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Abstract. We prove limit theorems of an entirely new type for certain long

memory regularly varying stationary infinitely divisible random processes.
These theorems involve multiple phase transitions governed by how long

the memory is. Apart from one regime, our results exhibit limits that are

not among the classical extreme value distributions. Restricted to the one-
dimensional case, the distributions we obtain interpolate, in the appropriate

parameter range, the α-Fréchet distribution and the skewed α-stable distri-

bution. In general, the limit is a new family of stationary and self-similar
random sup-measures with parameters α ∈ (0,∞) and β ∈ (0, 1), with rep-

resentations based on intersections of independent β-stable regenerative sets.

The tail of the limit random sup-measure on each interval with finite positive
length is regularly varying with index −α. The intriguing structure of these

random sup-measures is due to intersections of independent β-stable regenera-
tive sets and the fact that the number of such sets intersecting simultaneously

increases to infinity as β increases to one. The results in this paper extend

substantially previous investigations where only α ∈ (0, 2) and β ∈ (0, 1/2)
have been considered.

1. Introduction

Given a stationary process (Xn)n∈N, we are interested in the asymptotic behavior
of the maximum

Mn := max
i=1,...,n

Xi.

After appropriate normalization, what distributions may arise in the limit? This is
a classical question in probability theory with a very long history. In the case that
(Xn)n∈N is a sequence of independent and identically distributed (i.i.d.) random
variables, all possible limits of the weak convergence in the form of

(1)
Mn − an

bn
⇒ Z

have been known since Fisher and Tippett (1928) and Gnedenko (1943): these
form the family of extreme-value distributions, consisting of Fréchet, Gumbel and
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Weibull types. Furthermore, the functional extremal limit theorem in the form of

(2)

(
Mbntc − an

bn

)
t≥0

⇒ (Z(t))t≥0

in an appropriate topological space has also been known since Dwass (1964) and
Lamperti (1964). The limit process Z, when non-degenerate, is known as the
extremal process.

If a stationary process (Xn)n∈N is not a sequence of i.i.d. random variables, the
extremes can cluster, and this can affect the extremal limit theorems for such pro-
cesses. Research along this line has started since the 60s. A common feature of
many results in the literature on this topic is the important role of the so-called
extremal index θ ∈ (0, 1]. When this index exists, it affects the limit theorems
through the fact that, asymptotically, the limit law of Mn is the same as that of

M̃bθnc, the maximum of bθnc i.i.d. copies of X1, when one uses the same normaliza-
tion in both cases. This reflects the following picture of extremes of such processes:
extreme values of the process occur in finite random clusters, the smaller θ indicates
larger, on average, cluster size. It is also worth noting that for all θ ∈ (0, 1], the
order of the normalization and the limit laws in (1) and (2) are the same as in the
i.i.d. case. Therefore, one can view processes with extremal index θ ∈ (0, 1] as hav-
ing, in the appropriate sense, short memory (the reasons for this terminology can
be found in Samorodnitsky (2016)). Standard references for extreme value theory
on i.i.d. and weakly dependent sequences include Leadbetter et al. (1983); Resnick
(1987); de Haan and Ferreira (2006). Point-process techniques are fundamental and
powerful when investigating such problems.

There are situations that for the limit theorems of the types (1) and (2) to
hold, the normalization needs to be of a different order, and even the limit may be
different, from the short memory case. We refer to the dependence in such exam-
ples as strong or long range dependence. See the recent monograph Samorodnitsky
(2016) for more background and recent developments on long range dependence
in terms of limit theorems (not necessarily extremal ones). The first example of
long range dependence in extreme value theory is for stationary Gaussian pro-
cesses: Mittal and Ylvisaker (1975) showed that when the correlation rn satisfies
limn→∞ rn log n = γ ∈ (0,∞), the limit law of Mn is Gumbel convoluted with a
Gaussian distribution, in contrast to the case of limn→∞ rn log n = 0 where the
Gumbel distribution arises in the limit, due to Berman (1964). However, very few
examples of extremes of stationary non-Gaussian processes with long range depen-
dence have been discovered since then. One of the known examples is important
for us in this paper and we will discuss it below.

A fundamental work is due to O’Brien et al. (1990) who, in the process of iden-
tifying all possible limits of extremes of a sequence of stationary random variables,
pointed out that a more natural and revealing way to investigate extremes is via the
random sup-measures. In this framework, for each n one investigates the random
sup-measure Mn in the form of

Mn(B) := max
k∈nB∩N

Xk, B ⊂ R+,

in an appropriate topological space. Then, a limit theorem for Mn entails at least
the finite-dimensional convergence part in a functional extremal limit theorem as
in (2) when restricted to all B in the form of B = [0, t], t ≥ 0. O’Brien et al.
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(1990) showed that all possible random sup-measures η on [0,∞) arising as limits
starting from a stationary process (Xn)n∈N are, up to affine transforms, stationary
and self-similar, in the sense that

η(·) d
= η(·+ b), b > 0 and η(a·) d

= aHη(·), a > 0

for some H > 0. They also provided examples of such random sup-measures.
However, the investigation of O’Brien et al. (1990) does not directly help in under-
standing extremal limit theorems under long range dependence.

In this paper, we investigate the extremes of a general class of stationary infin-
itely divisible processes whose law is linked to the law of a certain null-recurrent
Markov chain. Two crucial numerical parameters impact the properties of such
infinitely divisible processes: α ∈ (0,∞) and β ∈ (0, 1): the parameter α corre-
sponds to the regular variation index of the tail of the marginal distribution, and
β determines the rate of the recurrence of the underlying Markov chain (the larger
the β, the faster the rate) and, as a result, plays an important role in determining
the memory of the infinitely divisible process. The extremes of symmetric α-stable
processes in this class have been first investigated in Samorodnitsky (2004), who
showed that when β ∈ (0, 1/2), the partial maxima converge weakly to the Fréchet
distribution, although under the normalization bn = n(1−β)/α instead of n1/α used
in the i.i.d. case. (Since infinitely divisible processes we are considering are heavy-
tailed, we take the shift an = 0 in all extremal limit theorems.) The different order
of normalization already indicates long range dependence of the process. Further-
more, it was pointed out in the same paper that when β ∈ (1/2, 1), the dependence
was so strong that the partial maxima were likely not to converge to the Fréchet
distribution, but an alternative limit distribution was not described.

Further studies of the extrema of this class of processes have appeared more
recently, still in the symmetric α-stable case, with β ∈ (0, 1/2) (though in a different
notation). In Owada and Samorodnitsky (2015b), it was shown that the limit in
the functional extremal theorem as in (2) is, up to a multiplicative constant, a
time-changed extremal process, (

Zα(t1−β)
)
t≥0

,

where (Zα(t))t≥0 is the extremal process for a sequence of i.i.d. random variables
with tail index α (the α-Fréchet extremal process). Subsequently, Lacaux and
Samorodnitsky (2016), established a limit theorem in the framework of convergence
of random sup-measures, and, up to a multiplicative constant, the limit random
sup-measure can be represented as

(3) η(·) =

∞∨
j=1

U
(α)
j 1{(

V
(β)
j +R

(β)
j

)
∩·6=∅

},

where (U
(α)
j , V

(β)
j , R

(β)
j )j∈N is a measurable enumeration of the points of a Poisson

point process on R+ × R+ × F(R+) with intensity αu−α−1du(1 − β)v−βdvdPβ .
Here F(R+) is the space of closed subsets of R+ equipped with Fell topology, and
Pβ is the law of a β-stable regenerative set, the closure of the range of a β-stable
subordinator, on F(R+). Then

(η([0, t]))t≥0
d
=
(
Zα(t1−β)

)
t≥0

,
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but the random sup-measure reveals more structure than the time-changed extremal
process.

In this paper we fill the gaps left in the previous studies. First of all, we move
away from the assumption of stability to a more general class of stationary infinitely
divisible processes. This allows us to remove the restriction of α ∈ (0, 2) in our
limit theorems. Much more importantly, we remove the assumption β ∈ (0, 1/2).
This allows us to consider the extrema of processes whose memory is very long.
Our results confirm that the Fréchet limits obtained in Samorodnitsky (2004) and
the subsequent publications disappear when β ∈ (1/2, 1). In fact, entirely new
limits appear. Even the one-dimensional distributions we obtain as marginal limits
have not, to the best of our knowledge, been previously described. The limiting
random sup-measure turns out to be uniquely determined by the random upper-
semi-continuous function

ηα,β(t) :=

∞∑
j=1

U
(α)
j 1{

t∈V (β)
j +R

(β)
j

}, t ≥ 0,

with (U
(α)
j , V

(β)
j , R

(β)
j )j∈N as before. When β ∈ (0, 1/2], this is the same random

sup-measure as the one in (3), as independent β-stable regenerative sets do not
intersect for such a β. For β > 1/2, however, eventual intersections occur almost
surely, and the larger the β becomes, more independent regenerative sets can inter-
sect at the same time. As Section 3 below shows, for every α ∈ (0,∞), (ηα,β)β∈(0,1)

forms a family of random sup-measures corresponding to the full range of depen-
dence: from independence (β ↓ 0) to complete dependence (β ↑ 1). Importantly, if
α ∈ (0, 1), the the marginal distributions, for example those of ηα,β([0, 1]), form a
family of distributions that interpolate between the α-Fréchet distribution (result-
ing when β ∈ (0, 1/2]) and the totally skewed to the right α-stable distribution as
β ↑ 1.

The paper is organized as follows. In Section 2 we present background informa-
tion on random closed sets and random sup-measures. In Section 3 we introduce
and investigate the limiting random sup-measure. The stationary infinitely divis-
ible process with long range dependence whose extremes we study is introduced
in Section 4, and a limit theorem for these extremes in the context of random
sup-measures is proved in Section 5.

2. Random closed sets and sup-measures

We first provide background on random closed sets. Our main reference is
Molchanov (2005). Let F(E) denote the space of all closed subsets of an inter-
val E ⊂ R. In this paper we only work with E = [0, 1] and E = [0,∞). The space
F = F(E) is equipped with the Fell topology generated by

FG := {F ∈ F : F ∩G 6= ∅} for all G ∈ G,

where G = G(E) the collection of all open subsets of E, and

FK := {F ∈ F : F ∩K = ∅} for all K ∈ K,

whre K = K(E) is the collection of all compact subsets of E. This topology is
metrizable, and F(E) is compact under it. If F is equipped with the Borel σ-
algebra B(F) induced by the Fell topology, a random closed set is a measurable
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mapping from a probability space to (F ,B(F)). Given random closed sets (Rn)n∈N
and R, a sufficient condition for weak convergence Rn ⇒ R is

lim
n→∞

P(Rn ∩A 6= ∅) = P(R ∩A = ∅), for all A ∈ A ∩SR,

where A is the collection of all finite unions of open intervals, and SR is the
collection of all continuity sets of R: the collection of relatively compact Borel
sets B such that P(R ∩B 6= ∅) = P(R ∩Bo 6= ∅). See Molchanov (2005), Corollary
1.6.9 (the collection A is called a separating class).

We proceed with background on sup-measures and upper-semi-continuous func-
tions. Our main reference is O’Brien et al. (1990). See also Molchanov and Strokorb
(2016) and Sabourin and Segers (2016) for some recent developments. Let E be as
above, and G = G(E) the collection of open subsets of E. A map m : G → [0,∞] is
a sup-measure, if

m

(⋃
α

Gα

)
= sup

α
m(Gα)

for all arbitrary collections of open sets (Gα)α. Given a sup-measure m, its sup-
derivative, denoted by d∨m : E → [0,∞], is defined as

d∨m(t) := inf
G3t

m(G), t ∈ E.

The sup-derivative of a sup-measure is an upper-semi-continuous function, that
is a function f such that {f < t} is open for all t > 0. Given an [0,∞]-valued
upper-semi-continuous function f , the sup-integral i∨f : G → [0,∞] is defined as

i∨f(G) := sup
t∈G

f(t), G ∈ G,

with i∨f(∅) = 0 by convention. The sup-integral is a sup-measure. Let SM =
SM(E) and USC = USC(E) denote the spaces of all sup-measures on E and all
[0,∞]-valued upper-semi-continuous functions on E, respectively. It turns out that
d∨ is a bijection between SM and USC, and i∨ is its inverse. Every m ∈ SM has a
canonical extension to all subsets of E, given by

m(B) = sup
t∈B

(d∨m)(t), B ⊂ E.

The space SM is equipped with the so-called sup-vague topology. In this topol-
ogy, mn → m if and only if

lim sup
n→∞

mn(K) ≤ m(K) for all K ∈ K

and

lim inf
n→∞

mn(G) ≥ m(G) for all G ∈ G.

This topology is metrizable and the space SM is compact in this topology. The
sup-vague topology on the space USC is then induced by the bijection d∨, so the
convergence of

mn → m in SM and d∨mn → d∨m in USC

are equivalent.
A random sup-measure is a random element in (SM,B(SM)) with B(SM)

the Borel σ-algebra induced by the sup-vague topology. A random upper-semi-
continuous function is defined similarly. We will introduce the limiting random
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sup-measures in our limit theorem through their corresponding random upper-semi-
continuous functions. When proving weak convergence for random sup-measures
we will utilize the following fact: given random sup-measures (ηn)n∈N and η, weak
convergence ηn ⇒ η in S is equivalent to the finite-dimensional convergence

(ηn(I1), . . . , ηn(Im))⇒ (η(I1), . . . , η(Im))

for all m ∈ N and all open and η-continuity intervals I1, . . . , Im (I is η-continuity
if η(I) = η(I) with probability one). See O’Brien et al. (1990), Theorem 3.2.

3. A new family of random sup-measures

Recall that for β ∈ (0, 1), a β-stable regenerative set is the closure of the range of
a strictly β-stable subordinator, viewed as a random closed set in F(R+), and it has
Hausdorff dimension β almost surely; see for example Bertoin (1999b). We need
a result on intersections of independent stable regenerative sets presented below.
A number of similar results can be found in literature, see for example Hawkes
(1977), Fitzsimmons et al. (1985) and Bertoin (1999a). We could not however find
the exact formulation needed, so we included a short proof.

Lemma 1. Consider v1, v2 ∈ R+, v1 6= v2 and β1, β2 ∈ (0, 1). Let R
(β1)
1 and R

(β2)
2

be two independent stable regenerative sets with parameter β1 and β2 respectively.
Then,

(4) P
((
v1 +R

(β1)
1

)
∩
(
v2 +R

(β2)
2

)
6= ∅
)
∈ {0, 1}.

The probability equals one, if and only if β1,2 := β1+β2−1 ∈ (0, 1), and in this case,
the intersection has the law of a shifted β1,2-stable regenerative set, i.e. a random
element in F(R+) with a representation

V +R(β1,2) ,

where R(β1,2) is a β1,2-stable regenerative set, and V > max(v1, v2) is a random

variable independent of R(β1,2).

Proof. We may and will assume that v1 > v2 = 0, and drop the subscript in v1. For
x > 0 and i = 1, 2 let Bx,i be the overshoot of the point x by a strictly βi-stable
subordinator, i = 1, 2; that is,

Bx,i
d
= min

(
R

(βi)
i ∩ [x,∞)

)
− x, x ≥ 0.

Define a sequence of positive random variables A0, A1, . . . by A0 = v, A2n+1 =

B
(2n+1)
A2n,2

, n = 0, 1, 2, . . ., A2n = B
(2n)
A2n−1,1

, n = 1, 2, . . ., where different super-

scripts correspond to overshoots by independent subordinators. Then, by the strong
Markov property, the probability of a nonempty intersection in (4) is simply

(5) P

( ∞∑
n=0

An <∞

)
.

The overshoot Bx,i has the density given by

(6) fx(y) = c(βi)x
βi(x+ y)−1y−βi , y > 0 ,
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where c(βi) = sin(πβi)/π (see e.g. Kyprianou (2006), Exercise 5.8.) This implies

that Bx,i
d
= xB1,i for x > 0. Grouping the terms together, we see that the proba-

bility in (5) is equal to

P

 ∞∑
n=1

n∏
j=1

Cj <∞

 ,

where C1, C2, . . . are i.i.d. random variables with C1
d
= B

(1)
1,1B

(2)
1,2 . An immediate

conclusion is that the

P

( ∞∑
n=0

An <∞

)
=

{
1 if E logC1 < 0,
0 if E logC1 ≥ 0 .

However, by (6), after some elementary manipulations of the integrals, we have

E logC1 = c(β1)

∫ ∞
0

y−β1 log y

1 + y
dy + c(β2)

∫ ∞
0

y−β2 log y

1 + y
dy = ϕ(β1)− ϕ(1− β2)

with

ϕ(β) =

(∫ ∞
0

y−β log y

1 + y
dy

)/(∫ ∞
0

y−β

1 + y
dy

)
.

So if β2 = 1− β1, E logC1 = 0, and it is enough to prove that the function ϕ(β) is
strictly decreasing in β ∈ (0, 1). To see this,

ϕ′(β1) =

(∫
y−β1

1 + y
dy

)−2
[(∫

y−β1 log y

1 + y
dy

)2

−
∫
y−β1(log y)2

1 + y
dy

∫
y−β1

1 + y
dy

]
= −Var

(
logB1,1

)
< 0 .

This proves (4) together with the criterion for the value of 1. Finally, by the strong
Markov property of the stable regenerative sets, if β1 + β2 > 1, then(

v +R
(β1)
1

)
∩R(β2)

2
d
=

∞∑
n=0

An +
(
R

(β1)
1 ∩R(β2)

2

)
,

where on the right hand side, the series is independent of the stable regenerative
sets. Since it has been shown by Hawkes (1977) that

R
(β1)
1 ∩R(β2)

2
d
= R(β1+β2−1) ,

the proof of the lemma is complete. �

We now proceed with defining a new class of random sup-measures, by first
identifying the underlying random upper-semi-continuous function. From now on,
β ∈ (0, 1) and α > 0 are fixed parameters. Consider a Poisson point process on
R+ × R+ ×F(R+) with mean measure

αu−(1+α) du(1− β)v−β dv dPR(β) ,

where PR(β) is the law of the β-stable regenerative set. We let (U
(α)
j , V

(β)
j , R

(β)
j )j∈N

denote a measurable enumeration of the points of the point process, and

R̃
(β)
j := V

(β)
j +R

(β)
j , j ∈ N

denote the random closed sets R
(β)
j shifted by V

(β)
j . These are again random closed

sets.
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Introduce the intersection of such random closed sets with indices from S ⊆ N
by

(7) IS :=
⋂
j∈S

R̃
(β)
j , S 6= ∅ and I∅ := R+.

Let

`β := max

{
` ∈ N : ` <

1

1− β

}
∈ N.

By Lemma 1, we know that

IS

{
6= ∅ a.s. if |S| ≤ `β
= ∅ a.s. if |S| > `β .

Furthermore when |S| ≤ `β , IS is a randomly shifted stable regenerative set with
parameter β|S|, where

β` := `β − (`− 1) ∈ (0, 1) for all ` = 1, . . . , `β .

Let

(8) ηα,β(t) :=

∞∑
j=1

U
(α)
j 1{

t∈R̃(β)
j

}, t ∈ R+.

Since a stable regenerative set does not hit fixed points, for every t, ηα,β(t) = 0
almost surely. Furthermore, on an event of probability 1, every t belongs to at most

`β different R̃
(β)
j , and thus ηα,β(t) is well defined for all t ∈ R+. In order to see that

it is, on an event of probability 1, an upper-semi-continuous function, it is enough
to prove its upper-semi-continuity on [0, T ] for every T ∈ (0,∞). Fixing such T , we

denote by U
(α)
(j,T ) the jth largest value of U

(α)
j for which V

(β)
j ∈ [0, T ], j = 1, 2, . . ..

We write for m = 1, 2, . . .,

ηα,β(t) =

m∑
j=1

U
(α)
(j,T )1

{
t∈R̃(β)

j

} +

∞∑
j=m+1

U
(α)
(j,T )1

{
t∈R̃(β)

j

}
=: ηα,β1,m(t) + ηα,β2,m(t), t ∈ [0, T ].

The random function ηα,β1,m is, for every m, upper-semi-continuous as a finite sum
of upper-semi-continuous functions. Furthermore, on an event of probability 1,

sup
t∈[0,T ]

∣∣ηα,β2,m(t)
∣∣ ≤ m+`β∑

j=m+1

U
(α)
(j,T ) → 0

as m → ∞, whence the upper-semi-continuity of ηα,β . We define the random
sup-measure corresponding to ηα,β by

ηα,β(G) := sup
t∈G

ηα,β(t), G ∈ G, the collection of open subsets of R+.

As usually, one may extend, if necessary, the domain of ηα,β to all subsets of R+.
We emphasize that we use the same notation ηα,β for both the random upper-semi-
continuous function and the random sup-measure without causing too much ambi-
guity, thanks to the homeomorphism between the spaces SM(R+) and USC(R+).
It remains to show the measurability of ηα,β . Recall that the sup-vague topology
of SM ≡ SM(R+) has sub-bases consisting of

{m ∈ SM : m(K) < x} , {m ∈ SM : m(G) > x} ,K ∈ K, G ∈ G, x ∈ R+.
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See for example Vervaat (1997), Section 3. Then, for every x > 0,

{
ηα,β(K) < x

}
=
⋂
S⊂N

∑
j∈S

U
(α)
j < x

 ∩ {IS ∩K 6= ∅}


is clearly measurable for K ∈ K, and so is {ηα,β(G) > x} for G ∈ G. The measur-
ability thus follows.

Proposition 2. The random sup-measure ηα,β is stationary and H-self-similar
with H = (1− β)/α.

Proof. To prove the stationarity of ηα,β as a random sup-measure it is enough to
prove that the random upper-semi-continuous function ηα,β defined in (8) has a
shift-invariant law. Let r > 0 and consider the upper-semi-continuous function
(ηα,β(t+ r))t∈R+

. Note that

ηα,β(t+ r) =

∞∑
j=1

U
(α)
j 1{

t+r∈R̃(β)
j

} =

∞∑
j=1

U
(α)
j 1{

t∈Gr
(
R̃

(β)
j

)}, t ∈ R+,

where Gr is a map from F(R+) to F(R+), defined by

Gr(F ) := F ∩ [r,∞)− r .

However, by Proposition 4.1 (c) in Lacaux and Samorodnitsky (2016), the map

(x, F )→
(
x,Gr(F )

)
on R+×F(R+) leaves the mean measure of the Poisson random measure determined

by (U
(α)
j , R̃

(β)
j )j∈N unaffected. Hence, the law of the random upper-semi-continuous

function
(
ηα,β(t+ r)

)
t∈R+

coincides with that of
(
ηα,β(t)

)
t∈R+

.

Similarly, in order to prove the H-self-similarity of ηα,β as a random sup-measure
it is enough to prove that the random upper-semi-continuous function ηα,β defined
in (8) is H-self-similar. To this end, let a > 0, and note that

ηα,β(at) =

∞∑
j=1

U
(α)
j 1{

at∈R̃(β)
j

} =

∞∑
j=1

U
(α)
j 1{

t∈a−1V
(β)
j +a−1R

(β)
j

}, t ∈ R+.

It follows from Proposition 4.1 (b) in Lacaux and Samorodnitsky (2016) that the
Poisson random measure on R+ × R+ ×F(R+) with points(

U
(α)
j , a−1V

(β)
j , a−1R

(β)
j

)
j∈N

has the same mean measure as the Poisson random measure with points(
a(1−β)/αU

(α)
j , V

(β)
j , R

(β)
j

)
j∈N

.

Therefore, the random upper-semi-continuous function
(
ηα,β(at)

)
t∈R+

has a repre-

sentation a(1−β)/α
∞∑
j=1

U
(α)
j 1{

t∈R̃(β)
j

}

t∈R+

,

and, hence, has the same law as the random upper-semi-continuous function(
a(1−β)/αηα,β(t)

)
t∈R+

. �
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If we restrict the random upper-semi-continuous functions and random measures
above to a compact interval, we can use a particularly convenient measurable enu-
meration of the points of the Poisson process. Suppose, for simplicity, that the
compact interval in question is the unit interval [0, 1]. The Poisson random mea-

sure (U
(α)
j , V

(β)
j , R

(β)
j )j∈N restricted to R+ × [0, 1]× F(R+) can then be viewed as

a Poisson point process (U
(α)
j )j∈N on R+ with mean measure αu−(1+α) du marked

by two independent sequences (V
(β)
j )j∈N and (R

(β)
j )j∈N of i.i.d. random variables.

The sequence (R
(β)
j )j∈N is as before, while (V

(β)
j )j∈N is a sequence of random vari-

ables taking values in [0, 1] with the common law P(V
(β)
j ≤ v) = v1−β , v ∈ [0, 1].

Furthermore, we can enumerate the points of so-obtained Poisson random measure

according to the decreasing value of the first coordinate, and express (U
(α)
j )j∈N as

(Γ
−1/α
j )j∈N with (Γj)j∈N denoting the arrival times of the unit rate Poisson process

on (0,∞). This leads to the following representation

(9)
(
ηα,β(t)

)
t∈[0,1]

d
=

 ∞∑
j=1

Γ
−1/α
j 1{

t∈R̃(β)
j

}

t∈[0,1]

.

To conclude this section we would like to draw the attention of the reader to the
fact that for every fixed α ∈ (0,∞), the family of random sup-measures (ηα,β)β∈(0,1)

interpolates certain familiar random sup-measures. On one hand, as β ↓ 0, the limit

is well known and simple. To see this, notice first that for (U
(α)
j , V

(β)
j , R

(β)
j )j∈N

representing the Poisson random measure on R+×R+×F(R+) with mean measure
αu−(1+α)(1 − β)v−βdvdPR(β) , one can extend the range of parameters to include
β = 0 by setting

PR(0) := δ{0}

as a probability distribution (unit point mass at {0}) on (F(R+),B(F(R+)). This
is natural as R(β) ⇒ {0} in F(R+) as β ↓ 0, which follows, for example, from
Kyprianou (2006), Exercise 5.8 (the “zero-stable subordinator” can be thought of
as a process staying an exponentially distributed amount of time at zero and then
“jumping to infinity”.) It then follows that

ηα,β(·)⇒ ηα,0(·) :=

∞∨
j=1

U
(α)
j 1{

V
(0)
j ∩·6=∅

}

as β ↓ 0.
The random sup-measure ηα,0 above is the independently scattered (a.k.a. com-

pletely random) α-Fréchet max-stable random sup-measure on R+ with Lebesgue
measure as the control measure (see Stoev and Taqqu (2005) and Molchanov and
Strokorb (2016)). Furthermore, (ηα,β([0, t]))t≥0 corresponds to the extremal pro-
cess (Zα(t))t≥0 in (2) for a sequence of i.i.d. random variables with tail index α.
The extremal process Zα also belongs to the class of α-Fréchet max-stable processes
(see e.g. de Haan (1984), Kabluchko (2009)).

In the range β ∈ (0, 1/2], the structure of ηα,β can also be simplified. As there are
no intersections among independent shifted β-stable regenerative sets, the random
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sup-measure on the positive real line becomes

ηα,β(·) =

∞∨
j=1

U
(α)
j 1{

R̃
(β)
j ∩·6=∅

}, β ∈ (0, 1/2].

This random sup-measure was first studied in Lacaux and Samorodnitsky (2016).
This is an α-Fréchet max-stable random sup-measure, belonging to the class of
the so-called Choquet random sup-measures introduced in Molchanov and Strokorb
(2016). It is also known that for β ∈ (0, 1/2], (ηα,β([0, t]))t≥0 has the same distribu-
tion as the time-changed extremal process (Zα(t1−β))t≥0; see Owada and Samorod-
nitsky (2015b) and Lacaux and Samorodnitsky (2016).

On the other hand, as soon as β > 1/2, the random sup-measure ηα,β is no
longer an α-Fréchet random sup-measure, due to the appearance of intersections.

As β ↑ 1, the sets R̃(β) become larger and larger in terms of Hausdorff dimension,

and more and more U
(α)
j s enter the sums defining the random measure due to

intersections of more and more R̃
(β)
j . In the limit, R̃(β) ⇒ [0,∞) in F(R+) as β ↑ 1

(the “one-stable subordinator” is just the straight line). In the limit, therefore,

all U
(α)
j s contribute to the sum determining the random sup-measure, but for the

infinite sum to be finite, restricting ourselves to the case α ∈ (0, 1) is necessary. In
this case we have

ηα,β(·)⇒ ηα,1(·) :=

 ∞∑
j=1

U
(α)
j

1{·∩R+ 6=∅}

as β ↑ 1. In words, the limit is a random sup-measure with complete dependence

that takes the same value
∑∞
j=1 U

(α)
j on every open interval. Note that this random

series follows the totally skewed α-stable distribution.
In particular, for every α ∈ (0, 1), the distributions of random variables

(ηα,β((0, 1)))β∈[0,1] interpolate between the α-Fréchet distribution (β = 0) and the
totally skewed α-stable distribution (β = 1). These distributions, to the best of our
knowledge, have not been described before. Their properties will be the sbject of
future investigations. The tail behaviour of ηα,β((0, 1)) is, however, clear, and it is
described in the following simple result.

Proposition 3. For all α ∈ (0,∞),

xαP
(
ηα,β((0, 1)) > x

)
→ 1

as x→∞.

Proof. Consider the representation (9). Since P(R̃(β) ∩ (0, 1) 6= ∅) = 1, with prob-
ability one

Γ
−1/α
1 ≤ ηα,β((0, 1)) ≤ Γ

−1/α
1 + (`β − 1)Γ

−1/α
2 .

Note that P(Γ
−1/α
1 > x) ∼ x−α as x→∞, and that for δ ∈ (0, α),

P
(

Γ
−1/α
2 > x

)
≤ EΓ

−(α+δ)/α
2

xα+δ
=

Γ(1− δ/α)

xα+δ
, x > 0,

where Γ(x) is the Gamma function. Hence the result. �

As we shall see below, for each α, β the random sup-measure ηα,β arises in the
limit of the extremes of stationary processes: while α indicates the tail behavior,
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β indicates the length of memory. The limiting case β = 0 corresponds to the
short memory case already extensively investigated in the literature, and the case
β ∈ (0, 1) corresponds to the long range dependence regime. The larger the β is,
the longer the memory becomes.

4. A family of stationary infinitely divisible processes

We consider a discrete-time stationary symmetric infinitely divisible process
whose function space Lévy measure is based on an underlying null-recurrent Markov
chain. Similar models have been investigated in the symmetric α-stable (SαS)
case in Resnick et al. (2000), Samorodnitsky (2004) Owada and Samorodnitsky
(2015a,b), Owada (2016) and Lacaux and Samorodnitsky (2016), which can be
consulted for various background facts stated below. We first describe the Markov
chain. Consider an irreducible aperiodic null-recurrent Markov chain (Yn)n∈N0

on
Z with N0 = {0}∪N. Fix a state i0, and let (πi)i∈Z be the unique invariant measure
on Z such that πi0 = 1. Consider the space (E, E) = (ZN0 ,B(ZN0)). We denote
each element of E by x ≡ (x0, x1, . . . ). Let Pi denote the probability measure on
(E, E) determined by the Markov chain starting at Y0 = i, and introduce an infinite
σ-finite measure on (E, E) defined by

µ(B) :=
∑
i∈Z

πiPi(B), B ∈ E .

Consider
A0 := {x ∈ E : x0 = i0},

and the first entrance time of A0

ϕA0
(x) := inf{n ∈ N : xn = i0}, x ∈ E.

The key assumption is, for some β ∈ (0, 1),
∑n
k=1 Pi0(ϕA0

≥ k) ∈ RV1−β , which is
equivalent to Pi0(ϕA0

≥ k) ∈ RV−β . Here and in the sequel, RV−α stands for the
family of functions on N0 that are regularly varying at infinity with index −α. This
assumption can also be expressed in terms of the so-called wandering rate sequence
defined by

wn := µ

(
n−1⋃
k=0

{x ∈ E : xk = i0}

)
, n ∈ N.

Then

(10) wn ∼ µ(ϕA0
≤ n) ∼

n∑
k=1

Pi0(ϕA0
≥ k),

and the key assumption means that wn ∈ RV1−β . If T denotes the shift operator
T (x0, x1, . . . ) = (x1, x2, . . . ), then µ is T -invariant: µ(·) = µ(T−1·) on (E, E).
Furthermore, T is conservative and ergodic with respect to µ on (E, E).

Next, we shall consider non-negative functions from L∞(µ) supported by A0.
Fix α > 0. For a fixed f ∈ L∞(µ), write

(11) bn :=

(∫
max

k=0,...,n

(
f ◦ T k(x)

)α
µ(dx)

)1/α

, n ∈ N.

The sequence (bn) satisfies

(12) lim
n→∞

bαn
wn

= ‖f‖∞.
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Given a Markov chain as above and f ∈ L∞(µ) supported by A0, we define a
stationary symmetric infinitely divisible process as a stochastic integral

(13) Xn :=

∫
E

fn(x)M(dx) with fn := f ◦ Tn, n ∈ N0,

where M is a homogeneous symmetric infinitely divisible random measure on (E, E)
with control measure µ and a local symmetric Lévy measure ρ satisfying

(14) ρ
(
(z,∞)

)
= az−α for z ≥ z0 > 0.

We refer the reader to Chapter 3 in Samorodnitsky (2016) for more details on
integrals with respect to infinitely divisible random measures and, in particular, for
the fact that the stochastic process in (13) is a well defined stationary infinitely
divisible process. In particular, this process satisfies

P(X0 > x) ∼ a‖f‖αα x−α

as x → ∞; see Rosiński and Samorodnitsky (1993). We will use the value of α
defined by (14) in (11). Below we will work with a more explicit and helpful series
representation, (16) of the processes of interest.

We would like to draw the attention of the reader to the fact that we are assuming
in (14) that the tail of the local Lévy measure has, after a certain point, exact power-
law behavior. This is done purely for clarity of the presentation. There is no doubt
whatsoever that limiting results similar to the one we prove in the next section
hold under a much more general assumption of the regular variation of the tail of
ρ. However, the analysis in this case will involve additional layers of approximation
that might obscure the nature of the new limiting process we will obtain (note,
however, that the assumption (14) already covers the SαS case when α ∈ (0, 2).)
In a similar vein, for the sake of clarity, we will assume in the next section that f
is simply the indicator function of the set A0.

Other types of limit theorems for this and related class of processes have been
investigated for the partial sums (by Owada and Samorodnitsky (2015a); Jung et al.
(2016)) and for the sample covariance functions (by Resnick et al. (2000); Owada
(2016)). In all cases non-standard normalizations, or even new limit processes,
show up in the limit theorems, indicating long range dependence in the model.
Properties of stationary infinitely divisble processes have intrinsic connections to
infinite ergodic theory (see Rosiński (1995); Samorodnitsky (2005); Kabluchko and
Stoev (2016)), and the family of processes we are considering are said to be driven
by a null-recurrent flow. The mixing properties of such processes (in the SαS case
with α ∈ (0, 2)) were investigated in Rosiński and Samorodnitsky (1996).

5. A limit theorem for stationary infinitely divisible processes

Consider the stationary infinitely divisible process introduced in (13). For n =
1, 2, . . . we define a random sup-measure by

Mn(B) := max
k∈nB

Xk, B ⊂ [0,∞) .

The main result of this paper is the following theorem.

Theorem 4. Consider the stationary infinitely divisible process (Xn)n∈N0
defined

in the previous section. Let f = 1A0
with A0 = {x ∈ E : x0 = i0}. Under the
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assumption that the wandering rate sequence (wn) in (14) is regularly varying with
index 1− β ∈ (0, 1) and the assumption (10),

1

bn
Mn ⇒ a1/αηα,β

as n→∞ in the space SM(R+) , where a is as in (14).

We start with some preparation. Note that by (12), bαn ∈ RV1−β . By stationarity
it suffices to prove convergence in the space SM([0, 1]). We start by decomposing the
process (Xn)n∈N0

into the sum of two independent stationary symmetric infinitely
divisible processes:

Xn = X(1)
n +X(2)

n , n ∈ N0,

with

X(i)
n :=

∫
E

fn(x)M (i)(dx), n ∈ N0, i = 1, 2,

with fn as in (13), and M (1) and M (2) two independent homogeneous symmetric
infinitely divisible random measures on (E, E), each with control measure µ. The
local Lévy measure for M (1) is the measure ρ restricted to the set {|z| ≥ z0},
while the local Lévy measure for M (2) is the measure ρ restricted to the set {|z| <
z0}. The first observation is that random variables (X

(2)
n )n∈N0

have Lévy measures
supported by a bounded set, hence they have exponentially fast decaying tails; see
for example Sato (1999). Therefore,

1

bn
max

k=0,1,...,n
|X(2)

k | → 0

in probability as n → ∞. Therefore, without loss of generality we may assume
that, in addition to (14), the local Lévy measure ρ is, to start with, supported by
the set {|z| ≥ z0}.

For each n ∈ N, the random vector (X0, . . . , Xn) admits a series representation
that we will now describe. For x > 0 let

G(x) := inf
{
z > 0 : ρ

(
(z,∞)

)
≤ x

}
.

The assumption that ρ is supported by the set {|z| ≥ z0} means that

(15) G(x) =

{
a1/αx−1/α 0 < x < az−α0

0 x ≥ az−α0 .

It follows from Theorem 3.4.3 in Samorodnitsky (2016) that the following represen-
tation in law holds:

(16) (Xk)k=0,...,n
d
=

 ∞∑
j=1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}

k=0,...,n

,

where (Γj)j∈N are as in (9), (εj)j∈N are i.i.d. Rademacher random variables and

(U
(n)
j )j∈N are i.i.d. E-valued random variables with common law µn, determined

by
dµn
dµ

(x) =
1

bαn
1{Tk(x)0=i0 for some k = 0, 1, . . . , n}, x ∈ E.

All three sequences are independent. Here and in the sequel, for x ∈ E ≡ ZN0 we
write T k(x)0 ≡ [T k(x)]0 ∈ Z.
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Our argument consists of coupling the series representation of ηα,β in (9) with
the series representation of the process in (16). It proceeds through a truncation
argument. Introduce for ` = 1, 2, . . .

M`,n(B) := max
k∈nB

∑̀
j=1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}, n ∈ N,

and

ηα,β` (t) :=
∑̀
j=1

Γ
−1/α
j 1{

t∈R̃(β)
j

}, t ∈ [0, 1].

We also let ηα,β` denote the corresponding truncated random sup-measure. The key
steps of the proof of Theorem 4 are Propositions 5 and 6 below.

Proposition 5. Under the assumptions of Theorem 4, for all ` ∈ N,

1

bn
M`,n ⇒ a1/αηα,β`

as n→∞ in the space of SM([0, 1]).

Proposition 6. Under the assumptions of Theorem 4, for all δ > 0,

lim
`→∞

lim sup
n→∞

P

 max
k=0,...,n

1

bn

∣∣∣∣∣∣
∞∑

j=`+1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}
∣∣∣∣∣∣ > δ

 = 0.

We start with several preliminary results needed for the proof of Proposition 5.
First of all we establish convergence of intersections of trajectories of the Markov
chain. Introduce

R̂
(β)
j,n :=

1

n

{
k ∈ {0, . . . , n} : T k(U

(n)
j )0 = i0

}
,

ÎS,n :=
⋂
j∈S

R̂
(β)
j,n , S ⊂ N, S 6= ∅ and Î∅,n :=

1

n
{0, 1, . . . , n} .

Recall the definition of IS in (7).

Lemma 7. Under the notation above, for all ` ∈ N,

(17)
(
ÎS,n

)
S⊂{1,...,`}

⇒ (IS ∩ [0, 1])S⊂{1,...,`}

as n→∞ in F([0, 1])2` .

Proof. Recall that R̃
(β)
j = V

(β)
j +R

(β)
j . We first prove

(18) R̂
(β)
j,n ⇒ R̃

(β)
j ∩ [0, 1], j ∈ N.

This has been shown in Lacaux and Samorodnitsky (2016), although not in the
framework of convergence of in F([0, 1]). We sketch the proof below. We can write

R̂
(β)
j,n =

(
V

(β)
j,n +R

(β)
j,n

)
∩ [0, 1]

with

V
(β)
j,n :=

1

n
min

{
k = 0, . . . , n : T k(U

(n)
j )0 = i0

}
,

R
(β)
j,n :=

1

n

{
k = 0, . . . , n : TnV

(β)
j,n +k(U

(n)
j )0 = i0

}
.
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By the strong Markov property, conditioning on V
(β)
j,n , we have

R
(β)
j,n

d
=

1

n

{
k ∈ {0, . . . , n} : T k(U (n))0 = i0

}
,

where U (n) is an E-valued random variable with law Pi0 , It was shown in Lacaux
and Samorodnitsky (2016), Proposition 4.5 and Remark 4.6 that as n→∞,

R
(β)
j,n ⇒ R

(β)
j ∩ [0, 1]

in F([0, 1]), and it is clear that V
(β)
j,n ⇒ V

(β)
j . Therefore, (18) follows.

Next, we show that for every finite S ⊂ N

(19) ÎS,n ⇒ IS ∩ [0, 1] .

The case S = ∅ is trivial. It suffices to consider, for all ` ∈ N, S = {1, . . . , `}. The
claim will follow once we show for all m ∈ N and all fixed mutually disjoint open
intervals T1, . . . , Tm in [0, 1],

(20) lim
n→∞

P

(
m⋂
i=1

{
ÎS,n ∩ Ti 6= ∅

})
= P

(
m⋂
i=1

{IS ∩ Ti 6= ∅}

)
.

To show this, we apply the continuous mapping theorem. Introduce, for T1, . . . , Tm
fixed as above,

J(F1, . . . , F`) := 1{⋂mi=1{(
⋂`
j=1 Fj)∩Ti 6=∅}} =

m∏
i=1

1{⋂`j=1 Fj∩Ti 6=∅}, Fj ∈ F([0, 1]).

Each indicator on the right-hand side above is measurable, and hence so is J .
Now (20) becomes

(21) lim
n→∞

EJ
(
R̂

(β)
1,n, . . . , R̂

(β)
`,n

)
= EJ

(
R̃

(β)
1 ∩ [0, 1], . . . , R̃

(β)
` ∩ [0, 1]

)
.

Even though the function J is not continuous on F([0, 1])`, we claim that it is

continuous a.s. with respect to the law of
(
R̃

(β)
` ∩ [0, 1]

)
j=1,...,`

. To see this note

that any point (F1, . . . , F`) in F([0, 1])` such that Fj ∩ Ti 6= ∅ for each j = 1, . . . , `
and each i = 1, . . . ,m is a continuity point of J by the definition of the Fell topology.
Furthermore, so is every point (F1, . . . , F`) in F([0, 1])` with the following property:
if Fj ∩ Ti = ∅ for some j = 1, . . . , ` and i = 1, . . . ,m, then the set Fj is separated
from the interval Ti, i.e. there is ε > 0 such that Fj∩[ai−ε, bi+ε] = ∅ if Ti = [ai, bi].
This claim follows from Proposition B.3 in Molchanov (2005). If a closed set does
not hit a bounded open interval, it is automatically separated from the latter as
long as it does not contain any of the endpoints of that interval. Therefore, the
only points (F1, . . . , F`) in F([0, 1])` that are not continuity points of J are those
for which at least one of the sets, say Fj , does not hit one of the open intervals, but
does contain one of its endpoints. Since a stable subordinator does not hit fixed
points, it follows that the function J is continuous a.s. with respect to the law of(
R̃

(β)
` ∩ [0, 1]

)
j=1,...,`

, and the continuous mapping theorem applies. That is, (21)

holds and thus (19) follows. Since proving the joint convergence in (17) is only
notationally different from the above argument, the proof is complete. �
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Next, we show that for each open interval T , outside an event An(T ) to be
defined below, of which the probability tends to zero as n→∞, the following key
identity holds:

(22)

max
k∈nT

∑̀
j=1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

} = max
S⊂{1,...,`}

1{ÎS,n∩T 6=∅}
∑
j∈S

εjG
(
Γj/2b

α
n

)
= max
S⊂{1,...,`}

1{ÎS,n∩T 6=∅}
∑
j∈S

1{εj=1}G
(
Γj/2b

α
n

)
,

with the convention that
∑
j∈∅ = 0.

To establish this, we take a closer look at the simultaneous returns of Markov
chain to i0. We say that the chain indexed by j returns to i0 at time k, if

T k(U
(n)
j )0 = i0. Note that if

k

n
∈ ÎS,n ∩ T =

⋂
j∈S

R̂
(β)
j,n

 ∩ T,
then there might be another j′ ∈ {1, . . . , `} \ S, such that the chain indexed by
j′ returns to i0 at the same time k as well. We need an exact description of
simultaneous returns of multiple chains. For this purpose, introduce

Î∗S,n := ÎS,n ∩

 ⋃
j∈{1,...,`}\S

R̂
(β)
j,n

c

,

the collection of all time points (divided by n) at which all chains indexed by S,
and only these chains, return to i0 simultaneously. We define the event

(23) An(T ) :=
⋃

S⊂{1,...,`}

({
ÎS,n ∩ T 6= ∅

}
∩
{
Î∗S,n ∩ T = ∅

})
.

In words, on the complement of An(T ), if ÎS,n ∩ T 6= ∅ for some non-empty set S,
then at some time point k ∈ nT , exactly those chains indexed by S return to i0.

Lemma 8. For every open interval T , the identity (22) holds on An(T )c, and
limn→∞ P(An(T )) = 0.

Proof. We first prove the first part of the lemma. Noticing that S = ∅ is also
included in the union above, and

Î∗∅,n =

 ⋃
j=1,...,`

R̂
(β)
j,n

c

,

we see that An(T ) includes the event that at every time k at least one of the ` chains
returns to i0. So on An(T )c, the first two terms in (22), which are, clearly, always

equal, are non-negative. Furthermore, when ÎS,n ∩ T 6= ∅ for some non-empty S,

then for S′ := {j ∈ S : εj = 1} ⊂ S, ÎS,n ∩ T 6= ∅ implies ÎS′,n ∩ T 6= ∅, and

therefore restricted to the event An(T )c we have Î∗S′,n ∩ T 6= ∅. It follows that the

second equality in (22) also holds on An(T )c.
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For the second part of the lemma, in view of (23), it suffices to show for all S,

lim
n→∞

P
({
ÎS,n ∩ T 6= ∅

}
∩
{
Î∗S,n ∩ T = ∅

})
= 0.

The case S = ∅ is trivial. So without loss of generality, assume S = {1, . . . , `′} for
some `′ ∈ {1, 2, . . . , `− 1}. Introduce

Kn := nmin
(
ÎS,n ∩ T

)
,

the first time in nT that all chains indexed by S return to i0 simultaneously. Then,{
ÎS,n ∩ T 6= ∅

}
∩
{
Î∗S,n ∩ T = ∅

}
⊂

⋃̀
j=`′+1

{
TKn(U

(n)
j )0 = i0, ÎS,n ∩ T 6= ∅

}
.

The probability of each event in the union on the right hand side is bounded from
above by

P
(
TKn(U

(n)
j )0 = i0

∣∣∣ ÎS,n ∩ T 6= ∅) ≤ max
k=0,...,n

P
(
T k(U

(n)
1 )0 = i0

)
= b−αn

by the i.i.d. assumption on the chains. Since bn →∞, the proof is complete. �

Now we are ready to prove the main result.

Proof of Proposition 5. By Theorem 3.2 in O’Brien et al. (1990) and the fact that
the stable regenerative sets do not hit points, it suffices to show, for all m ∈ N and
all disjoint open intervals Ti = (ti, t

′
i) ⊂ [0, 1], i = 1, . . . ,m,

(24)

(
1

bn
M`,n(Ti)

)
i=1,...,m

⇒
(
a1/αηα,β` (Ti)

)
i=1,...,m

as random vectors in Rm. The expression (15) and the fact that bn → ∞ tell us
that the event Bn := {Γ`/2bαn < az−α0 } has probability going to 1 as n → ∞, and

on Bn we have G(Γj/2b
α
n) = (2a)1/αΓ

−1/α
j bn. That is,

1

bn
M`,n(Ti) = max

k∈nTi

∑̀
j=1

εj(2a)1/αΓ
−1/α
j 1{

Tk(U
(n)
j )0=i0

}.
Therefore, proving (24) is the same as proving that

(25)

max
k∈nTi

∑̀
j=1

εj2
1/αΓ

−1/α
j 1{

Tk(U
(n)
j )0=i0

}

i=1,...,m

⇒
(
ηα,β` (Ti)

)
i=1,...,m

.

The first part of Lemma 8 yields that on An(Ti)
c ∩Bn,

max
k∈nTi

∑̀
j=1

εjΓ
−1/α
j 1{

Tk(U
(n)
j )0=i0

} = max
S⊂{1,...,`}

1{ÎS,n∩Ti 6=∅}
∑
j∈S

1{εj=1}Γ
−1/α
j .

Note that the point process
(
Γ
−1/α
j

)
j∈N,εj=1

is a Poisson point process with mean

measure 2−1αu−(1+α) du, u > 0, and it can be represented in law as the point
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process
(
2−1/αΓ

−1/α
j

)
j∈N. Since by Lemma 8, P(An(Ti)

c ∩Bn)→ 1 as n→∞, the

statement (25) will follow once we prove that max
S⊂{1,...,`}

1{ÎS,n∩Ti 6=∅}
∑
j∈S

Γ
−1/α
j


i=1,...,m

⇒
(
ηα,β` (Ti)

)
i=1,...,m

.

This is, however, an immediate consequence of Lemma 7 and the fact that ηα,β` (Ti)
can be written in the form

ηα,β` (Ti) = max
S⊂{1,...,`}

1{IS∩Ti 6=∅}
∑
j∈S

Γ
−1/α
j , i = 1, . . . ,m .

�

Proof of Proposition 6. For M > 0 let DM
` := {Γ`+1 ≥ M}. It is clear that

lim`→∞ P(DM
` ) = 1. We have

P

 max
k=0,...,n

1

bn

∣∣∣∣∣∣
∞∑

j=`+1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}
∣∣∣∣∣∣ > δ

 ∩DM
`


≤

n∑
k=0

P


∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1{Γj≤2abαnz

−α
0 }1

{
Tk(U

(n)
j )0=i0

}
∣∣∣∣∣∣ > δ

(2a)1/α

 ∩DM
`

 .

Note that on the right hand side above, the summand takes the same value for all
k = 0, 1, . . . , n. Write δ′ := δ/(2a)1/α. We shall show that, for all δ′ > 0, one can
choose M depending on α, β and δ′ only, such that for all `,

lim sup
n→∞

nP


∣∣∣∣∣∣
∞∑

j=`+1

εjΓ
−1/α
j 1{Γj≤2abαnz

−α
0 }1

{
Tk(U

(n)
j )0=i0

}
∣∣∣∣∣∣ > δ′

 ∩DM
`

 = 0.

The desired result then follows. To show the above, first observe that the probability
of interest is bounded from above by

(26) P

 ∞∑
j=1

Γ
−1/α
j 1{M≤Γj≤2abαnz

−α
0 }1

{
Tk(U

(n)
j )0=i0

} > δ′

 .

Observe that the restriction to (0,∞) of the point process with the points(
bnΓ

−1/α
j 1{

Tk(U
(n)
j )0=i0

})
j∈N

represents a Poisson random measure on (0,∞) with intensity µ(A0)αu−(α+1) du,
u > 0, and another representation of the same Poisson random measure is(

µ(A0)1/αΓ
−1/α
j

)
j∈N

.
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By definition of the Markov chain, µ(A0) = 1. Therefore, (26) becomes

(27) P

b−1
n

∞∑
j=1

Γ
−1/α
j 1{M/bαn≤Γj≤2az−α0 } > δ′


≤ P

b−1
n

∞∑
j=jM+1

Γ
−1/α
j 1{Γj≤2az−α0 } > δ′/2


by taking jM := bM1/αδ′/2c, so that b−1

n

∑jM
j=1 Γ

−1/α
j 1{M/bαn≤Γj≤2az−α0 } ≤ δ′/2

with probability one. By Markov inequality, we can further bound (27) by, up to a
multiplicative constant depending on δ′,

b−pn E

 ∞∑
j=jM+1

Γ
−1/α
j 1{Γj≤2az−α0 }

p

.

If we choose

p >
1

1− β
,

then b−pn = o(n−1). Since choosing M and, hence, jM large enough, we can ensure
finiteness of the above expectation, this completes the proof. �

Proof of Theorem 4. As in the proof of Proposition 5, it suffices to show, for all
m ∈ N and all disjoint open intervals Ti = (ti, t

′
i) ⊂ [0, 1], i = 1, . . . ,m,max

k∈nTi

1

bn

∞∑
j=1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}

i=1,...,m

⇒
(
a1/αηα,β(Ti)

)
i=1,...,m

.

We will use Theorem 3.2 in Billingsley (1999). By Proposition 5 and the obvious
fact that (

(ηα,β` (Ti)
)
i=1,...,m

→
(
(ηα,β(Ti)

)
i=1,...,m

a.s. as `→∞, it only remains to check that for any i = 1, . . . ,m,

(28) lim
`→∞

lim sup
n→∞

P

 1

bn

∣∣∣∣∣∣max
k∈nTi

∞∑
j=1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}
− max

k∈nTi

∑̀
j=1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}
∣∣∣∣∣∣ > ε

 = 0

for any ε > 0. However, the above probability dos not exceed

P

 1

bn

∣∣∣∣∣∣max
k∈nTi

∞∑
j=`+1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}
∣∣∣∣∣∣ > ε


≤P

 1

bn
max

k=0,...,n

∣∣∣∣∣∣
∞∑

j=`+1

εjG
(
Γj/2b

α
n

)
1{

Tk(U
(n)
j )0=i0

}
∣∣∣∣∣∣ > ε

 ,

and (28) follows from Proposition 6. �
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