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ASYMPTOTIC THEORY FOR THE SAMPLE COVARIANCE MATRIX OF A
HEAVY-TAILED MULTIVARIATE TIME SERIES

RICHARD A. DAVIS, THOMAS MIKOSCH, AND OLIVER PFAFFEL

ABSTRACT. In this paper we give an asymptotic theory for the eigenvalues of the sample covariance
matrix of a multivariate time series. The time series constitutes a linear process across time and
between components. The input noise of the linear process has regularly varying tails with index
a € (0,4); in particular, the time series has infinite fourth moment. We derive the limiting behavior
for the largest eigenvalues of the sample covariance matrix and show point process convergence of
the normalized eigenvalues. The limiting process has an explicit form involving points of a Poisson
process and eigenvalues of a non-negative definite matrix. Based on this convergence we derive limit
theory for a host of other continuous functionals of the eigenvalues, including the joint convergence
of the largest eigenvalues, the joint convergence of the largest eigenvalue and the trace of the sample
covariance matrix, and the ratio of the largest eigenvalue to their sum.

1. INTRODUCTION

In the setting of classical multivariate statistics or multivariate time series, the data consist of n
observations of p-dimensional random vectors, where p is relatively small compared to the sample
size n. With the recent advent of large data sets, the dimension p can be large relative to the sample
size and hence standard asymptotics, assuming p is fixed relative to n may provide misleading
results. Structure in multivariate data is often summarized by the sample covariance matrix. For
example, principal component analysis, extracts principal component vectors corresponding to the
largest eigenvalues. Consequently, there is a need to study asymptotics of the largest eigenvalues
of the sample covariance matrix. In the case of p fixed and the p x n data matrix consists of iid
N(0,1) observations, Anderson [1] showed that the largest eigenvalue is asymptotically normal. In a
now seminal paper, Johnstone [11] showed that if p, — oo at the rate p,/n — v € (0,00), then the
largest eigenvalues, suitable normalized, converges to the Tracy- Widom distribution with § = 1.
Johnstone’s result has been generalized by Tao and Vu [19] where only 4 moments are needed
to determine the limit. The theory for the largest eigenvalues of sample covariance and Wigner
matrices based on heavy tails is not as well developed as in the light tailed case. The largest
eigenvalues of sample covariance matrices with iid entries that are regularly varying with index —«
were studied by Soshnikov [18] for the a € (0,2) case and subsequently extended in Auffinger et
el. [2] to the a € (2,4) case. They showed that the point process of eigenvalues, normalized by the
square of the 1 — (np)~! quantile converges in distribution to a Poisson point process with intensity
(a/2)z=%/>~1 provided p/n — v, where v € (0,1). These results were extended in Davis et al. [7]
to the case where the rows of the data matrix are iid linear heavy-tailed processes. They also had
more general growth conditions on p,, in the case of iid entries and « € (0,2).

In this paper, we study the asymptotic behavior of the largest eigenvalues of the sample co-
variance matrices of a multivariate time series. The time series is assumed to be heavy-tailed
and linearly dependent in time and between the components. Even though [7] allowed for some
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dependence between the rows, it was somewhat contrived in that the rows were assumed to be
conditionally independent given a random process. To our knowledge, the present paper is the
first to consider bona fide dependence among the components in the time series which renders a
multivariate analysis, such as PCA, meaningful. Allowing for dependence between the rows can
appreciably impact the limiting behavior of the largest eigenvalues. Instead of obtaining a Poisson
point process as the limit of the extreme eigenvalues, we now get a “cluster” Poisson point pro-
cess. That is, the limit can be described by a Poisson point process in which each point produces
a “cluster” of points. The clusters are determined via the eigenvalues of an auxiliary covariance
matriz that is constructed from the linear filter weights. Interestingly, the limit point process is
identical to the limit point process derived by Davis and Resnick [6] for the extremes of a linear
process. One of the striking differences in the limit theory between the independent and dependent
row cases is the limiting behavior of the ratio of the second largest eigenvalue, A to the largest
eigenvalue A(1) of the sample covariance matrix. In the independent row case,

Aazy/ Ay = U2,

where U is a uniform random variable on (0,1) and « € (0, 2) is the index of regular variation. Now
if the rows are dependent, then the limit random variable corresponds to a truncated uniform, i.e.,
there exists a constant ¢ € [0,1) such that the limit has the form ca/ZI{U<C} + Uo‘/zl{UZc}. The
constant ¢ is determined from the eigenvalues of the auxiliary covariance matrix.

To make the model precise, consider a field of iid random variables (Zj); 1z, a double array of
real numbers (hy)k ez such that hy; = 0 if k or [ are negative and construct an infinite-dimensional
time series,

oo o0
(1.1) Xi=> > huZiget, i,t€L.
=0 k=0

We also assume that a generic element Z of the Z-field satisfies the regular variation and tail
balance condition

L(z) L(z)
(1.2) P(Z>zx)~ P+ o and P(Z < —x)~p_ a0 L0,
for some tail index o > 0, where p;,p_ > 0 with p; +p_ =1 and L is a slowly varying function.

To ensure the a.s. absolute convergence of the series (1.1) we will need further conditions on (hy;)
to be discussed later.
Consider the p x n data matrix

(1.3) Xn = (Xit)i=1,..pt=1,.n, n=>1,

where p = p,, is an integer sequence such that p, — co.

The main focus of study in this paper is the asymptotic behavior of the eigenvalues n times the
sample covariance matrix X, X/, in the case a € (0,2) and its centered version X, X! — EX,, X/,
in the case o € (2,4). Our main result, Theorem 3.1, yields an approximation for the largest
eigenvalues of the sample covariance matrices, showing that these eigenvalues are to a large extent

determined by the order statistics of D1,..., D,, where, for n > 1, we define the iid sequence
n

(1.4) D,=DM =72, scl.
t=1

A consequence of this approximation is the point process convergence of the normalized eigenvalues
of the sample covariance matrices. Based on the point process convergence, the continuous mapping
theorem yields a variety of asymptotic results for the largest eigenvalues of the sample covariance
matrix as well as joint limit theory for the trace and the largest eigenvalue. In particular, we show
that the ratio of the largest eigenvalue to their sum converges in distribution to the ratio of a
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max-stable to a sum-stable random variable. In the special case when the filter (hy;) is separable,
hiy = Oxcy, the limit ratio does not depend on the filter weights (0), (¢;). As a further special case,
if the time series consists of iid vectors with linear dependence between the components the limit
behavior of the eigenvalues is the same as that for iid components.

The paper is organized as follows. In Section 2 we introduce the notation and various conditions
used throughout the paper. In Section 3 we formulate the approximation results in terms of (Dj) for
the eigenvalues of the sample covariance matrices and discuss the conditions. In Section 4 we derive
the convergence of the point processes of the normalized eigenvalues to a cluster Poisson process
and prove results for various functionals of the eigenvalues. We also give examples illustrating the
results. The proof of the main result, Theorem 3.1, is given in Section 5. The Appendix contains
various useful results about large deviations for sums of iid random variables as well as point process
convergence results for iid sequences of sums of iid heavy-tailed random variables. These results
are needed in the proof of Theorem 3.1 and its corollaries.

2. PRELIMINARIES
In this section, we introduce some new notation and conditions to be used throughout the paper.

2.1. Notation.

Figenvalues of the sample covariance matriz. Fix n > 1. We denote the eigenvalues of X, X/, in the
case a € (0,2) by A1,...,Ap, and we use the same notation in the case o € (2, 4) for the eigenvalues
of X, X! — EX,, X! . In this notation, we suppress the dependence of the eigenvalues on n.

The matriz M. In order to describe the limit behavior of the eigenvalues, we need to introduce the
eigenvalues of a matrix M determined by the coefficients (hy) >0

Set h; = (hjo, hi1,-..)" and define the oo x co matrix H = (hg, hy,...) and put
(2.1) M=HH'.

In particular, the (¢, 7)-th entry of M is

o0
M;j = h;h}; = Zhilhjl, i,j=0,1,....
1=0
By construction, M is symmetric and non-negative definite, hence it has non-negative eigenvalues
denoted by
(22) 1)121)22..._

Let r be the rank of M so that v, > 0 while v, = 0 if r is finite, otherwise v; > 0 for all ¢. For
later reference, note that under condition (2.7) on (hg)

(2.3) tr(M):iMii:iw:iih%l < 00.
1=0 =1

k=0 [=0
Therefore all eigenvalues v; are finite and the ordering (2.2) is justified.

Order statistics of the iid sequence (Ds) in (1.4). For given n > 1, denote the order statistics of
Dq,...,D, by

(2.4) Dyy =Dy, <---<Dyy=Dy,,

where we assume that (L, ..., Ly) is a permutation of (1,...,p).

By D, we denote a generic element of (D;). Assuming that ED is finite, write Dy = |[Dy — ED|,
s € Z, and consider the corresponding order statistics

(2.5) Dy =Dy, <+ < Dy =Dy,
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where we again assume that (¢q,...,¢,) is a permutation of (1,...,p).

2

Normalizing sequence (ay,,). We will normalize the eigenvalues of the matrices (X,X],) by the
2

sequence (a;,,) which is derived from the regularly varying tails of the iid noise (Z;;) with generic
element Z. We define (ax) by

(2.6) P(|Z|>ap) ~ k™', k— 0.

2.2. Conditions on (hy;). To ensure the a.s. absolute convergence of the X;;’s defined in (1.1)
with noise satisfying (1.2) we assume

(2.7 SO il < oo

=0 k=0

for some § € (0, min(c/2,1)) and the considered « € (0,4). In addition, we will need the following
technical assumption for the same a-values and € > 0 arbitrarily close to zero:

(2.8) i(i|hkl|>a/2€<oo, k=0,1,...,.
t=0 =t

The latter condition is satisfied if a € (0,4) and

o0
(2.9) > et by < oo, k=0,1,...,,

=0
for ¢’ > 0 arbitrarily close to zero. Indeed, write § = /2 —e € (0,2), ¢t = > ;= || for fixed
k, suppressing the dependence on k in the notation, and let (Y;) be an iid sequence of symmetric
[-stable random variables. Then for any small ¢” > 0 such that 1/ +¢" =2/a + ¢/,

e} o

1
v(Yd)" L Y
=0 t=0

0 l

= > |l Y
1=0 =1
00 l

= Y Il Y
1=0 =1

But [~ 1/8=¢" Zi:l Y; %% 0; see Petrov [14], Theorem 6.9. Therefore condition (2.9) implies that
S, < 00, ie. (2.8) holds.

2.3. Growth conditions on (p,). Recall that p = p, — oo is the number of rows in the ma-
trix X,,. We need conditions on the growth of (p,) to ensure the convergence of the normalized
eigenvalues of the sample covariance matrix.

Let (Z;) be iid copies of Z.
Condition C,,.

e For o € (0,1), assume
(2.10) Tim pnp P(1Z12] > ap,)] =0,
e For a =1 and E|Z| = oo, assume (2.10) and
(2.11) lim plnpay B2 Za|lz7, 7,0<a3,)] = 0,

n
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e For a € (1,2) or a =1 and E|Z| < oo, assume there exists a v € (a, 2) arbitrarily close to

« such that
(2.12) lim pY [npP(|Z12,| > a2,)] =0,
n—oo
e For a € (2,4), assume there exists a v € («,4) arbitrarily close to « such that
(2.13) lim n"/27 Y [np P(|Z,22| > a%p)] =0.
n—oo

Note that the conditions (2.10)—(2.13) that restrict the growth of the integer sequence (p,) depend
on the slowly varying functions L and Ls in the tails P(|Z| > z) ~ L(z)x™® and P(|Z1Z2| > x) =
x~*Lo(z); see Embrechts and Goldie [9] for a proof of the second identity. We also know that
an =n'/ *¢(n) for a suitable slowly varying function ¢. With this information in mind, we may now
verify the various conditions for certain choices of (py,).

The case o € (0,1). For arbitrarily small positive € and large n, we have from (2.10) (see Bingham
et al. [4])

(2.14) plnp P(|Z12:] > app)] < enp?(np) 7€ = en™ "

The right-hand side converges to zero for sufficiently small € if p has polynomial growth, i.e.,
p = O(nP), B > 0, in particular, one can choose p/n — ¢ € (0,00) for some constant c. Here and
in what follows, we write ¢ for any constant whose value is not of interest.

If more information is available the rate of p in (2.10) can be much faster. For example, if Z has
a Pareto distribution then ¢ and L are constants, La(x) ~ ¢ logx as  — 00, anp ~ c(np)/® as
n — oo and we have

pnp P(|Z1Z5] > aip)] ~ c¢n”tlog(np).

In this case, one can choose p = O(e ) for any (c,) such that n=t¢, — 0 as n — oc.

The case a« = 1 and E|Z| = oco. Condition (2.10) can be verified as in the case o € (0,1). In
addition, one has to check (2.11). Note that =~ 'E|Z1Zs|If 7, 7,<0}/P(|Z1Z2| > ) is a slowly
varying function converging to infinity as x — oo (Bingham et al. [4], (1.5.8)) and therefore for
arbitrarily small € > 0,

—24€ —14€

np® aﬁgE\lez\Iﬂlez\ga%p} < cnp?(np) = c(np)” " p.

The right-hand side coincides with the bound in (2.14). Thus (2.11) holds under conditions on p
similar to those for (2.10).

The Pareto distribution with tail P(Z > z) = 2!, x > 1, belongs to the considered class of
distributions. In this case,

np? a,y B Z1 22|15 7, 2)<a2,y ~ e~ ' log?(np),
and (2.11) holds for p = O(e ") and any (c,) such that n=1c2 — 0 as n — co.
The cases o € (1,2) and a =1, EZ = 0. Condition (2.12) holds if
p'inp P(|Z12Z2| > a%p)] = (7”5}))_1[12((&10)]97 < (np) 1P’ -0, n— oo,

for any € > 0 arbitrarily close to zero and v > « arbitrarily close to a. These conditions are satisfied
if p/n — ¢ € (0,00) for some constant c.

For Z with a Pareto-like tail P(Z > z) ~ cz™®, a € (1,2), (2.12) boils down to verifying
n~1p7~log(np) — 0 as n — oo and we can choose p = n¢ for positive ¢ < (y —1)7L.

The case o € (2,4). Condition (2.13) is satisfied if

La(a2,)n?72p7 1 < (np)p" 0?72 -0, n— o0,
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for any € > 0 arbitrarily close to zero and v > « arbitrarily close to a. The latter condition is
satisfied for integer sequences p = O(n%) for § € (0, (4 — a)/[2(a — 1)]), excluding sequences with
p/n — ¢ for some positive constant c.

3. THE MAIN RESULT
Now we are ready to formulate the main result of this paper.

Theorem 3.1. Consider the random matrices (X,,) defined in (1.1) and (1.3). Assume the fol-
lowing conditions.

e The regular variation and tail balance condition (1.2) with index « € (0,4) on the distribu-
tion of Z, and EZ =0 if E|Z| < cc.

The summability conditions (2.7) and (2.8) on the coefficients (hy).

The normalizing sequence (ay) satisfies (2.6).

The number of the rows p, of X, satisfies the growth condition C,,.

Let k =k, — 0o be any integer sequence such that k* = o(p) as n — oc.

Then the following statements hold.
(1) If « € (0,2), then

) P
(3.1) App igllf.i.).(,p ’/\(i) =y — 0, n—oo,
where A\(1) > -+ > A a.s. are the order statistics of the eigenvalues A1, ..., Ap of X, X0,
((5(1) )2 (2 5()) are the ordered values from the set {Dgyvj, i =1,...,k,j =1,2,...}; cf.
2.2) and (2.4
(2) If v € (2,4), then
—92 Y i P
(3.2) Upp iirll,e.t.}ip ‘)\(i) =) =0, n—oo,

where X(l) > e > X(p) are the ordered eigenvalues Ai,..., A\, of X, X! — EX,X! and

Sy = -+ = dp) are the ordered components of {(Dy;, — ED)vj, i =1,...,k,j = 1,2,...};
cf. (2.2) and (2.5).

Remark 3.2. Discussions of the conditions on (hy;) and the growth of (p,,) are given in Sections 2.2
and 2.3, respectively. The case a = 2 can be treated by similar methods but then centering with
the expected values of the entries X, X/ truncated at a suitable level, such as aip, would become
necessary. We decided to exclude this special case since it requires additional technical arguments
that are geared directly to a = 2 and do not provide further insight to the other cases.

Remark 3.3. If o € (2,4) the matrix X, X/, — EX,, X/ may not be non-negative definite. Therefore
its eigenvalues ()\;) and the corresponding sequence (X(i)) ordered according to their absolute values
are not necessarily non-negative. However, the theory in Section 4 ensures that the point process of
the eigenvalues of the normalized and centered sample covariance matrices a,, (X X, — EX, X))
converges weakly to a Poisson process with support on (0, 00).

Remark 3.4. An immediate consequence of Theorem 3.1 is an approximation for the largest (in
absolute value) eigenvalues of the centered sample covariance matrix n~!(X, X, — EX,X,,) in the
case a € (2,4). If n_la%p — 0 then

n- sgg |/\ - g(i)‘ = 0p(n*1a%p) =op(l).

A similar result does not hold for a € (0,2): in this case a2 »/m — 0o. The condition n~ a%p -0
holds for sequences p,, — oo satisfying p, = o(n (a=2)/ 2). On the other hand, another condition on
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the growth of (p,) is required in (2.13). Taking into account both conditions, we need to require
pn = O(n®) for small values of § > 0.

Remark 3.5. Consider a random array (hg;) independent of (X;;) and assume that the summability
conditions (2.7) and (2.8) hold a.s. Then Theorem 3.1 remains valid conditionally on (hy;), hence
unconditionally in P-probability (see also [7]).

4. SOME APPLICATIONS

The following result is a consequence of Theorem 3.1 and Lemma A.3. We write ¢, for Dirac
measure at s.

Corollary 4.1. Assume a € (0,2) U (2,4) and the conditions of Theorem 3.1 hold. Let (E;) be iid
unit exponentials, I'y = E1 4+ -+ E;, i > 1. Then

(4.1) Nn—ZE 2 4N = ZZ& 2/,

=1 j=1
in the space of point measures with state space Ry = [R U {£oo}]\{0} equipped with the vague
topology.

Remark 4.2. For a € (0,2), the eigenvalues ()\;) of X, X/ are non-negative and then one can
choose the state space (0, 00) for the point processes N,, and N. For a € (2,4), the eigenvalues (\;)
of X, X!, — EX,,X,, are not necessarily non-negative and therefore we have chosen the state space
Ry. However, the corollary shows that all limiting points are positive.

Proof. We start with a € (0,2). It follows from Lemma A.3 and Theorem A.1 that (}_7_; ¢ a2 D,)

converges in distribution to a Poisson random measure on (0, c0) with intensity measure of (x, ),

x > 0, given as the limit of (notice that p; = 1 in this case and « corresponds to a/2 € (0,1))
pP(a;pQD >z)~pnP(Z? > a%pa:) — 2% 2 >0.

This means that

p 00
d
(4.2) E €an2D; E Ep-2/as M 00,
i=1 i=1

The continuous mapping theorem implies that

T 4 T oo
(43) EU«;;%Di'Uj — EF;Z/avj 3
7j=11i=1 7j=1 =1

at least if r is finite. However, this convergence can be extended from a finite positive integer r*
to r = oo using a triangular convergence argument. In particular, it suffices to show that for any
continuous function f with compact support on Ry,

(4.4) 7”hgnoohmnsupP Z Z|f Dv] | >¢€) =0
Jj=r*+1 =1
and
(4.5) Jdim Py AT )] > 6 =0.
j=r*+1i=1

Since f has compact support (only nonzero on sets bounded away from zero), there exists § > 0
such that f(z) = 0 for all |z| < 4. It follows that the summand in (4.4) is positive if and only if
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the largest point among {a;ﬁDivj,i =1,...,p,j =r*+ 1,7 +2,...} is greater than . But the
largest point is a,,>D1yvy-11 and the limit of the probability this point exceeds § is (see (4.2))
lim P(a,2Dyvres1 >0) = 1—exp{—(8/vp11)"*/?}
n—oo
— 0, asr* — oc0.

Similarly for (4.5), the limit of the probability is bounded by

lim P70 1] > 6) = lim (1= exp{—(3/vr11)"*/}) =0,

r*—00

and hence (4.3) holds also in the case r = co. Now an application of (3.1) shows that the point
. . . . 72 . . 72 i
process convergence remains valid with the points (a,,; D;v;) replaced by (a,,\i).
For a € (2,4), the same argument shows that

o

p
d
) €ang(Di~ED) 7 ) py /e
i=1 i=1
and the limit is a Poisson random measure on Rg with intensity measure of (x,00), > 0, given as
the limit of
20 2 2 2 —1ya/2
pP(a,, (D —ED) >z)~pnP(Z° - EZ* > ap,w) — (x7 )%, x>0,
while the intensity measure on (—oo, —x], x > 0, vanishes:
pP(a;I?(D —ED)< —2)~pnP(Z* - EZ* < —aipx) -0, z>0.

The continuous mapping theorem yields

r P r oo
d
DIPDERTAr N D D) DL
j=1i=1 j=1 i=1

An application of (3.2) shows that the point process convergence remains valid with the points
(a;ﬁ(Di — ED)vj) replaced by (a;ﬁ)\i), -

Corollary 4.1 and the continuous mapping theorem immediately yield results about the joint
convergence of the largest eigenvalues of the matrices X, X/ for a € (0,2) and of the matrices
X, X;, — EX, X, for a € (2,4). In what follows, we write Ay < --- < Ay for the order statistics
of the eigenvalues ();) in both situations. An application of (4.1) then yields for every fixed k > 1,

) d
@y A+ Am) = (days - diwy)

where d(1) > -+ > d) are the k largest ordered values of the set {Fi_2/avj,i =1,2,...,5 =
1,...,r}. The continuous mapping theorem yields for k& > 1,

A1) d d(1)

4.6 — )
o) Ay ot Am doy e dgy

n— oo.

An application of the continuous mapping theorem to (4.1) in the spirit of Resnick [16], Theorem
7.1, also yields the following result.

Corollary 4.3. Assume the condition of Theorem 8.1. Then the following limit results hold.
(1) If a € (0,2) then

a2(Asdon) 4 (mr, Z v, i e,
j=1 =1
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—a/2
- /,x>0,and

where F;Q/a is Fréchet distributed with distribution function @/, = e
prady F;wa has the distribution of a positive o /2-stable random variable. In particular,

Ay 4w r e

(2) If a € (2,4) then
a;ﬁ ()\(1), Zl)\z) i (UlF Z’U] l’ﬁg ( ;Q/QI{I(Q/Q> Y ETi_Q/a {F72/a>'y}>) ,

where F;Z/a is Fréchet @, o distributed and the second component is an a/2-stable random
variable &,/ which is totally skewed to the right. In particular,

n— 0.

(4.7)

Ay 4w TP

LG n— o0o.
At A Xy Cape

(4.8)

Remark 4.4. The fact that > 2, F;2/ “ has an a/2-stable distribution for a € (0,2) can be found
e.g. in Resnick [16], Theorem 7.1, or in Samorodnitsky and Taqqu [17]. For a € (2,4), the same
references can be used to detect that the limit £,/ exists a.s. and represents an a/2-stable limit
which is totally skewed to the right.

Remark 4.5. It follows from Corollary 4.3 that for fixed & > 1,

Ayt Aw g dt ot
M+ Ay diy +dp) +

9

Unfortunately, the limiting variable does not in general have a clean form. An exception is the case
when r = 1; see e.g. Example 4.7.

Proof. We only give the argument for a € (0, 2); the case a € (2,4) is similar and therefore omitted.
We restrict ourselves to a sketch of the proof of the convergence of the sum of the eigenvalues, i.e.
to the convergence of the trace of a,, X X! ; the joint convergence with aggz\(l) follows along the
lines of the proof of Theorem 3.1 by observmg the fact that we only exploit the convergence of the
sums a0 S22 o by Sory Yoy Z7 .- By using the equality of the traces, we have

p

P n
r(X,X") Z)\Z = > > X3
i=1 t=1

p 0o 00

= ZZ[ZZ W2 k- l+R£t)]
i=1 t=1 ~ 1=0 k=0

= A;+ As.

The proof of a;ﬁAg 2 0 now follows along the lines of the proof of Lemma 5.1; it is actually much
simpler since this time one does not have to take into account the operations max;—1, .. ,. Form > 1
fixed, we write

p
AL = a, 222 Z hiZi -1+ Rom -

i=1 t=1 IVk<m

Following an argument similar to that given for Lemma 5.1, we have

lim limsup P(|Ry ;| >¢) =0, €>0.
Mm—00 n—oco
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Set Spr =Y 1y >F  Z% . ;, and observe that for fixed k,1,

a;pQ(Skl — Soo) L 0, n— oo,
and (see the proof of Lemma 5.3)
a,:I?Soo KN if;ya =842, N0,
i=1
where £, /5 has an a/2-stable distribution. Then it follows that
ST oSa S Y k&, n oo,

kVI<m kVI<m

% ZZhil@/Q, m — 00.

k=0 1=0

Finally, we observe that (2.3) holds. A combination of the arguments above concludes the proof in
the case a € (0, 2). O

To illustrate the theory we consider a simple moving average example.
Example 4.6. Assume that o € (0,2) and
(4.9) Xit =Zip — Zig—1 — 2(Zi—1p — Zi—14-1), ,tEL.

In this case, hg = (1,—1,0,0,...)", hy = (—2,2,0,0,...) and hence My = diag(2,8) which has the
positive eigenvalues v; = 8 and vy = 2. The limit point process in (4.1) is

o0 oo
N = E 881—‘;2/& + E €2F;2/a,
i=1 i=1

so that
G (A Ae) & (8T, 20 v sy /)
In particular, we have for the normalized spectral gap
_ d -2/« —2/a —2/a
“ng ()‘(1) - )‘(2)) — 61" / I{F14D‘/2<F2} + 8(F1 /o - Iy / )I{F14a/2>r2}

and for the self-normalized spectral gap

A1) — A a 6
O RIRACIR ~I(ry20cryy + (1= (T1/T2)**) I(p 2051)
A 8
3 a
= 11{U2a<1} + (1= UY*) Iygesy

for a uniform random variable U =TI'1 /T’ on (0,1). The limit distribution of the spectral gap has
an atom at 3/4 with probability 2~%. Along these same lines, we also have

_ d —9/a 1 o
(g A A/ Ay) > (8077 711{U<2—a}+U2/ I{y>o-a})

and hence the limit distribution of A(9)/A(1y is supported on [1/4,1) with mass of 27 at 1/4. The

histogram of the ratio ()\(2)/)\(1))2/& based on 1000 replications from the model (4.9) with noise
given by a t-distribution with o = 1.5 degrees of freedom, n = 1000 and p = 200 is displayed in
Figure 1. It is evident that the histogram is remarkably close to what one would expect from a
sample from a the truncated uniform, .35361y< 3536) +Ufr> 35361 The mass of the limiting discrete
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Histogram of Ratio of Eigenvalues

3.0
1

25
1

Density
2.0

15

1.0

0.0

T T T
0.0 0.2 0.4 0.6 0.8 1.0

ratio”(alpha/2)
FIGURE 1. Histogram based on 1000 replications of ()\(2)/)\(1))2/a from model (4.9).

component of the ratio can be much larger if one conditions on a;ﬁ)\(l) being large. Specifically,
for any € € (0,1/4) and = > 0,

1i_>m P(e < May/Aq) < 1/4|Aq) > aipx) = P(I'}/Ty < 27°|1; < (z/8)"%/?) =: H(x).

The function H approaches 1 as x — oo indicating the speed at which the two largest eigenvalues
become linearly related (see Figure 2 for a graph of H in the case a = 1.5). In addition, from

Mass at Left Endpoint of Support of Ratio of Eigenvalues

HE)
0.6
1

0.4

0.2

T T T T T
0 100 200 300 400 500

FIGURE 2. Graph of H(z) = P(T';/Ty < 27"y < (2/8)~%/?) when a = 1.5.
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Remark 4.5, we also have

A o 4 Tt
N+t h 7 Bweo 2
1 + + D Z ]__‘

Clearly, the limit random variable is stochastically smaller than what one would get in the iid case.

This example is essentially a prototype for the behavior of the extreme eigenvalues in the case
when the rank r of the matrix M is larger than one. For example, the limiting distribution of the

ratio of A(g)/A1) is

d U2 2/a
)\(2)/)\(1) — EI{U<(,U2/,01)0¢/2} +U / I{UZ(U2/U1)Q/2}),

which has limiting support on [vs/v1, 1) with mass (vs/v1)®/? at the left-hand endpoint. So unlike
the independent row case, the limiting distribution of the ratio of the smallest to the largest
eigenvalues can have support bounded away from 0 with non-zero mass at the left-endpoint.

Example 4.7. Consider the separable case, i.e. hy; = Orc;, | > 0, where (¢;), (0%) are real sequences
such that the conditions on (hg;) in Theorem 3.1 hold. In this case,

o
M =" c} (6:6;)i5>0-
1=0
Note that r = 1 with the only non-negative eigenvalue v; = > 7%, c? Y22, 02. In this case, the
limit point process in Corollary 4.1 is a Poisson process on (0,00) with mean measure of (y,0)
given by (v1 /y)o‘/ 2y > 0. This means that the point process of the normalized eigenvalues
(a,:}?)\(-))‘: » has the same asymptotic behavior as the point process of the normalized points

(anp Zit)i=1,...ni=1,..p-

5. PROOF OoF THEOREM 3.1

In what follows, we will use the matrix norms ||A|2 and [|Al/~ for any p X p matrix A =
(Ajj), i.e. ||A|l2 is the square root of the largest eigenvalue of the matrix AA" and | A/
max;=1,..p > |Aij|. We will frequently make use of the bound [|Allz < || Al|cc-

We break the proof of Theorem 3.1 into four steps via a series of lemmas.

Step 1: Approximation of X, X! by x{m (X%m))’ . First, we truncate the infinite series X;; in
(1.1) and show that it suffices to deal with the finite moving averages

oo m
™ = Z Z hiZi g1, m=>1.
1=0 k=0
and the corresponding matrices X%m) = (Xi(tm))i:l,...,p,t:l,...,n-

Lemma 5.1. Assume the conditions of Theorem 3.1. If a € (0,1] and E|Z| = oo or if a € [1,2)
and EZ =0, then

lim limsup P(a,,2]| X, X}, — X{™(X{™Y |y >€) =0, €>0.

m—=00 n—oo
If o € (2,4) and EZ = 0, then
lim limsup P(a,,2]|[X,X], — EX,X}] — [(X{)(X™) — BEX™(XIM) ]|z >e) =0, ¢>0.

n
m—=00 n—oco
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Proof. (1) The case a € (0,2). Observe that

o0

(XnX%—X%m)(Xnm))’)ij = ) Z hkl,zlhkz,lzzz —kr bl ka1 -

l1,l0=0 k1Vka>m

Since || A2 < [|A|loo we have for a € (0,2),

a}?HXnX’ - X (X(m))’\h

< maX Z‘ Z Pgoy 1 ok, l2zzl kb=l Zj—kat—l
J 1 11,l2=0k1Vka>m
n
- 2
< ag, max Z’Z Z hklhk—s-j—i,lzz‘—k,tfl’
] 1 1=0 kVv(k+j—i)>m t=1
+a, max Z‘ Z Z Py 1y Py, lgzszl,t 1=k t—ls
7=1 11,la=0,l1#l2 k1 Vka>m
n
+a7§p max Z‘Z > hkl,lhkz,lZZ'—kl,t—lZy‘—kg,t—l’
] 1 =0 k1Vke>m,i—k1#j— t=1
(5.1) = I,§1>+I,<E>+Lg>.

Bounds for P(IV(LI) > ¢). We have

p oo n
I < 1’x ZZ Z |hklhk+j—i,l|ZZ‘2—k,t—l

]:1 =0 k>m,k+j—i>0 t=1
n
- 2
+ag linax E g ) Pkt j—idl Y 27 ki
J=11=0 k<m k+]71>m t=1
< can, Jax E Z |hk‘l|Zka:t I
=0 k=m+1

—|—ca; ZEmax Z ZZW lhkl|z —k,t—l

P m+1 1=0 k=1
= IV 4 (12

13
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Then for € > 0 and a sequence (Z;) of iid copies of Z,

PIM >¢) <

IN

IN

( Z Z |hk,|ZZ,” | > ea? )

=0 k=m+1

( Z Z |hkl|ZZkt il S, 22, a2,) > € >

=0 k=m+1

+pP( Z Z P ZZk:t Hihl S0, 22, (<02} >ea2p)

=0 k=m+1

eSS 3 P(Jhwl S22 >a2,)
t=1

=0 k=m+1

o0 o n
+ped Y E[aﬁﬂhk” ZZEI{|hmzzzlz§@ap}}

=0 k=m+1 t=1

PV 1+ PO

In view of the uniform large deviation result of Theorem A.1 we have

PW < epnP(Z? > aip) i i |hi|*/? < Ci i ||/,

=0 k=m+1 =0 k=m+1

for a constant ¢ which does not depend on m, and the right-hand side converges to zero as m — co.

For Pr(?), we observe that, by the Karamata and uniform convergence theorems for regularly varying

functions,

This is the same bound as for P,

IN

IN

IN

pey. Y [ |hkl|ZZI{|hm|Z$<anp}}

=0 k=m+1 t=1
o0 o0
e) ). E[aﬁza2|hkl|ZQI{\hH\Z%a%p}}
=0 k=m+1
eSS S Plhlz®> )
=0 k=m+1
e} o0
> D Il
=0 k=m+1

) This proves that

lim limsup P(I{M) >¢) =0, £>0.

m—00 n—o0
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For 1.7(112)’ we can proceed in a similar way. Observe that for € > 0,

oo X0

m n
P(Ir(lu) > 6) < pP(CCLEZ? Z ‘hslhkl| Z Zl%,t—l > 6)
s=m+1 [=0 k=1 t=1

IN
i)
M8
NE
NE
~
—
&
5
]
N
\V
SQI\J
N

Y D> Bl np\hslhkl’Zth{\h Il S 72502,

s=m+1 [=0 k=1 =

< mpc Z ZZP(|h$lhkl|Z2>a?Lp)

s=m+1 =0 k=1

c Y ZZ| hahi|*? < c Z Zlhsﬂa/2

s=m+1 [=0 k s=m+1 =0

IN

and the right-hand side converges to zero as m — oo. This completes the proof of

lim limsup P(I{Y >¢) =0, &>0.

m—=00 n—oo
Bounds for P(L(f) > ¢). Consider the index set

S={j=1,....p0 <l #lp <ooiki Vky>m}.
We observe for € > 0 that

P(I? > ¢)

n
n
pP(Z |hk‘1,l1hk2,l2 Z Z’i—kj,t—h Zj—kg,t—lg

IN

2
> 6anp>
S t=1

Z eyt Pk 1o | X
S

IN

pP

. . 2
‘ E :ZZ—klyt—llZ]_k27t_l21{|hk1,l1hk2,l2HZi—kl,t—lle—kg,t—lQ‘>a%p}‘ > ganp)
t=1

+pP(Z |hk1711hk’2,l2| X
S

E , . 2
‘ Zi—kr -1 ZJ*’“?:t*l?Iﬂhkl,zl Py i1 Zi—ky t—1y Zj— kg t—15]1<a3 5} ‘ > Eanp)
t=1

P® 4+ pPW.

15

We start with the case @ < 1. Then, by the uniform convergence theorem for regularly varying

functions,

=2
&
N

Y P(lhkl,llhkz,leZlZﬂ > aip)
S

(5'2) < cp[in(|Z1Z2| > a?’bp} |:p_1 Z |hk1,l1hk2712|a:| — 07 n— 00,
S
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using that P(|Z1Z2| > z) = 27 “La(x) for a slowly varying function Lg, the fact that

[e.e] o0
2
pil Z 1y Pk 15| = Z Py 1y Pk 1| < (ZZ ’hkl|a> <0
S

0<l1#l2<00 k1 Vka>m =0 k=0
and condition (2.10). On the other hand, by Karamata’s integral theorem, as n — cc.
4 -2
(53) Prg, ) S pan[anp’hkl,llhk27l2||2122| I{‘hkl,llhkg,b||ZIZ2|§a$Lp}]
S
cpnz P(|hk1,l1hk2,l2”ZlZQ‘ > aip) —0.
S

IN

Next we consider the case a = 1 and E|Z| = co. The term P¥ can be bounded by (5.2) as for
a < 1 while the function

Elx=Y 2, 2,|1
La(x) |27 2122|1112, 23] <) ’
P(|Z1Z5] > x)
is slowly varying and converges to infinity (Bingham et al. [4], (1.5.8)). But
Ela' 21 Zo|lg 2, z)<ay + P(1 2120 > @), x>0,

decreases and is regularly varying with index —1. Therefore, using the uniform convergence theorem
for decreasing regularly varying functions, the expression on the right-hand side of (5.3) can be
bounded by

x>0,

cp[anaﬁg|le2|f{|zlzg|§a$w}] {pil Z 1Py 1y hkz,l2|] )
S

The same argument as for aw < 1 applies, expect that we have to use (2.11) instead of (2.10).
Now we turn to the case o € (1,2) and EZ = 0. Again, P{¥ can be bounded in the same way as
for a < 1, observing that condition (2.12) is stronger than (2.10). For P" we have the following
bound. Choose some v € (a,2]. Then, using the Markov and Hélder inequalities,
_ 2l
P?’(L4) < cpang'yE‘ Z |hk1,llhk‘27l2| ‘
S

n
} : 21—kt~ Zj—ka t—l I{|hk1,l1 Pgin | Z1—ky 17 Zj—ko t—15]<a2,}
t=1

v

IN

n
E) E Z1kr -1 Zj—kat—lo A by 1 By iy 121y bty Zi g1y <02}

t=1
)"

n
—2
Cp’yanp7 |hk’1=l1hk27l2’E Zl_klvt_llZj_k?vt_bl{\hk 1Pk ol 121 kg 01y Zj— kg t—151 <025}
1-¢1 252 1 177 2> 2 P
S t=1

—2
CZOCan’y § ’hk1,l1hk2,l2
S

x (Z |hk1,l1hk2,l2
S

IN

v

7nEZ]~ZQI{|hk1,llhk2,12‘ |Z1Z2‘§a%p}

y
—2
+cn7p’yanp’y Z ’hkhllhk?’l? (E‘Z122‘1{|hk1711hk2712| \Z1Z2|>a%p}>
S

_ pln 4 pla2)
In the last step we used E(Z1Z3) = 0. Using Karamata’s theorem and (2.12), we have
P < en™p? Yy i oV P21 2] > afy))
S/
c|P(|Z1Z2| > csz)]%”ﬂp7+1 -0, n—o0.

IN
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Inequality (A.3) in Lemma A.4 and Karamata’s theorem yield, choosing 7 close to «,

41
P < epnagy? Y i i | E1 21 2o Ty, g iy 1) 120201<a3,)
S/
< cnpyz ‘hkl,hhkmb|1_W+ap(|Z1Z2‘ > ang)

S/
< enp™P(| 2,2, > a%p) —0, n—oo.

In the last step we used (2.12).
In the case @« = 1 and EZ = 0 we can follow the lines of the proof for a@ € (1,2) with one
(42)

exception: the use of Karamata’s theorem for bounding P, . Karamata’s theorem tells us that

E|xle1Z2\I{|Z1Zzl>x}
P(|Z1Z5| > =)

L4(.CC) =

is a slowly varying function which converges to infinity as x — oo. In this case, we obtain for v > 1
arbitrarily close to 1 and € > 0 arbitrarily close to zero and large n,

P2 < ceplnp P(|Z122| > aip)(np)ﬁrY < ep(np) 29 5,

n

if we choose y(—1 + 2¢) < —1.
Thus we proved that

lim limsup P(I%) >¢) =0, i=1,2.

m— 00 n—oo

The proof for i = 3 is analogous to 7 = 2 and therefore omitted. The proof of the lemma is complete
in the case a € (0, 2).

(2) The case a € (2,4). We start by observing that (5.1) can be modified for the centered sample
covariance matrices

n n

; _max Z ‘ Z Z hiihitj—ig i(zz?fk,tfl - EZQ)) +IP + I’r(zg)
=1

J=1 " 1=0 kv (k+j—i)>m
= I,(Ll)+I§L>+I§L3>.

0| (XX, — EX,X)) = (XED(XG) — EX (X))

IN

(1)

Here L(Li), i = 2,3, are the same as in (5.1) and we also recycle the notation I
corrected case.
Bounds for P(Iy(ll) > ¢). In this case, again recycling notation,

in the mean

< e max 3 Y vzm(z 2t E2)]
lOk m+1
Clyy X Z )y ZlhszhmllZ 2~ BZ%)
l 0 s=m+1 k=1

= 14 1,92) :
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We will again focus on 1.7(111), the case IT(LIQ) can be treated analogously. Applying Holder’s inequality
of order v > /2, we have for ¢ < p,

(Z Z |hkl“z ikt l_EZ2)D

1=0 k= m+1
o0 o0 _
< Z Z |hkl|‘z it z—EZQ‘ (Z > |hkl|>7
=0 k=m+1 =0 k=m+1
< Z Z |hkl|‘z it J*EZQ)‘
=0 k=m+1

Therefore we have for € > 0,

P(ISI > ¢)

< (c max Z Z |hkl|‘Z(Zi2_k,t_l_EZ2)‘ >8a2}))

7 -P

=0 k=m+1 t=1
p
< Y P(eay; Z Z \hm}Z ikt~ EZ )‘ Ll (22, B2 <0y} > €)
i=1 1=0 k=m+1
oo
= Z P(Ihm\Z(Z?—EZQ)‘Mip)
1=0 k=m+1 t=1

= PV 4 p@
An application of the uniform large deviation results of Theorem A.1 yields

o o0
PP <ed Y [l [P (2% > ).

=0 k=m+1
The right-hand side is uniformly bounded for n and converges to zero as m — oco. Next we apply
Markov’s inequality to P,(Ll):

P < Cpi i

=0 k=m+1

n
_ Y
an5|hkl\ Z(Zg — EZQ)’ I{|hkzl|z (Z2-EZ72)|<a2,} -
t=1

Choose d,, = a2s, for s, — oo arbitrarily slowly. An application of Lemma A.2 yields, assuming
that hg; # 0,

n

o ol

anplhual Y (2 —EZQ)‘ Da,<| 50 (22-B22) <l a2,}
t=1

< h|*? npP(Z* > a2,)] < c|hw|*?.
On the other hand, choosing ~ close to a/2 and a small £ > 0 such that y(1 — &) < /2.

rhmZ Z¢ — BZ%) ‘ Ly (22-E22)<dn)

- ¥(1-€)
e U I D Ez2)|

IN

cp 53 (an/anp)? |hya?

pl_QV/O‘Hs%ﬁ]hkl "y )

IN N
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Here we used the uniform integrability of (a,? Y} ,(Z2 — EZ?)) of order v(1 — £) < /2 and the
Potter bounds (see Bingham et al. [4]) for any small § > 0. Combining the above bounds, we have

o0 o0
P < CZ Z [’hkl’1—7+a/2+ ’hkl’pkzy/awszg} '
1=0 k=m+1

If we choose v close to «/2, § sufficiently small and s,, — oo slowly, the right-hand side converges
to zero by first letting n — oo and then m — oo.

Bounds for P(IV(?) > ¢). We focus on this case; the proof for IT(L?’) is again analogous. One can follow
the lines of the proof in the case a € (1,2), choosing v € («,4) close to a. The same argument
goes through for P7(142), using (2.13). For P,g41), one needs to use the moment inequality (A.4) from
Lemma A.4, Karamata’s theorem and (2.13). Then one gets

41 2 —2
P < epin/ anp’yz‘hk’lyllh’kzh|E|le2|’y]—{|hk1’llhk2’l2|\Z1Z2|§a%p}
S
< e Ny by 1| P(1 202 > al)
S
< e pTP(| 212, > aflp) -0, n—oo.

This concludes the proof in the case a € (2,4). O
Step 2: Approximation of X%m) (X%m))’ by an iid sum with deterministic matrix weights.
Let M (™) be the upper left (m 4 1) x (m + 1) corner matrix of M defined in (2.1), i.e.

M = (Mij)ij<m -
Denote the ordered eigenvalues of M (™ by

o™ >zl

and let r,,, be the rank of M (™). Since the trace of M is finite as a compact operator on 2 a standard
(m)

argument from matrix operator theory shows for each i, v;

[10].
Next define the p x p-matrices (Ms(m)), s € Z, via

— v; as m — o0; see Gohberg et al.

m) | Mi—sj-s, 1,j=35,...,m+s,
(5-4) M5 = { 0, otherwise
For s> 1, M s(m) has rank 7, and has the same eigenvalues vgm), . ,vﬁ,ﬁzl as MM,

Lemma 5.2. Assume the conditions of Theorem 3.1.
(1) For a € (0,2), we have

-2
anp

p
i=1

(2) For a € (2,4), we have

p
(X XY = EXTY X)) = Y (D~ ED)M™

n n
i=1

-2
Ay
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Proof. (1) The case « € (0,2). The (¢, j)th element of x{m (X,(im))’ can be decomposed as follows:

n n m oo m oo
ZXZ-(ZH)X](?) = Y 33D hki s Zic ka1 Zi kot
t=1

t=1 k1=011=0 ko=012=0

n m (0.9}
2
= > D> heihy ik ZEga

t=1 k=0 [=0

n
+§ E E i Py Ziy -1 Z eyt

t=1 0<k1,k2<m 0<l1 #l2<00

n [e'e)
+Z Z Zhkl,lhkleifkl,tlejfkg,tfl

t=1 i—ky£j—kg 1=0
_ 7 (2) (3)
= IZ-]- + Iij + Iij .
Thus X%m)(X%m))' can be decomposed into the sum of 3 quadratic matrices:

Xm)(xm)y — (U 4 1) 4 1)

We start by proving that
(5.5) A, = a2 I - ZDM I, Bo.

We observe that

whe < w20 = 3 D, +ad] 30 Dl

Anp
i=—m i=—m
(5.6) = pp At + 0 A
We have
(5.7) a;ﬁAng Sa; ,_max D Z HM(m)H Zo.
i=—m

This follows because HM ||2 < oo for each i and since a;,2D; A §q/2 for an a/2-stable random

variable §, /o as n — 00, hence a,; ’D; 2o by virtue of p, — co.
Observe that the (i,7)th element of iV s DiMi(m) is

i=—m
m oo m 0o l n
D> hwahy- z+kl(z Skt — Di- k) = ZZ klhj—i+k,l(ZZi2—k,t—l_ > ZiQ—k,t)
k=0 1=0 k=0 =1 t=n—i+1
— suy (12)
= j Izj .

For a;ﬁAnl 20 it suffices to show that

a2l 1. B0, i=1,2.
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We will show the limit relation for ¢ = 1; the case ¢ = 2 is analogous. Interpreting hg; = 0 for
k > m and k < 0 in the sequel, we observe that

p m l
-2 11 -2 2
aanI?(z )H2 < App ilIilaX Z § : E :’hklhj—i+k7l| § :Zifk,tfl
P =0 1=0 t=1
m m oo l
2 2
< anp Z111121}( Z Z E ‘hklhk’,” E Zi—k,t—l
7P 120 k=0 1=0 =1
o m l
5.8 < ca? Wl S™ 72
( : ) S Cay, iirllaxp ’ kl’ i—k,t—1-
" =0 k=0 t=1

For € > 0 and a sequence (Z;) of iid copies of Z, we have

p 0o m l
P21l > ) < Do P(e YD Il 3o 22 > 2ad,)
=1 =0 k=0 t=1
m 00 l
(5.9) < pZP(cZMMZZtZ >6aip/m> .
k=0 =0 t=1

We focus on the summand with £ = 0; the other cases are similar. We have for any ¢ > 0, by a
standard result (see Mikosch and Samorodnitsky [12]),

oo l 00 00
pP(cZ|hOZ\ZZf>aip> = pP(c ZZEZ|h0l’>a121p>
=0 t=0 t=0 =t
9 9 > > /2
~ cpP(Z*> anp)z (Z|h0l|>
t=0 =t
. 0o 0o /2
< ¢n” Z(Z\holo -0, n— oo,
t=0 1=t

where in the last step we used condition (2.8). This proves relation (5.5).
It remains to show that

a2 I 50, n—oo, i=2,3.

However, the proof is almost identical to the proof of the corresponding result for I,(f), 1=23,1in
Lemma 5.1. To indicate this fact consider the case i = 2. Note that for € > 0,

P
P([IP]2 > ) <pY_ P(U; > zal))
i=1
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where

p

U, = Z Z Z ’h’kl,ll hkz,lz‘

J=10<l1#l2<00 0<k1,ka<m

n
E Zi— by t—11 Lk t—ls
=1

P

Z Z Z ’hk17llhk2,lz|

J=1 0<l1#l2<oco 0<ky ko <m

IN

(’ § :Zi—kl’t—llZj—k%t—blﬂhkl,zl g g | 1 Zimtoy b=ty Zj—kg t—15|>00}
t=1

).

Now we can follows the lines of the proof of Lemma 5.1; note that the corresponding results for
I(’)

n, 1 =1,2, were proved for fixed m and as n — oo.
The proof of the lemma is now complete for a € (0, 2).

n
+‘ E : Zi*klyt*llZj*kZ;t*l2I{|hk1,ll Prg o 11 Zim by t—1y Zj— kg t—151<a2,}
t=1

(2) The case a € (2,4). Using the fact that EZ;Z5 = 0, the (7, j)th element of X,(lm)(Xf(lm))’ -
EX&"‘)(XW)’ can be decomposed as follows:

m m m m 2 3
Z(Xi(t )Xg('t )~ EXi(t )X]('t )) = Z Z Z hk,lhj—ﬂ—k,l (Ziz—k,t—l - EZ2) + Ii(j) + Ii(j)
t=1 t=1 k=0 1=0

_ 7 (2) (3)
= Iy L+ Ly

Thus X%m)(X%m))’ — EX{™ (X%m))’ can be decomposed into the sum of 3 quadratic matrices:
X (m) (x(m)y = () 4 1) 4 1)

where 17(12), 1{¥) are the same as in the proof of part (1).

One can show for £ > 0 that P(HIT(Li)Hg >¢e) —0,7=1,2, as n — oo, following the lines of the
corresponding results in the proof of Lemma 5.1. It remains to show that

v - Ep:(Di - ED)MZ.(m)H £o.

(5.10) a,:;ﬁn = a;ﬁ ,
i=1

We may essentially follow the proof of (5.5), taking into account the centering of the quantities
involved. To start with,

V4
0,28, = a2V~ S (Di — ED)M™||, + 0,(1), n o0,

1=—m

by an argument similar to (5.6) and (5.7), observing that a,%(D; — ED) A §a/2 for an a/2-stable

random variable which is totally skewed to the right, hence a;ﬁ(Dl — ED) L 0asn— .
Next, observe that

V4
T(l) o Z (DZ _ ED)Ml(m) — 71(111) _ 77(112) ,

n
i=—m
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where the (7, j)th element of the right-hand side is given by

oo

> Z il —itk, ( Z(Zf_k,t_z ~ BZ%) = (Djy, — ED))

k=01
m 0o l n
= D> D hwhjirk ( N ZP i —EZ)— > (Z7 - EZ2)>
k=0 1=0 t=1 t=n—I+1
— Jan _ 712
= Z] — Iij .
Thus it suffices to show that
(5.11) a2l I 5o, i=1,2, n—oo.

Again, we will focus on the case i = 1. Similar arguments as for (5.8) and (5.9) yield

Pl < o maxzzzwm m\z 2y B2
j=1 k=0 1=0
o m
< ey, X,,ZZ!hm!(Z 2 e - B2%),
77l 0

and for € > 0,

P(az2)1 2 > )

IN

Z (c Z|hkl|‘z 72}~ BZ%)| > =a, /m)
D ZP(C Z |t Z |Z2 — EZ?%| > ea?lp/m> :
k=0 1=0 =0

We focus on the summand with k£ = 0; the other cases are analogous. We have for any ¢ > 0, by a
standard result (see Mikosch and Samorodnitsky [12]),

9] l
P(cZ|hOZ|Z|ZE—EZQ\ >a§p) _ pP( Z]ZQ EZZ|Z\h0l| >anp)
=0 t=0

IN

t=0
~ ¢pP(Z Z(Z]hgﬂ)a
t=0 =t

o0

< cn_li <Z|h01|)a/2 =0, n—oo.
t—

0 i=t
In the last step we used condition (2.8). Thus we proved (5.11). This concludes the proof of the
lemma for o € (2,4). O

Step 3: Approximation of ) ?_; DiMi(m) by a block diagonal matrix.
The case « € (0,2). From (2.4) recall the definition of the order statistics
D(p) = DLP < -0 < D(l) = DL1 a.s.

of the iid sequence Dq,..., D, defined in (1.4). Here we assume without loss of generality that
there are no ties in the sample. Otherwise, if two or more of the D;’s are equal, randomize the
corresponding L;’s over the respective indices.

We choose an integer sequence k = &, — oo such that k:% = o(p) as n — oo and define the event

(5.12) Ap={|Li—Lj|>m+1,i,j=1,...,k,i#j}.
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Since the D;’s are iid, L1,..., Ly have a uniform distribution on the set of distinct k-tuples from
(1,...,p) and

pm(p—2)...(p—k+1) < k*m

(5.13) Pldn) < k=12 = kD) Spo1

0, n—oo.

On the event A,,, the matrix Zle Dy, M é:n) is block diagonal and has positive eigenvalues D(i)vj(.m),
i=1,...,k j=1,...,rn,.
In the next step of the proof we approximate > -, DiMi(m) by the matrix Zle Dy, M gn) which

is block diagonal with high probability.

Lemma 5.3. Assume a € (0,2) and that the conditions of Theorem 3.1 are satisfied. Consider an
integer sequence (kp) such that k, — oo and k. = o(p) as n — co. Then

-2
anp

p k
m m P
‘ZDiMi( )—ZDLiMéi )H2 L0, nooo.
i=1 i=1
Proof. We have

P k P
-2 (m) (m)) _ -2 (m)
Ui (X,DzMzm - DLiML:n> =a,, > DM,
i=1 i=1 i=k+1

and therefore it suffices to show that the right-hand side converges to zero in probability. Then for
6 >0,

S Dt > 0) < Plea Y Dy >o).
i=k+1 i=k+1

(5.14) P(agg

We will show that the right-hand side converges to zero as n — oco.
We conclude from Lemma A.3 that

p o]
d
E Ea;gDi — E é‘F;z/a, n— oo,
i=1 i=1

where (T';) is an increasing enumeration of the points of a homogeneous Poisson process on (0, 00).
A continuous mapping argument (Resnick [16], Theorem 7.1) shows that for every v > 0,

p p 00 o0
_92 d, -2/ -2/
i (2 Dillazzp,oy 2 D) 5 (0T Loy 3 T)
i=1 =1 i=1 i=1

provided

N -2 _
(5.15) limlimsupp a,, EDIfy 2peq =0,
and hence

P o0
-2 d —2/Oé
Anp Z Di[{aﬁﬁDiév} - Z L; I{F[2/a§~/} ’
i=1 i=1

But we also have

p p
-2 _ 2 .
Onp Z D(i) = lpyp Z DZI{aﬁﬁDma;SD(k)} ’
it i=1
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and a, 2Dy L 0asn — oo. For v > 0, we write B, = {a,2Dy) < ~v}. Then P(BS) — 0 as
n — oo and

P p
P(ca,;p2 Z Dy > 5) < P(Bn N{c a;p2 ZDZJ 0iZDi<) > 5}) +o(1)
i=k+1 i=1

IN

p
P(ca,;g S Dilj,zp oy > 5) +o(1)
i=1

[o.¢]

— P(CZF;2/QI{F72/Q<7}>5>, n — 0o,
i=1 LT

— 0, ~v40.

Therefore the right-hand side in (5.14) converges to zero if (5.15) holds.
Thus it remains to show (5.15). By Karamata’s theorem, as n — oo,

panp EDIip<eaz )y < npay, pz? Iiz2<az gy ~ ~Enp P(Z% > anpé) ~ glma/2,
and the right-hand side converges to zero as £ | 0. Then (5.15) follows and the proof of the lemma

is finished. O
The case «a € (2,4). Recall that the order statistics of D; = |D; — ED|,i=1,...,p, are denoted
by

(5.16) ﬁ(p) = ﬁgp << 5(1) = 5@1 a.s.,

where we again assume without loss of generality that there are no ties in the sample.
We choose an integer sequence k = k;,, — oo such that kQ = o(p) as n — oo and define the event

(5.17) Ay ={t; =t >m+1,i,5 = Lkyi#E ).
As for A, we have

. k>m
(5.18) P(A%) < _1—>0 , M —00.

On the event A,,, the matrix Y (Dy,— ED)M e(im) is block diagonal and has the non-zero eigenvalues
(Dg, = EDY\™, i=1,... .k, j=1,....7m.

Lemma 5.4. Assume « € (2,4) and that the conditions of Theorem 3.1 are satisfied. Consider an
integer sequence (kp) such that k, — 0o and k2 =o(p) asn — oo. Then

k
Z (D; - ED)M™ ~ 3 (D, —ED)MZ(T”)H 20, nooo.
i 2
=1
Proof. As a first step in the proof we show the following relation for every § > 0,

(5.19) lim lim SupP( Upp

0 n—co

‘ Zp;(Di N ED)I{aﬁngi—EDgy}Mi(m)H2 > 5) =0.

We observe that we can divide the index set ¢ = 1, ..., p of the involved sums into disjoint subsets
L={1lm+22m+3,..}n{l,....,p}, L ={2,m+3,2m +4,...} n{l,...,p}, etc. For v > 0,
due to the construction of the matrices Mi(m) (see (5.4)), the sums

T; = ay, (D; — ED) {aﬁg|Di—ED|§’Y}Mi(m) ;o J=1L...,m+1,
zEI
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constitute block diagonal matrices with norm
-2
IT5ll2 = app max|D; — EDI, 22, ppj<qy v1-
J

An application of Markov’s inequality yields

p
Pan]| So0i = BDY iz, oy M, > 9)
=1
m+1
< Y (Il > 6/(m+1))
j=1
m+1
4 2
< cay, ]; EIZ%E};( |D; — ED| Liar21D,—EDI<y}
p
—4 2
< ca,; Y E|D;— ED| to2D,~ED|<y}
=1
(5.20) = cpap, E|D — EDI*Ii,2 1 ppicsy -

An application of (A.2) yields for d,, = a2s,, any sequence (s,) such that s, — oo,

pa;§E|D — ED|2I{dn§|D—ED|§a%p'y} < cnp’y2P(Z2 > a%pfy) ~ 07(476“)/2, n— 00,
and the right-hand side converges to zero as v — 0. On the other hand, for ¢ > 0 arbitrarily small
and s, — oo sufficiently slowly,

1-4/a+e

pa;;lE|D - ED|2I{§‘D_ED|§dn} < psi(an/anp)4 <csip -0, n—oo.

Thus we proved that (5.20) converges to zero by first letting n — oo and then v — 0. This proves
(5.19).

In view of (5.19), the lemma is proved if we can show that for every 6 > 0 and ~y € (0,70(¢)) for
a sufficiently small (),

P k

S0~ ED)M L, ppjsaas,y — > (e~ DM > 5) =0,
=1 i=1

(5.21) lim P(a,;g

n—o0

If

k

(D — ED)Mi(m)IﬂDﬁEDMa%p} = (D, — ED)I{\DZ;EDMa%p}Me(Zn )
=1

M*@

0 #

=

Il
I I
==

(De, — ED)MX”I{|D@,.—ED|>W%F} ;
1

7
then 15(k+1) =|Dy,,, — ED| > ’ya%p and therefore
No(y) =#{i <p:|Di — ED| > va2,} > k.

However, for fixed v > 0, in view of Theorem A.1, as n — oo,

P(No(y) > k) < kT'ENu(y) =k 'pP(|D - ED| > va},) ~ k™ 'y~ np P(Z* > a;,,) — 0.
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Thus we have proved that

- m)
Tim. P( Z (Di = EDYM™ I p,~ 5Dj>a2,
k
~> (Dy, - ED)ME(Zn)I{\Dgi—EDb'ya%p} . 5) =
=1

Relation (5.21) is proved if we can show that for § > 0,

(5.22) lim P(agg

n—00

k
| Y (De, ~ ED)Lyp,, —gi<a M|, > 6) =0
i=1

as v | 0. On the event A, defined in (5.17), El 1(Dy, _ED)I{\D[—ED\SW%I,}MZ(:”) is block diagonal
and therefore

k
|| 2o (Dr = ED)p, — iy ML |, = 4 o™ max Dy, — ED|Iyp, —ppicaa,y < 17
i=1 ok

We also observe that P(AS) — 0; see (5.18). Then (5.22) is immediate and the lemma is proved. [

Step 4: Final argument. The case a € (0,2). On A,, defined in (5.12), the matrix 25:1 DLngL)

is block diagonal and has the non-negative eigenvalues DLiUJ(.m) = D(Z-)vj(-m), i=1,...,k, j =
1,...,7m. The corresponding ordered values of them are denoted by 587)1) > > 5m). Combining

Lemmas 5.1-5.3 with Weyl’s inequality for the eigenvalues of Hermitian matrices (see Bhatia [3])
and recalling that P(A%) — 0 as n — oo, we have

_ slm) _
%gnoolzrzrl_)sipP( npmaX’)\() (5() ‘ )—O, €>0.
Finally, we observe that
-2 (m) _
O TDAX ‘5(1.) - 5@)} <a,, ma;cD max ‘v - vi} =op(1),
since am? max;<p D; i) Fl_a/ 2 and vgm) — v; uniformly in ¢ because both sequences are monotone.

This finishes the proof in the case a € (0, 2).

The case a € (2,4). On A, defined in (5.17), the matrix Zle(Dgi - ED)M(lm) is block diagonal
and has the non-negative eigenvalues (Dy, — ED)vj(m), i=1,...,k,j=1,...,rm. The correspond-
ing ordered values are denoted by 5((7')1) > > 5~((;;). Combining Lemmas 5.1-5.4 with Weyl’s
inequality and recalling that P(A¢) — 0, we have

lim hmsupP< pmaX’)\(l)—(S(())‘ >:O, e>0.

m—00 n—o0
As before, one observes that

— 5 5 -2 (m) —
a,, s max ‘5(2.) - (5@)} <a,, max |D; — ED| max |0, —vi| = op(1),

This finishes the proof in the case a € (2,4).
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APPENDIX A

A.1. Large deviation results. Let (Z;) be iid copies of Z whose distribution satisfies (1.2) for
some o > 0. If F|Z| < oo also assume EZ = 0. Write
Sn:Z1+"'+Zn7 TLZL
and consider a sequence (a,) such that P(|Z| > a,) ~ n~L.
The following theorem can be found in Nagaev [13] and Cline and Hsing [5] for & > 2 and o < 2,
respectively; see also Denisov et al. [8].

Theorem A.1. Under the assumptions on the iid sequence (Z;) given above the following relation
holds
P(S, > )
sup | ————
>, |P(|Z] > x)

where (c,) is any sequence satisfying cn/an — 0o for a <2 and ¢, > /(o — 2)nlogn for a > 2.

A.2. A Karamata theorem for partial sums. Assume that the conditions of the previous
section hold.

— P+ _)07

Lemma A.2. Let (¢,) be the threshold sequences in Theorem A.1 for a given o« > 0, 6 € (0,1),
and let (dy,) be such that dy/cy, — o0 for a > 2 and d,, = ¢, for o < 2. Then we have for v > a,
uniformly for x > d,.

1 1
(A1) Ela 'S Iisueis,|<a) N/ y~*Vdy P(|Sy| > z) N/ y~ /" dy[n P(|Z] > z)].
&Y 5
Moreover, for every € > 0 there exists a constant ¢ > 0 such that
(A.2) Elx Sn| T, <|5, <2} S cnP(|Z] > 2), x>dy.

Proof. The last equivalence relation in (A.1) follows from Theorem A.1. We have for x > d,,

1
Ele ' Sp Iis<p-15,<1y = /6P(!Sn/93|>y1/v)dy

~

Y P(Se/] >yl R
= /57 nP(|Z/z| > y2/7) [nP(|Z/x| > y*7)] dy

1
~ [y np(z] > @) 0o oo,
5
where we used Theorem A.1 and the uniform convergence theorem for regularly varying functions;
see Bingham et al. [4]. Using the same approach, the fact that xyl/ 7 > d, and Karamata’s integral
theorem,

1
Blz ™ Sul Id, jo<|Su/ei<1y = /(d o P(|Sn/z| > y'7) dy
n/x)Y

1
~ / 0 P(1Z) > 2y dy
(dn/x)Y

IN

1
w [ P21 > ) dy
0

4
P(Z| > z).
LnP(7| > 2)
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A.3. A point process convergence result. Assume that the conditions of Section A.1 hold.
Consider a sequence of iid copies (Sflt))t:1727,,, of S,, and the sequence of point processes

p
anzga;,}sﬁf)’ n:1,2,...,
t=1

for an integer sequence p = p, — 0o. We assume that the state space of the point processes Ny, is
Ro = [R U {£o0}]\{0}.
Lemma A.3. Assume « € (0,2) and the conditions of Section A.1 on the iid sequence (Z;) and the

normalizing sequence (an). Then the limit relation N, % N holds in the space of point measures
on Ro_equipped with the vague topology (see [15, 16]) for a Poisson random measure N with state
space Ro and intensity measure po(dr) = alz|~* N (piLysoy + Iz} )dz.

Proof. According to Resnick [15], Proposition 3.21, we need to show that pP(a;[}Sn €) > pa,

where — denotes vague convergence of Radon measures on Rg. Observe that we have Anp /@y — 00
as n — oo. This fact and « € (0,2) allow one to apply Theorem A.1:

P(Sn > xanp) P(Sn < _xanp)

— " s pix ¢ and —p_xz %, x>0.

nP(Z] > any) T nP(|Z| > anp)
On the other hand, n P(|Z| > an,) ~ p~! as n — oco. This proves the lemma. O
é.4. Moment inequalities. Let Y7,...,Y,, n > 1 be independent random variables and define

Sp=Y1+---+Y,, n>1 The following inequalities can be found e.g. in Petrov [14], Theorem
2.10 for p > 2, and on p. 82, 2.6.20, for p < 2.

Lemma A.4. Assume E|Y;|P < oo, i = 1,...,p, for some p > 0. If p <1 orp € [1,2] and
EY;=0,i=1,...,p, then

n
(A.3) B|S, [P <Y E|YiP,
=1
Ifp>2and EY; =0,i=1,...,p, then

(A.4) E|S,P < en?/?71 N T E|YP.
=1
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