follows. Let X be a random variable taking values in 
[0, xF ) for xF ∈ (0, ∞], and suppose that there exists a strictly positive sequence au such that 

−1 a (X − u) | X ≥ u → Z, (1) 25u 

in distribution as u → xF , for some Z following a non-degenerate probability distribution on 
[0, ∞). Then, Z follows a generalized Pareto distribution, defned by its survival function � x �−1/ξ

F̄GPD(x; σ, ξ) = 1 + ξ , x ≥ 0,
σ + 

x ¯with σ > 0 and (1 + ξx)1/ξ = e if ξ = 0 (Pickands, 1975). For ξ < 0, FGPD has support on 
[0, σ/|ξ|]. Condition (1), written as X ∈ MDAξ, means that X is in the maximum domain of 30 

attraction of an extreme value distribution with shape parameter ξ (see Resnick (1987)). In this 
−1case, the sequence of cumulative distribution functions of a (X − u) | X ≥ u converges uni-u 

¯formly to 1 − FGPD on [0, ∞). Thus, the distribution of exceedances above a large threshold u 

C 2016 Biometrika Trust 

mailto:gs18@cornell.edu
mailto:rdavis@stat.columbia.edu
mailto:adrien.hitz@stats.ox.ac.uk


	
35

40

45

50

55

60

65

70

75

2 A. S. HITZ, R. DAVIS AND G. SAMORODNITSKY 

(also called “peaks-over-threshold”) can be approximated in the following manner: � −1 −1 ¯ pr(X − u > x | X ≥ u) = pr a (X − u) > a x | X ≥ u ≈ FGPD(x; σau, ξ) , (2)u u 

(Davison & Smith, 1990). This approximation, called the generalized Pareto approximation, is 
convenient in practice because it does not rely on a specifc distributional assumption; X is 
only required to belong to some maximum domain of attraction, which holds for most common 
continuous distributions. 

If the observations are discrete, however, one may want to preserve and utilize the discrete-
ness in the extreme estimation. It is not, however, clear how discrete exceedances over high 
threshold should be modeled. The generalized Pareto approximation is often applied ignoring 
the discrete nature of the data. This poses two issues: frst, a necessary condition for a discrete 
random variable X to be in some maximum domain of attraction in the case xF = ∞ is that 

¯X is long-tailed,1 i.e., FX (u + 1)/F̄  
X (u) → 1 as u →∞ (Shimura, 2012), and many common 

discrete distributions, including geometric, Poisson and negative binomial distributions, are not 
long-tailed. Specifc convergence results for maxima of discrete observations have thus been 
derived (Anderson, 1970, 1980; Dkengne et al., 2016), but the limit is always a continuous dis-
tribution, which leads to the second issue: treating discrete data as continuous introduces a bias in 
the likelihood function. Since the shape and location parameters ξ and σ of the generalized Pareto 
approximation are unknown in practice, they must be estimated from the exceedance data. We 
will see that the bias may render the approximation inadequate — even when X is long-tailed, 
that is, when (2) is valid in theory. 

Our contribution is to overcome these limitations by proposing two peaks-over-threshold 
methods, each relying on a parametric family of discrete distributions: the discrete generalized 
Pareto and the generalized Zipf distribution. The latter distributions exist in the literature but 
have not been justifed for modeling extremes. As we will show, these new approximations can 
be theoretically motivated for X belonging to a broad class of discrete distributions, and they 
match or outperform the generalized Pareto approximation. They deliver similar results but it is 
still unclear if one of them should be preferred. 

From now on, we assume that X is a discrete random variable with non-negative values, 
and ξ ≥ 0. The frst method adapts the condition X ∈ MDAξ to the discrete case as follows. 
Suppose that there exists a random variable Y ∈ MDAξ with survival function F̄  

Y on [0, ∞) such 
that pr(X ≥ k) = pr(Y ≥ k) for k = 0, 1, 2, . . . , that is, the equality in distribution, X = bY c, 
holds. In this case, we say that X is in the discrete maximum domain of attraction, which we 
write as X ∈ D-MDAξ. We call Y an extension of X and such an extension is not unique. 
Shimura (2012) proved that X ∈ MDAξ if and only if X ∈ D-MDAξ and X is long-tailed.2 It 
was also shown by Shimura (2012) that geometric, Poisson and negative binomial distributions 
belong to the discrete maximum domain of attraction. Therefore, MDAξ ( D-MDAξ for discrete 
distributions. If X ∈ D-MDAξ and Y ∈ MDAξ is a corresponding extension satisfying X = bY c 
in distribution, then, for large integers u, we use (2) to obtain 

pr(X − u = k | X ≥ u) = pr(Y − u ≥ k | Y ≥ u) − pr(Y − u ≥ k + 1 | Y ≥ u) 

≈ pD-GPD(k; σau, ξ), (3) 

where pD-GPD is the probability mass function of the discrete generalized Pareto distribution 
defned by 

¯ ¯ pD-GPD(k; σ, ξ) = FGPD(k; σ, ξ) − FGPD(k + 1; σ, ξ), 

1 All long-tailed distributions are heavy-tailed, but the converse is false. 
2 When X is long-tailed, an extension of X (which takes values in N) can be X itself (if seen as taking values in R). 
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3 Discrete Extremes 

for k = 0, 1, 2, . . .. Equation (3) provides a method for modeling discrete exceedances over 
threshold that we call the discrete generalized Pareto approximation. The latter distribution has 
been applied by Prieto et al. (2014) to model road accidents, while various aspects of discrete 
Pareto-type distributions were studied in Krishna & Pundir (2009), Buddana & Kozubowski 
(2014), and Kozubowski et al. (2015). 80 

¯Whereas the frst method is based on an extension of FX by a survival function in the 
maximum domain of attraction, the second method assumes instead an extension of pX , 
the probability mass function of X. Suppose that there exists a non-negative random vari-

¯ ¯able Y ∈ MDAξ/(1+ξ) with survival function FY on [0, ∞) such that pX (k) = c FY (k) for 
k = d, d + 1, d + 2, . . . , for some c > 0 and d ∈ N0 = {0, 1, . . .}. In this case, we say that pX 85 

is in the discrete maximum domain of attraction which is denoted by pX ∈ D-MDAξ/(1+ξ), and 
call F̄  

Y an extension of pX . We will show that pX ∈ D-MDAξ/(1+ξ) implies X ∈ MDAξ (under 
a mild condition in the case ξ = 0), and that geometric, Poisson and negative binomial satisfy 
pX ∈ D-MDA0. It follows from (2) that, for large integers u, 

pr(Y > u + k)/pr(Y > u) � 
pr(X − u = k | X ≥ u) = P∞ ≈ pGZD k; (1 + ξ)σau, ξ , (4) 90 

i=0 pr(Y > u + i)/pr(Y > u) 

where � �−1/ξ−1 
1 + ξ σ

k 

pGZD(k; σ, ξ) = , k = 0, 1, 2, . . . , (5)P∞ � �−1/ξ−1 
i=0 1 + ξ i σ 

is the probability function of a distribution that we call the generalized Zipf distribution. In 
the case ξ = 0, the latter is a geometric distribution (and so is the discrete generalized Pareto 
distribution), and in the case ξ > 0, it is a Zipf–Mandelbrot distribution (Mandelbrot, 1953). 95 

Zipf-type families have been ftted to various discrete datasets such as word frequencies (Booth, 
1967), city sizes (Gabaix, 1999), company sizes (Axtell, 2001) and website visits (Clauset et al., 
2009). The Zipf law, arising in the case ξ = σ, is sometimes presented as the discrete counterpart 
of the Pareto distribution (Arnold, 1983). We refer to the approximation procedure in (4) as the 
generalized Zipf approximation. 100 

2. THEORETICAL RESULTS 

We start by showing that the probability density and mass functions of the generalized Pareto, 
discrete generalized Pareto and Zipf distributions are asymptotically equivalent as σ tends to 
infnity. Proofs are given in the Supplementary Material. 

PROPOSITION 1. For σ > 0, ξ ≥ 0 and q, q̃  ∈ {fGPD, pD-GPD, pGZD}, it holds 105 

q(k; σ, ξ)
lim sup − 1 = 0. 
σ→∞ k=0,1,2,... q̃(k; σ, ξ) 

This suggests that modeling a sample from X − u | X ≥ u by maximum likelihood using either 
fGPD, pD-GPD or pGZD should not differ too much if the estimated scale parameter σ̂ is suffciently 
large. When the sample size and u grow, σ̂ only goes to infnity if the sequence au defned in (1) 
satisfes au →∞, which occurs if and only if X is long-tailed. Even in this case, au might grow 110 

too slowly for the three methods to be similar in practice, as we will see in Section 3. 
The results below formally justify the approximation procedures we have introduced. We start 

with a convergence result for the discrete generalized Pareto approximation. 
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PROPOSITION 2. If X ∈ D-MDAξ for ξ ≥ 0, then there exists a positive sequence (au, u = 
115 1, 2, . . .) such that 

lim sup pr(X = u + k | X ≥ u) − pD-GPD(k; au, ξ) = 0. (6) 
u∈N0, u→∞ k=0,1,2,... 

We remark that (6) is not informative if au →∞ because the two terms converge to 0. Next, 
we consider the case pX ∈ D-MDA. Recall that a distribution F is in MDA0 if and only if the 
survival function has a representation � Z � x 1

F̄ (x) = c(x) exp − dy , x ∈ R, (7) 
a(y)0 

120 where a(·), called the auxiliary function, is positive and differentiable with a0(x) → 0 as x →∞; 
and c(·) is a positive function with limit c > 0 (Embrechts et al., 2013). If c(x) = c on (d, ∞) 
for some d ∈ R, then we say that the distribution F satisfes the von Mises condition. 

THEOREM 1. If pX ∈ D-MDAξ/(1+ξ) and ξ > 0, then X ∈ MDAξ and, for any sequence of 
nonnegative integers (ku)u∈N0 such that supu ku/u < ∞, 

pr(X = ku + u | X ≥ u) 
125 lim = 1. (8) 

u∈N, u→∞ q(ku; ξu, ξ) 

where q ≡ fGPD, pD-GPD and pGZD. 
¯If pX ∈ D-MDA0 and if the auxiliary function of an extension F of pX satisfes 

limx→∞ a(x) = σ > 0, then X ∈ D-MDA0 and 

lim pr(X = k + u | X ≥ u) = pD-GPD(k; σ, 0) = pGZD(k; σ, 0), k = 0, 1, 2, . . . . (9) 
u∈N, u→∞ 

130 The condition pX ∈ D-MDA is satisfed, among others, by the Zipf–Mandelbrot, geometric, 
Poisson and negative binomial distributions as shown below and in the Supplementary Material. 

Example 1. The probability mass function of a Zipf–Mandelbrot distribution is proportional 
to (k + q)−1−1/ξ for k = 0, 1, 2, . . . , q > 0, ξ > 0, and satisfes pX ∈ D-MDAξ/(1+ξ) because it 

¯ can be extended by FY (y) = c(y + q)−1−1/ξ for y ≥ 0 and some c > 0 with Y ∈ MDAξ/(1+ξ). 
135 The probability mass function of a geometric distribution belongs to D-MDA0 as it coincides 

up to a constant with the survival function of an exponential distribution. The latter distribution 
clearly satisfes the von Mises condition and thus is a member of MDA0. The auxiliary function 
is, in fact, equal (eventually) to 1/λ, where λ is the rate of the exponential distribution. 

To summarize, for a discrete random variable X and ξ ≥ 0, it holds X ∈ MDAξ if and only if 
140 X ∈ D-MDAξ and X is long-tailed. If ξ > 0, then pX ∈ D-MDAξ/(1+ξ) implies X ∈ D-MDAξ; 

the same implication holds in the case ξ = 0 if the auxiliary function of the extension of pX 

satisfes a(x) → σ ∈ (0, ∞) as x →∞. 

3. EMPIRICAL RESULTS 

We assess the performance of the discrete generalized Pareto and the generalized Zipf approx-
145 imations for estimating the probability of a rare event from discrete data, and illustrate why they 

should be preferred to the generalized Pareto approximation, whether X is long-tailed or not. Let 
α = 2, β = 0.75 and 

X = bY c, Y ∼ Inverse-gamma(α, β), (10) 
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Fig. 1: On the left: frequency plot of 462 exceedances of X over the 95th empirical quantile u = 2 simulated from 
(10). On the right: frequency plot of the length of the 2875 longest French words. 

where the inverse-gamma distribution has density function f(x) = 
Γ(α)−1βαx−α−1 exp(−β/x), x > 0. The experiment described below is repeated 500 150 

times. An independent and identically distributed sample of size 8000 is drawn from the 
distribution of X . The goal is to estimate the probability of the extreme region 

pe = pr(X ≥ bqec), bqec = 52, (11) 

where qe is the 99.99 percentile of Y, i.e., the value exceeded once every 10 000 times on av-
erage. The strategy pursued is to select an integer threshold u as the 95th empirical percentile 155 

of the sample,3 ft parametric distributions to the exceedances X − u | X ≥ u, and use them to 
extrapolate the tail and estimate pe. It clearly holds pX ∈ D-MDAξ/(1+ξ) for ξ = 1/α = 1/2, 
thus the three approximations are justifed. The generalized Pareto distribution is ftted to the 

1observations shifted by continuity correction δ = 0 or δ = 2 . As a benchmark, we will also es-
timate pe from a sample of the continuous variable Y (as opposed to its discretization X) using 160 

the generalized Pareto approximation. 
A frequency plot of the exceedances of a sample of X above u is displayed on the left-hand 

side in Figure 1. For each model, we compute the maximum likelihood estimators σ̂ and ξ̂ by per-
forming a two dimensional maximization using the function optim of R (R Core Team, 2015) 
with starting values (1, 1). We then compute p̂e and approximate 90% confdence intervals from 165 

the Fisher information matrix under asymptotic normality of the estimators. Table 1 displays: the 
average estimates p̂e, ξ̂  and σ̂ over the 500 replications of the experiment, the coverage4 of the 
confdence intervals, their average length and their true length.5 The discrete generalized Pareto 
and Zipf approximations provide relatively accurate estimates of pe from the discretized data 

3 Selecting an appropriate threshold is crucial when estimating high quantiles and can be based on techniques such as mean residual 
plots (see e.g. Davison & Smith (1990)). 

4 Coverage indicates the proportion of time the truth lies in the confdence interval. 
5 True length is here defned as `? = q0.05(p̂e) − q0.95(p̂e), where p̂e is the vector of maximum likelihood estimates in the 500 

replicated experiments, and q(·) is the quantile function. 
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Table 1: Performance of several methods in estimating the probability pe of the rare event defned in (11) from about 
460 exceedances in each experiment. The table displays average maximum likelihood estimators for pe, ξ and σ 
across the 500 replicated experiments. Coverage c, average length l and true length l? of 90% confdence intervals 
are shown between brackets. The discrete generalized Pareto and Zipf approximations are superior in this case. 

p̂e · 104 (c, l, l?) ξ̂  (c, l) σ̂ (l) 
Truth 1.03 0.50 

Fitted to Y − u | Y ≥ u 
Generalized Pareto distribution 1.07 (85%, 1.84, 1.81) 0.49 (94%, 0.28) 1.14 (0.36) 

Fitted to X − u | X ≥ u, X = bY c 
Discrete generalized Pareto distribution 1.09 (87%, 1.92, 1.85) 0.49 (93%, 0.29) 1.13 (0.40) 
Generalized Zipf distribution 1.11 (88%, 1.97, 1.88) 0.50 (94%, 0.30) 1.34 (0.35) 
Generalized Pareto distribution, δ = 1

2 0.44 (31%, 0.86, 0.97) 0.36 (35%, 0.22) 1.38 (0.39) 
Generalized Pareto distribution, δ = 0 50.42 (85%, 162.32, 71.45) 8.29 (0%, 1.58) 0.00 (0.00) 

Table 2: Fit of several distributions to the length of the 2875 longest French words, and to the number of extreme 
tornadoes per outbreak for the 435 outbreaks with 12 or more such tornadoes in the United States between 1965 
and 2015. The table displays p-value of discrete Kolmogorov–Smirnov tests (of the discretized model in the case of 
continuous models), negative log-likelihood −` and maximum likelihood estimates with 90% confdence intervals 
and possible temporal trend σ̂t in the scale parameter. 

p-val. −` ξ σ̂0 σ̂t 

Word length 
Discrete generalized Pareto dist. 0.40 3894.0 0.02[−0.01,0.06] 1.36[1.30,1.43] 
Generalized Zipf distribution 0.40 3894.0 0.02[−0.01,0.06] 1.37[1.32,1.43] 
Generalized Pareto dist., δ = 

2
1 0.02 3951.2 −0.04[−0.06,−0.01] 1.51[1.45,1.57] 

Negative binomial 0.37 3893.9 

Tornado outbreak 
Discrete generalized Pareto dist. 0.19 1439.92 0.27[0.16,0.37] 4.81[3.64,5.99] 6.11[3.74,8.48] 

1Generalized Pareto dist., δ = 
2 0.18 1439.93 0.26[0.16,0.37] 4.86[3.68,6.04] 6.13[3.75,8.50] 

170 with a coverage close to the correct one of 90%, and their performance is good relative to the 
situation of full information where the continuous data are available — notice how the estimates 
are very similar to one another. On the other hand, the two versions of the generalized Pareto 
approximation perform poorly, the worst being the case δ = 0. 

The ability of the discrete generalized Pareto and Zipf approximations to accurately estimate 
175 the probability of rare events is supported by complementary simulated cases covering ξ = 0 

and ξ < 0 (Hitz, 2016, Chapter 2), and illustrated here on three real datasets. The frst consists 
of the frequency X of word length in the French lexicon (New et al., 2004); for instance, “anti-
constitutionnellement” is the only word of 25 letters in French. We focus on describing the tail 
distribution and ft the usual models to X − u | X ≥ u with u = 15, the 98th percentile of the 

180 data. A frequency plot of the 2875 exceedances is shown on the right-hand side of Figure 1. The 
discrete generalized Pareto and Zipf distributions deliver a good ft and similar estimations to 
one another, and clearly outperform the generalized Pareto approximation as shown in Table 2 
by p-values6 of discrete Kolmogorov–Smirnov tests based on the difference between the ftted 

6 Procedure for computing p-values in Table 2 for the word length data: resample the data with replacement; compute the difference 
between the ftted and empirical distribution of this sample; get a p-value by Monte Carlo simulation using R package dgof 
(Arnold & Emerson, 2011); repeat 200 times and take the average. 

https://6.13[3.75,8.50
https://4.86[3.68,6.04
https://0.26[0.16,0.37
https://6.11[3.74,8.48
https://4.81[3.64,5.99
https://0.27[0.16,0.37
https://1.51[1.45,1.57
https://�0.04[�0.06,�0.01
https://1.37[1.32,1.43
https://3894.00.02[�0.01,0.06
https://1.36[1.30,1.43
https://3894.00.02[�0.01,0.06
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Table 3: On the left: frequency table of multiple births in the United States from 1995 to 2014. On the right: per-
formance of several methods in estimating the probability pe of an American women delivering quintuplets or more 
at birth using only one thousandth of the dataset. In each experiment, the threshold was u = 1 and there were about 
2600 exceedances (see Table 1 for notation). The discrete generalized Pareto and Zipf provide useful techniques for 
such extrapolations. 

Multiple Births p̂e · 105 (c, l, l?) 
Single 78 178 588 Truth 1.7 
Twin 2 500 340 Discrete generalized Pareto distribution 1.4 (74%, 2.9, 2.9) 
Triplet 1 17 603 Generalized Zipf distribution 1.6 (87%, 3.3, 2.8); n/a9 

Quadruplet 8 108 Negative Binomial 1.2 (65%, 2.3, 2.3) 
Quint. or more 1 353 1Generalized Pareto distribution, δ = 

2 n/a10 

distribution and the empirical distribution of bootstrapped data. Notice that the negative binomial 
also fts well in this case. 185 

The second dataset comes from Tippett et al. (2016) who report the number X of extreme 
tornadoes per outbreak in the United States between 1965 and 2015, where an outbreak is a 
sequence of tornadoes that are high on the Fujita scale and occur close to each other in time. The 
authors found that the 435 observations from X − u | X ≥ u for u = 12 were well modeled by a 
generalized Pareto distribution with linear temporal trend in the scale parameter7 and continuity 190 

1correction δ = 2 . Maximum likelihood estimates and discrete Kolmogorov–Smirnov tests8 in 
Table 2 show that there is virtually no difference between the three approximations (only two 
of them are presented). This is consistent with Proposition 1 since the location parameter σ̂ is 
larger in this case. Treating the tornado data as continuous is acceptable because there are fewer 
tied observations: about 38% of the data consists of values shared with no more than 20 other 195 

observations, compared to 13% for the simulated data and 1% for the word length data. Loosely, 
the data look less discrete (a frequency plot is displayed in the Supplementary Material), thus the 
generalized Pareto approximation is appropriate here. 

The third dataset counts the number X of multiple births in the United States from 1995 to 
2014 and is displayed on the left-hand side of Table 3 (Hamilton et al., 2015). The observations 200 

are censored from above and only take 5 distinct values, it is thus interesting to see if the discrete 
generalized Pareto and Zipf distributions can still describe the tail of the data in this non-standard 
estimation problem. We randomly select from the dataset a sample that contains a thousand 
times fewer observations, and estimate from these the probability pe that an American women 
delivers quintuplets or more by ftting a right-censored version of the usual models to XC − u | 205 

XC ≥ u for u = 2, where XC = min(X, 5). The experiment was repeated 500 times, and each 
sample contained on average 9 quatruplets and 1 quintuplet or more. Table 3 shows that the 
discrete generalized Pareto and Zipf distributions outperform common alternatives, and seem 
to be useful techniques for inference from such limited data. The applicability of peaks-over-
threshold methods when u is a particularly small integer should be more rigorously studied. 210 

Future work could explore the use of the generalized Zipf and discrete Pareto distributions in 
the case ξ < 0, and further investigate how they relate to each other as they seem to perform simi-
larly. The latter distribution benefts from its closed-form survival and probability mass function, 
7 The scale parameter is modeled as σ(t) = σ0 + σ1t, where t is the time covariate rescaled between [0, 1]. 
8 Procedure for computing p-values in Table 2 for the tornado data: split the dataset into 5 groups depending on which time 

covariates are the nearest to ti = 0.1, 0.3, 0.5, 0.7, 0.9; for each group, assume σ(t) = σ0 + σ1ti and compute the p-value of a 
discrete Kolmogorov–Smirnov test as explained previously; report the smallest of these 5 p-values. 

9 In 52 out of 500 replicated experiments, maximum likelihood estimates could not be computed numerically. In 70 experiments, 
the hessian matrix could not be computed numerically. 

10 The log-likelihood function could not be maximized numerically. 
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allowing for exact likelihood based inference. In conclusion, there is no downside to ft a discrete 
215 generalized Pareto for discrete data as opposed to a generalized Pareto distribution. 
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