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CLIMBING DOWN GAUSSIAN PEAKS

BY ROBERT J. ADLER1 AND GENNADY SAMORODNITSKY2

Technion—Israel Institute of Technology and Cornell University

How likely is the high level of a continuous Gaussian random field on an
Euclidean space to have a “hole” of a certain dimension and depth? Questions
of this type are difficult, but in this paper we make progress on questions
shedding new light in existence of holes. How likely is the field to be above
a high level on one compact set (e.g., a sphere) and to be below a fraction
of that level on some other compact set, for example, at the center of the
corresponding ball? How likely is the field to be below that fraction of the
level anywhere inside the ball? We work on the level of large deviations.

1. Introduction. Let T be a compact subset of Rd . For a real-valued sample
continuous random field X = (X(t), t ∈ T ) and a level u, the excursion set of X
above the level u is the random set

Au = {
t ∈ T : X(t) > u

}
.(1.1)

Assuming that the entire index set T has no interesting topological features (i.e., T

is homotopic to a ball), what is the structure of the excursion set? This is a generally
difficult and important question, and it constitutes an active research area. See
Adler and Taylor (2007) and Azaïs and Wschebor (2009) for in-depth discussions.
In this paper, we consider the case when the random field X is Gaussian. Even in
this case the problem is still difficult.

In a previous paper, Adler, Moldavskaya and Samorodnitsky (2014) studied a
certain connectedness property of the excursion set Au for high level u. Specif-
ically, given two distinct points in R

d , say, a and b, we studied the asymptotic
behavior, as u → ∞, of the conditional probability that, given X(a) > u and
X(b) > u, there exists a path ξ between a and b such that X(t) > u for every
t ∈ ξ .

In contrast, in this paper our goal is to study the probability that the excursion
set Au has holes of a certain size over which the random field drops a fraction
of the level u. We start with some examples of the types of probabilities we will
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look at. We will use the following notation. For an Euclidean ball, B will denote
by cB its center and by SB = ∂(B) the sphere forming its boundary. Consider the
following probabilities. For 0 < r ≤ 1, denote

�sp(u; r) = P
(
there exists a ball B entirely in T such that X(t) > u

(1.2)
for all t ∈ SB but X(s) < ru for some s ∈ B

)
and

�sp;c(u; r) = P
(
there exists a ball B entirely in T such that X(t) > u

(1.3)
for all t ∈ SB but X(cB) < ru

)
.

Simple arguments involving continuity show that the relevant sets in both (1.2)
and (1.3) are measurable. Therefore, the probabilities �sp(u; r) and �sp;c(u; r) are
well defined. These are the probabilities of events that, for some ball, the boundary
of the ball belongs to the excursion set Au, but the excursion set has a hole some-
where inside the ball in one case, containing the center of the ball in another case,
in which the value of the field drops below ru.

We study the logarithmic behavior of probabilities of this type by using the
large deviation approach. We start with a setup somewhat more general than that
described above. Specifically, let C be a collection of ordered pairs (K1,K2) of
nonempty compact subsets of T . We denote, for 0 < r ≤ 1,

�C(u; r) = P
(
there is (K1,K2) ∈ C such that X(t) > u

(1.4)
for each t ∈ K1 and X(t) < ru for each t ∈ K2

)
.

We note that the probabilities �sp(u; r) and �sp;c(u; r) are special cases of the
probability �C(u; r) with the collections C being, respectively,

C = {
(SB, s),B a ball entirely in T and s ∈ B

}
and

C = {
(SB, cB),B a ball entirely in T

}
.

In Section 2, we first introduce the necessary technical background, and then
prove a large deviation result in the space of continuous functions for the proba-
bility �C(u; r). This result establishes a connection of the asymptotic behavior of
the probability �C(u; r) to a certain optimization problem. The dual formulation
of this problem involves optimization over a family of probability measures. The
results in this section are very general, and most of the proofs are technical. Thus,
in order to illustrate the applicability of the results, we postpone some of the more
technical arguments to an Appendix, and consider, in Section 3, the important case
of the isotropic Gaussian fields. In this case, the general results take a significantly
more transparent form, and it is interesting to see that while the results often agree
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with one’s intuition, there are also scenarios in which they do not. Section 4 returns
to more general and technical arguments, and contains a discussion of important
properties of the measures that are optimal for the dual version of the optimization
problems in Section 2. Finally, two Appendices contain two of the more technical
proofs.

2. A large deviations result. Consider a real-valued centered continuous
Gaussian random field indexed by a compact subset T ⊂ R

d , X = (X(t), t ∈ T ).
We denote the covariance function of X by RX(s, t) = cov(X(s),X(t)). We view
X as a Gaussian random element in the space C(T ) of continuous functions on T ,
equipped with the supremum norm, whose law is a Gaussian probability measure
μX on C(T ). See, for example, van der Vaart and van Zanten (2008) about this
change of the viewpoint, and for more information on the subsequent discussion.

The reproducing kernel Hilbert space (henceforth RKHS) H of the Gaussian
measure μX (or of the random field X) is a subspace of C(T ) obtained as follows.
We identify H with the closure L in the mean square norm of the space of finite
linear combinations

∑k
j=1 ajX(tj ) of the values of the process, aj ∈ R, tj ∈ T for

j = 1, . . . , k, k = 1,2, . . . via the injection L → C(T ) given by

H → wH = (
E

(
X(t)H

)
, t ∈ T

)
.(2.1)

We denote by (·, ·)H and ‖ · ‖H the inner product and the norm in the RKHS H.
By definition,

‖wH‖2
H = E

(
H 2)

.(2.2)

The “reproducing property” of the space H is a consequence of the following
observations. For every t ∈ R

d , the fixed t covariance function Rt = R(·, t) is in H.
Therefore, for every wH ∈ H, and t ∈ R

d , wH(t) = (wH ,Rt)H. In particular, the
coordinate projections are continuous operations on the RKHS.

The quadruple (C(T ),H,w,μX) is a Wiener quadruple in the sense of Sec-
tion 3.4 in Deuschel and Stroock (1989). This allows one to use the machinery of
large deviations for Gaussian measures described there.

The following result is a straightforward application of the general large devia-
tions machinery.

THEOREM 2.1. Let X = (X(t), t ∈ T ) be a continuous Gaussian random field
on a compact set T ⊂ R

d . Let C be a collection of ordered pairs (K1,K2) of
nonempty compact subsets of Rd , compact in the product Hausdorff distance. Then
for 0 < r ≤ 1,

−1

2
lim
τ↑r

DC(τ ) ≤ lim inf
u→∞

1

u2 log�C(u; r)
(2.3)

≤ lim sup
u→∞

1

u2 log�C(u; r) ≤ −1

2
DC(r),



CLIMBING DOWN GAUSSIAN PEAKS 1163

where for r > 0,

DC(r)
�= inf

{
EH 2 : H ∈ L,and, for some (K1,K2) ∈ C, E

(
X(t)H

) ≥ 1
(2.4)

for each t ∈ K1 and E
(
X(t)H

) ≤ r for each t ∈ K2
}
.

PROOF. As is usual in large deviations arguments, we write, for u > 0,

�C(u; r) = P
(
u−1X ∈ A

)
,

where A is the open subset of C(T ) given by

A
�= {

ω ∈ C(T ) : there is (K1,K2) ∈ C such that

ω(t) > 1 for each t ∈ K1 and ω(t) < r for each t ∈ K2
}
.

We use Theorem 3.4.5 in Deuschel and Stroock (1989). We have

− inf
ω∈A

I (ω) ≤ lim inf
u→∞

1

u2 log�C(u; τ) ≤ lim sup
u→∞

1

u2 log�C(u; τ)

(2.5)
≤ − inf

ω∈Ā
I (ω).

By Theorem 3.4.12 of Deuschel and Stroock (1989), the rate function I can be
written as

I (ω) =
{

1
2‖ω‖2

H, if ω ∈ H,

∞, if ω /∈ H,
(2.6)

for ω ∈ C(T ). Since C is compact in the product Hausdorff distance,

Ā ⊆ {ω ∈ C(T ) : there is (K1,K2) ∈ C such that

ω(t) ≥ 1 for each t ∈ K1 and ω(t) ≤ r for each t ∈ K2},
and so (2.5) already contains the upper limit statement in (2.3). Further, for any
0 < ε < 1,

inf
ω∈A

I (ω) ≤ 1

2
inf

{
EH 2 : H ∈ L, and, for some (K1,K2) ∈ C, ωH(t) ≥ 1 + ε

for each t ∈ K1 and ωH(t) ≤ (1 − ε)r for each t ∈ K2
}

= (1 + ε)2

2
DC

(
1 − ε

1 + ε
r

)
.

Letting ε ↓ 0 establishes the lower limit statement in (2.3). �

The lower bound in (2.3) can be strictly smaller than the upper bound, as the
following example shows. We will see in the sequel that in certain cases of interest
the two bounds do coincide.
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EXAMPLE 2.2. Let T = {0,1,2}. Starting with independent standard normal
random variables Y1, Y2 we define, for 0 < r0 < 1 and σ > r0,

X(0) = Y1, X(1) = r0Y1, X(2) = σY1 + Y2.

Note that in this case L = {a1Y1 + a2Y2, a1 ∈ R, a2 ∈ R}.
Let C = {({0}, {1}), ({0}, {2})}. It is elementary to check that

DC(r) =
{

1 + (σ − r)2, for 0 < r < r0,
1, for r ≥ r0,

and that this function is not left continuous at r = r0.

For a fixed pair (K1,K2) ∈ C denote

DK1,K2(r) = inf
{
EH 2 : H ∈ L such that E

(
X(t)H

) ≥ 1
(2.7)

for each t ∈ K1 and E
(
X(t)H

) ≤ r for each t ∈ K2
}
.

Clearly,

DC(r) = min
(K1,K2)∈C

DK1,K2(r),(2.8)

with the minimum actually achieved. Furthermore, an application of Theorem 2.1
to the case of C consisting of a single ordered pair of sets immediately shows that

−1

2
lim
τ↑r

DK1,K2(τ ) ≤ lim inf
u→∞

1

u2 log�K1,K2(u; r)
(2.9)

≤ lim sup
u→∞

1

u2 log�K1,K2(u; r) ≤ −1

2
DK1,K2(r),

where

�K1,K2(u; r) = P
(
X(t) > u for all t ∈ K1 and X(t) < ru for all t ∈ K2

)
.

The next result describes useful properties of the function DK1,K2 . The proof is
long and technical, so we defer it to Appendix 4.

THEOREM 2.3. (a) If there exists H ∈ L such that E(X(t)H) ≥ 1 for each
t ∈ K1 and E(X(t)H) ≤ r for each t ∈ K2, then the infimum in (2.7) is achieved,
at a unique H ∈ L.

(b) The following holds true:

DK1,K2(r) =
{

min
[

min
μ1∈M+

1 (K1)

∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2),

(2.10)

min
μ1∈M+

1 (K1),μ2∈M+
1 (K2)

subject to (2.11)

AK1,K2(μ1,μ2)

BK1,K2(μ1,μ2; r)
]}−1
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with

AK1,K2(μ1,μ2)

=
∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2)

∫
K2

∫
K2

RX(t1, t2)μ2(dt1)μ2(dt2)

−
(∫

K1

∫
K2

RX(t1, t2)μ1(dt1)μ2(dt2)

)2

,

BK1,K2(μ1,μ2; r)
= r2

∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2)

− 2r

∫
K1

∫
K2

RX(t1, t2)μ1(dt1)μ2(dt2)

+
∫
K2

∫
K2

RX(t1, t2)μ2(dt1)μ2(dt2),

and the condition in the minimization problem is∫
K1

∫
K2

RX(t1, t2)μ1(dt1)μ2(dt2)

(2.11)
≥ r

∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2).

REMARK 2.4. We saw in Example 2.2 that the function DC does not, in gen-
eral, need to be continuous. However, the arguments used in the proof of Theo-
rem 2.3, together with the compactness in the product Hausdorff distance of the
set C, show that this function is always right continuous.

For a fixed pair (K1,K2) ∈ C even the absence of left continuity for the function
DK1,K2 is, in a sense, an exception and not the rule. Left continuity is trivially true
at any r0 for which the minimization problem (2.7) is infeasible. If that problem is
feasible, and it remains feasible for some r < r0, then the left continuity at r0 still
holds. To see this, suppose rn ↑ r0 as n → ∞ is such that for some 0 < ε < ∞

lim
n→∞

(
DK1,K2(rn)

)1/2 = (
DK1,K2(r0)

)1/2 + ε.(2.12)

Let Hn be optimal in (2.7) for rn, n ≥ 1, and H be optimal for r0. Define Ĥn =
(Hn +H)/2. Then, for some sequence kn → ∞, Ĥn is feasible in (2.7) for rkn , and(

EĤ 2
n

)1/2 ≤ ((
EH 2

n

)1/2 + (
EH 2)1/2)

/2.

Letting n → ∞ we obtain

lim sup
n→∞

(
EĤ 2

n

)1/2 ≤ (
DK1,K2(r0)

)1/2 + ε/2,
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which contradicts (2.12). Hence, the left continuity at r0.
Left continuity fails at a point r0 at which the minimization problem (2.7) is fea-

sible, but becomes infeasible at any r < r0. An easy modification of Example 2.2
can be used to exhibit such a situation.

As long as one is not in the last situation described in the example, it follows
from (2.9) that

lim
u→∞

1

u2 log�K1,K2(u; r) = −1

2
DK1,K2(r).

In this connection, there is a very natural interpretation of the structure of the
representation (2.10) of DK1,K2(r). Note that

lim
u→∞

1

u2 logP
(
X(t) > u for all t ∈ K1

)

= −1

2

{
min

μ1∈M+
1 (K1)

∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2)

}−1

.

This can be read off part (b) in Theorem 2.3, and it is also a simple extension of
the results in Adler, Moldavskaya and Samorodnitsky (2014). Therefore, we can
interpret the situation in which the first minimum in the right-hand side of (2.10)
is the smaller of the two minima, as implying that the order of magnitude of the
probability �K1,K2(u; r) is determined, at least at the logarithmic level, by the
requirement that X(t) > u for all t ∈ K1. In this case, the requirement that X(t) <

ru for all t ∈ K2 does not change the logarithmic behavior of the probability. This
is not entirely unexpected since the normal random variables in the set K2 “prefer”
not to take very large values.

On the other hand, if the correlations between the variables of the random field
in the set K1 and those in the set K2 are sufficiently strong, it may happen that,
once it is true that X(t) > u for each t ∈ K1, the correlations will make it unlikely
that we also have X(t) < ru for all t ∈ K2. In that case, the second minimum in
the right-hand side of (2.10) will be the smaller of the two minima.

The discussion in Remark 2.4 also leads to the following conclusion of Theo-
rem 2.1.

COROLLARY 2.5. Under the conditions of Theorem 2.1, suppose that there is
(K

(r)
1 ,K

(r)
2 ) ∈ C such that

DC(r) = D
K

(r)
1 ,K

(r)
2

(r) < ∞,

and such that the optimization problem (2.7) for the pair (K
(r)
1 ,K

(r)
2 ) remains

feasible in a neighborhood of r . Then

lim
u→∞

1

u2 log�C(u; r) = −1

2
DC(r).(2.13)
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PROOF. It follows from Theorem 2.1 that we only need to show that

lim
τ↑r

DC(τ ) = DC(r).(2.14)

However, by the assumption of feasibility, as τ ↑ r ,

DC(τ ) ≤ D
K

(r)
1 ,K

(r)
2 (τ )

→ D
K

(r)
1 ,K

(r)
2

(r) = DC(r),

giving us the only nontrivial part of (2.14). �

It turns out that under certain assumptions, given that the event in (1.4) occurs,
the random field u−1X converges in law, as u → ∞, to a deterministic function on
T , “the most likely shape of the field”. This is described in the following result.

THEOREM 2.6. Under the conditions of Theorem 2.1, suppose that there is a
unique (K

(r)
1 ,K

(r)
2 ) ∈ C such that

DC(r) = D
K

(r)
1 ,K

(r)
2

(r) < ∞,(2.15)

and such that the optimization problem (2.7) for the pair (K
(r)
1 ,K

(r)
2 ) remains

feasible in a neighborhood of r . Then for any ε > 0,

P

(
sup
t∈T

∣∣∣∣1

u
X(t) − xC(t)

∣∣∣∣ ≥ ε
∣∣∣ there is (K1,K2) ∈ C such that X(t) > u

(2.16)

for each t ∈ K1 and X(t) < ru for each t ∈ K2

)
→ 0

as u → ∞. Here,

xC(t) = E
(
X(t)H

(
K

(r)
1 ,K

(r)
2

))
, t ∈ T ,

and H(K
(r)
1 ,K

(r)
2 ) is the unique minimizer in the optimization problem (2.7) for

the pair (K
(r)
1 ,K

(r)
2 ).

PROOF. Using Theorem 3.4.5 in Deuschel and Stroock (1989), we see that

lim sup
u→∞

1

u2 logP

(
sup
t∈T

∣∣∣∣1

u
X(t) − xC(t)

∣∣∣∣ ≥ ε and there is (K1,K2) ∈ C

such that X(t) > u for each t ∈ K1 and X(t) < ru for each t ∈ K2

)

≤ −1

2
DC(r; ε),
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where

DC(r; ε) = inf
{
EH 2 : H ∈ L, sup

t∈T

∣∣E(
X(t)H

) − xC(t)
∣∣ ≥ ε

and for some (K1,K2) ∈ C, E
(
X(t)H

) ≥ 1(2.17)

for each t ∈ K1 and E
(
X(t)H

) ≤ r for each t ∈ K2

}
.

Therefore, the claim of the theorem will follow once we prove that DC(r; ε) >

DC(r). Indeed, suppose that the two minimal values coincide. Let Hε be an optimal
solution for the problem (2.17). Since H(K

(r)
1 ,K

(r)
2 ) is not feasible for the latter

problem, we know that H(K
(r)
1 ,K

(r)
2 ) �= Hε , while the two elements have equal

norms. Since Hε is feasible for the problem (2.4), because of the assumed unique-
ness of the pair (K

(r)
1 ,K

(r)
2 ) in (2.15), it must also be feasible for the problem

(2.7) with this pair (K
(r)
1 ,K

(r)
2 ), hence optimal for that problem. This, however,

contradicts the uniqueness property in part (a) of Theorem 2.3. �

Theorem 2.3, together with (2.8), provides a way to understand the asymptotic
behavior of the probability in (2.3). The problem of finding the two minima in the
right-hand side of (2.10) is not always simple, since it is often unclear how to find
the optimal probability measure(s) in these optimization problems. In Section 4,
we provide some results that are helpful for this task. Below is a key result which is
a consequence of that discussion, which we will find very useful in the following
section, where we apply it to isotropic random fields. The proof is deferred to
Appendix 4.

THEOREM 2.7. Under the conditions of Theorem 2.6, assume that the set
K

(r)
2 = {b} is a singleton. Let μ(r) ∈ M+

1 (K1) be the optimal measure in the opti-

mization problem (2.10) for the pair (K
(r)
1 ,K

(r)
2 ). Then

xC(t) = DC(r)
∫
K1

RX(t, t1)μ
(r)(dt1), t ∈ T ,(2.18)

if the first minimum in (2.10) does not exceed the second minimum, and

xC(t) = a
(
μ(r))[∫

K1

RX(t, t1)μ
(r)(dt1) − b

(
μ(r))RX(t,b)

]
,

(2.19)
t ∈ T ,

if the first minimum in (2.10) is larger than the second minimum. Here,

a
(
μ(r)) = RX(b,b) − r

∫
K1

RX(t1,b)μ(r)(dt1)

RX(b,b)
∫
K1

∫
K1

RX(t1, t2)μ(r)(dt1)μ(r)(dt2) − (
∫
K1

RX(t1,b)μ(r)(dt1))2

(2.20)
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and

b
(
μ(r))

(2.21)

= r
∫
K1

∫
K1

RX(t1, t2)μ
(r)(dt1)μ

(r)(dt2) − ∫
K1

RX(t1,b)μ(r)(dt1)

r
∫
K1

RX(t1,b)μ(r)(dt1) − RX(b,b)
.

REMARK 2.8. Notice that, since the set K2 = {b} is a singleton, only a mea-
sure in M+

1 (K1) is a variable over which one can optimize, as M+
1 (K2) consists

of a single measure, the point mass at b. Notice also that we are using the same
name, μ(r), for the optimal measure throughout Theorem 2.7 for notational conve-
nience only, because in the two different cases considered in the theorem, it refers
to optimal solutions to two different problems.

3. Isotropic random fields. The results presented in Section 2 are very gen-
eral, but as a consequence have the inevitable drawback that since they are formu-
lated in terms of certain optimization problems, it is not usually immediately clear
how to solve such problems. In this section, we present one important situation
where the abstract general take a fairly concrete form. We will consider stationary
isotropic Gaussian random fields, that is, random fields for which

RX(t1, t2) = R
(‖t1 − t2‖)

, t1, t2 ∈ T ,

for some function R on [0,∞). We will concentrate on the asymptotic behavior of
the probabilities �sp(u; r) and �sp;c(u; r) in (1.2) and (1.3) correspondingly. As
mentioned earlier, what we will see in this specific class of processes are examples
in which one’s basic intuition about how Gaussian processes “should” behave is
verified, but also examples in which the results are counterintuitive.

We start with the probability �sp;c(u; r). In this case, by (2.8) and isotropy,

DC(r) = min
0≤ρ≤D

Mρ(r),(3.1)

where

D = sup{ρ ≥ 0 : there is a ball of radius ρ entirely in T },(3.2)

and Mρ(r) = DK1,K2(r) in (2.7) with K1 being the sphere of radius ρ centered at
the origin, and K2 = {0}. The following result provides a fairly detailed description
of the asymptotic behavior of the probability �sp;c(u; r).

THEOREM 3.1. Let X be isotropic. Then

lim
u→∞

1

u2 log�sp;c(u; r) = −1

2
min

0≤ρ≤D
Mρ(r).(3.3)
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Furthermore, for every 0 < r ≤ 1, Mρ(r) = (Wρ(r))−1, where

Wρ(r) =
⎧⎪⎨
⎪⎩

D(ρ), if R(ρ) ≤ rD(ρ),

R(0)D(ρ) − (R(ρ))2

R(0) − 2rR(ρ) + r2D(ρ)
, if R(ρ) > rD(ρ).

(3.4)

Here,

D(ρ) =
∫
Sρ(0)

∫
Sρ(0)

R
(‖t1 − t2‖)

μh(dt1)μh(dt2),(3.5)

where Sρ(0) is the sphere of radius ρ centered at the origin, and μh is the rotation
invariant probability measure on that sphere.

PROOF. We use part (b) of Theorem 2.3 with K1 = Sρ(0) and K2 = {0}. Note
first of all that by the rotation invariance of the measure μh, the function∫

K1

R
(‖t1 − t2‖)

μh(dt1), t2 ∈ Sρ(0),

is constant. By Theorem 4.1 below we conclude that the measure μh is optimal
in the first minimization problem on the right-hand side of (2.10), and the optimal
value in that problem is D(ρ).

In the second minimization problem on the right-hand side of (2.10), since K2 is
a singleton, the optimization is only over measures μ1 ∈ M+

1 (K1), and so we drop
the unnecessary μ2 in the argument in the ratio in that problem. By the isotropy of
the field,

AK1,K2(μ1)

BK1,K2(μ1; r)

=
∫
K1

∫
K1

R(‖t1 − t2‖)μ1(dt1)μ1(dt2)R(0) − (R(ρ))2

r2
∫
K1

∫
K1

R(‖t1 − t2‖)μ1(dt1)μ1(dt2) − 2rR(ρ) + R(0)

= R(0)

r2 − (R(ρ) − R(0)/r)2

r2
∫
K1

∫
K1

R(‖t1 − t2‖)μ1(dt1)μ1(dt2) − 2rR(ρ) + R(0)
.

Since the expression in the denominator is nonnegative [see the discussion follow-
ing (4.2) below], the ratio in the left-hand side is smaller if the double integral in
the right-hand side is smaller. Furthermore, condition (2.11) reads, in this case, as

R(0) ≥ r

∫
K1

∫
K1

R
(‖t1 − t2‖)

μ1(dt1)μ1(dt2).

This means that, if this condition is satisfied when the double integral is large, it is
also satisfied when the double integral is small. Recalling that the double integral
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is smallest when μ = μh, we conclude that

min
μ1∈M+

1 (K1)

subject to (2.11)

AK1,K2(μ1)

BK1,K2(μ1; r)

=
⎧⎪⎨
⎪⎩

∞, if R(ρ) < rD(ρ),
R(0)D(ρ) − (R(ρ))2

R(0) − 2rR(ρ) + r2D(ρ)
, if R(ρ) ≥ rD(ρ).

Finally, since

R(0)D(ρ) − (R(ρ))2

R(0) − 2rR(ρ) + r2D(ρ)
= D(ρ) − (rD(ρ) − R(ρ))2

R(0) − 2rR(ρ) + r2D(ρ)
(3.6)

≤ D(ρ),

we obtain (3.4).
It remains to prove (3.3). We use (3.1). By Theorem 2.1, it is enough to prove

that the function DC is left continuous. By monotonicity, if DC = ∞ for some
r > 0, then the same is true for all smaller values of the argument, and the left
continuity is trivial. Let, therefore, 0 < r ≤ 1 be such that DC < ∞. Let 0 ≤ ρ0 ≤
D be such that

Mρ0(r) = min
0≤ρ≤D

Mρ(r).

Then Wρ0(r) > 0. By (3.4), the Wρ(r) is, for a fixed ρ, a continuous function of r .
Therefore,

lim
s↑r

DC(s) ≤ lim
s↑r

(
Wρ(s)

)−1 = (
Wρ(r)

)−1 = DC(r).

By the monotonicity of the function DC , this implies left continuity. �

The distinction between the situations described by the two conditions on the
right-hand side of (3.4) can be described using the intuition introduced in the dis-
cussion following Remark 2.4. If there is a “peak” of height greater than u covering
the entire sphere of radius ρ, is it likely that there will be a “hole” in the center
of the sphere where the height is smaller than ru? Theorem 3.1 says that a hole is
likely if R(ρ) ≤ rD(ρ) and unlikely if R(ρ) > rD(ρ), at least at the logarithmic
level.

It is reasonable to expect that, for spheres of a very small radius, a hole in the
center is unlikely, while for spheres of a very large radius, a hole in the center is
likely, at least if the terms “very small” and “very large” are used relatively to the
depth of the hole described by the factor r . This intuition turns out to be correct in
many, but not all, cases, and some unexpected phenomena emerge. We will try to
clarify the situation in the subsequent discussion.
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We look at spheres of very small radius first. Observe first that by the continuity
of the covariance function, we have both R(ρ) → R(0) and D(ρ) → R(0) as ρ →
0. Therefore, if 0 < ρ < 1, then the condition R(ρ) > rD(ρ) holds for spheres of
sufficiently small radii, and a hole that deep is, indeed, unlikely. Is the same true
for r = 1? In other words, is it true that there is δ > 0 such that

D(ρ) < R(ρ) for all 0 < ρ < δ?(3.7)

A sufficient condition is that the function R is concave on [0,2δ]; this is always
the case for a sufficiently small δ > 0 if the covariance function R corresponds to
a spectral measure with a finite second moment. To see how the concavity implies
(3.7), note that by the Jensen inequality,

D(ρ) ≤ R

(∫
Sρ(0)

∫
Sρ(0)

‖t1 − t2‖μh(dt1)μh(dt2)

)
.

Further, by the symmetry of the measure μh and the triangle inequality,∫
Sρ(0)

∫
Sρ(0)

‖t1 − t2‖μh(dt1)μh(dt2)

=
∫
Sρ(0)

∫
Sρ(0)

(‖t1 − t2‖/2 + ‖t1 + t2‖/2
)
μh(dt1)μh(dt2)

>

∫
Sρ(0)

∫
Sρ(0)

‖t1‖μh(dt1)μh(dt2) = δ.

Since the concavity of R on [0,2δ] implies its monotonicity, we obtain (3.7).
As an aside, recall that the covariance function R can be represented in the

spectral form as

R(t) =
∫ ∞

0
cos txF (dx), t ≥ 0,(3.8)

where F is a finite measure on (0,∞), the spectral measure of R (there are con-
strains on admissible finite measures F if d ≥ 2). If the second spectral moment of
F is finite, then the function R is twice continuously differentiable, and its second
derivative at zero is negative. Hence, R is concave on an interval near the origin.

In dimensions d ≥ 2, the hole in the center with r = 1 may be unlikely for small
spheres even without concavity. Consider covariance functions satisfying

R(ρ) = R(0) − aρβ + o
(
ρβ)

as ρ → 0,(3.9)

for some a > 0 and 1 ≤ β ≤ 2. To see that this implies (3.7) as well, notice that,
under (3.9),

D(ρ) = R(0) − aρβ
∫
S1(0)

∫
S1(0)

‖t1 − t2‖βμh(dt1)μh(dt2) + o
(
ρβ)

as ρ → 0.
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Using, as above, the symmetry together with the Jensen inequality and the triangle
inequality we see that∫

S1(0)

∫
S1(0)

‖t1 − t2‖βμh(dt1)μh(dt2)

=
∫
S1(0)

∫
S1(0)

(‖t1 − t2‖β/2 + ‖t1 + t2‖β/2
)
μh(dt1)μh(dt2)

≥
∫
S1(0)

∫
S1(0)

(‖t1 − t2‖/2 + ‖t1 + t2‖/2
)β

μh(dt1)μh(dt2)

>

∫
S1(0)

∫
S1(0)

‖t1‖βμh(dt1)μh(dt2) = 1.

Thus we see that, for some a1 > a,

D(ρ) = R(0) − a1ρ
β + o

(
ρβ)

as ρ → 0,

and so (3.7) holds for δ > 0 small enough. Note that condition (3.9) holds if the
spectral measure F in (3.8) satisfies F((y,∞)) ∼ a1y

−β for some a1 > 0 as y →
∞.

An example of the situation where (3.9) holds without concavity condition is
that of the isotropic Ornstein–Uhlenbeck random field corresponding to R(t) =
exp{−a|t |} for some a > 0. It is interesting that for this random field a hole in
the center with r = 1 is unlikely for small spheres in dimension d ≥ 2, but not in
dimension d = 1. Indeed, in the latter case we have

D(ρ) = (
1 + e−2aρ)

/2 > e−aρ = R(ρ),

no matter how small ρ > 0 is.
When ρ → ∞, we expect that a hole in the center of a sphere will become likely

no matter what 0 < r ≤ 1 is. According to the discussion above, this happens when

lim
ρ→∞

D(ρ)

R(ρ)
= ∞.(3.10)

This turns out to be true under certain short term memory assumptions. Assume,
for example, that R is nonnegative and

lim inf
v→∞

R(tv)

R(v)
≥ t−a with a ≥ d − 1, for all 0 < t ≤ 1.(3.11)

Then by Fatou’s lemma,

lim inf
ρ→∞

D(ρ)

R(ρ)

≥
∫
S1(0)

∫
S1(0)

1
(‖t1 − t2‖ ≤ 1

)
lim inf
ρ→∞

R(‖t1 − t2‖ρ)

R(ρ)
μh(dt1)μh(dt2)

≥
∫
S1(0)

∫
S1(0)

1
(‖t1 − t2‖ ≤ 1

)‖t1 − t2‖−aμh(dt1)μh(dt2) = ∞,
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so that (3.10) holds.
However, in dimensions d ≥ 2, the situation turns out to be different under an

assumption of longer memory. Assume, for simplicity, that R is monotone, and
suppose that, for some ε > 0,

R is regularly varying at infinity with exponent −(d − 1) + ε.(3.12)

Note that this behavior of R is also related to the behavior of the spectral mea-
sure F . In dimension d = 2, a usual sufficient condition is the existence of a
spectral density that is regularly varying at zero with exponent −ε (plus certain
regularity away from the origin). If d > 2, one needs to control the appropriate
derivatives of the spectral density.

Returning to the covariance function R, we claim that, if (3.12) holds, then

lim
ρ→∞

D(ρ)

R(ρ)
=

∫
S1(0)

∫
S1(0)

‖t1 − t2‖−(d−1)+εμh(dt1)μh(dt2) < ∞.(3.13)

It is easy to prove this using Breiman’s theorem as in, for instance, Proposition 7.5
in Resnick (2007). Let Z be a positive random variable such that P(Z > z) =
R(z)/R(0), and let Y be an independent of Z positive random variable whose law
is given by the image of the product measure μh × μh on S1(0) × S1(0) under the
map (t1, t2) �→ ‖t1 − t2‖−1. Notice that EYd−1−ε/2 < ∞. Therefore, by Breiman’s
theorem, as ρ → ∞,

D(ρ) = R(0)P (ZY > ρ)

∼ R(0)EYd−1−εP (Z > ρ)

= R(ρ)

∫
S1(0)

∫
S1(0)

‖t1 − t2‖−(d−1)+εμh(dt1)μh(dt2).

If we write

I (d; ε) =
∫
S1(0)

∫
S1(0)

‖t1 − t2‖−(d−1)+εμh(dt1)μh(dt2),

then we have just proven that the hole in the center of a sphere corresponding to
a factor r < 1/I (d; ε) remains unlikely even for spheres of infinite radius. This
is in spite of the fact, that the random field is ergodic, and even mixing, as the
covariance function vanishes at infinity. This phenomenon is impossible if d = 1
since in this case D(ρ) does not converge to zero as ρ → ∞.

Some estimates of the integral I (d; ε) for d = 2 and d = 3 are presented in
Figure 1.

One can pursue the analysis of holes in the center of a sphere a bit further,
and talk about the most likely radius of a sphere for which the random field has
a “peak” of height greater than u covering the entire sphere, and a “hole” in the
center of the sphere where the height is smaller than ru, as u → ∞. According to
Theorem 3.1, this most likely radius is given by argmaxρ≥0 Wρ(r). The following
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FIG. 1. The integral I (d; ε) for d = 2 and d = 3.

corollary shows how calculate this most likely radius. For simplicity, we assume
that R is monotone and 0 < r < 1. Let

Hρ(r) = R(0)D(ρ) − (R(ρ))2

R(0) − 2rR(ρ) + r2D(ρ)
, ρ > 0.

COROLLARY 3.2. Assume that R is monotone with R(t) → 0 as t → ∞, and
0 < r < 1. Let

ρ∗
r = argmax

ρ≥0
Hρ(r).

Then ρ∗
r is the most likely radius of the sphere to have a hole corresponding to a

factor r in the center.

PROOF. Since

lim
ρ→0

Hρ(r) = lim
ρ→∞Hρ(r) = 0,

it follows that ρ∗
r ∈ (0,∞). Write

ρr = inf
{
ρ > 0 : R(ρ) ≤ rD(ρ)

}
.

Since 0 < r < 1, it follows that δr ∈ (0,∞]. Observe that for 0 < ρ < ρ∗
r , by the

monotonicity of D and (3.6),

D(ρ) > D
(
ρ∗

r

) ≥ Hρ∗
r
(r) ≥ Hρ(r).(3.14)

This implies that ρ∗
r ≤ ρr . Indeed, if this were not the case, there would be 0 <

ρ < ρ∗
r , for which R(ρ) = rD(ρ), and this, together with (3.6), would imply that

D(ρ) = Hρ(r), contradicting (3.14).
By Theorem 3.1, we conclude that Wρ∗

r
(r) = Hρ∗

r
(r), so it remains to prove that

Wρ(r) ≤ Hρ∗
r
(r) for all ρ �= ρ∗

r .
However, if 0 < ρ ≤ ρr , then

Wρ(r) = Hρ(r) ≤ Hρ∗
r
(r)
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FIG. 2. The functions D(ρ) (solid line) and Hρ(r) (dashed line) for r = 1/2 (left plot) and the

optimal radius ρ∗
r (right plot), both for R(t) = e−t2

.

by the definition of ρ∗
r . On the other hand, if ρ > ρr , then by the monotonicity

of D,

Wρ(r) ≤ D(ρ) ≤ D(ρr) = Hρr (r) ≤ Hρ∗
r
(r),

and so the proof is complete. �

For the covariance function R(t) = e−t2
, the two plots of Figure 2 show the plot

of the functions D and H(1/2), as well as the optimal radius ρ∗
r as a function of r .

For the same covariance function R(t) = e−t2
and r = 1/2 the plots of Figure 3

show the limiting shapes of the random field described in Theorem 2.7. The left
plot corresponds to the sphere of radius ρ = 1 (falling in the second case of the
theorem), while the right plot correspond to the sphere of radius ρ = 2 (falling in
the first case of the theorem). Note that, by the isometry of the random field, the

FIG. 3. The limiting shapes for ρ = 1 (left plot) and ρ = 2 (right plot), both for r = 1/2 and

R(t) = e−t2
. For ease of comparison, the horizontal axes are units of t1/ρ, that is, relative to the

radius of the sphere.
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limiting shape is rotationally invariant. The plots, therefore, present a section of
the limiting shape along the half-axis t1 ≥ 0, t2 = 0.

We conclude this section by considering the probability �sp(u; r) in (1.2). In
this case, by (2.8) and isotropy,

DC(r) = min
0≤b≤1

min
0≤ρ≤D

Mρ(r;b),(3.15)

where D is as in (3.2), and Mρ(r;b) = DK1,K2(r) in (2.7) with K1 being the sphere
of radius ρ centered at the origin, and K2 = {be1}. Here, e1 is the d-dimensional
vector (1,0, . . . ,0). It turns out that in many circumstances the asymptotic be-
havior of the probabilities �sp;c(u; r) and �sp(u; r) is the same, at least on the
logarithmic case, and so our analysis of the former probability applies to the latter
probability as well.

The following result demonstrates one case when the two probabilities are
asymptotically equivalent. Assume for notational simplicity that R(0) = 1, and
use the notation S1 in place of S1(0). For ρ ≥ 0, 0 ≤ b ≤ 1 and μ ∈ M+

1 (S1), let

V (ρ, b;μ)

(3.16)

=
∫
S1

∫
S1

R(ρ‖t1 − t2‖)μ(dt1)μ(dt2) − (
∫
S1

R(ρ‖t − be1‖)μ(dt))2

1 − 2r
∫
S1

R(ρ‖t − be1‖)μ(dt) + r2
∫
S1

∫
S1

R(ρ‖t1 − t2‖)μ(dt1)μ(dt2)
.

THEOREM 3.3. Let

V∗(ρ, b) = min
μ∈M+

1 (S1)
V (ρ, b;μ)

subject to∫
S1

R
(
ρ‖t − be1‖)

μ(dt) ≥ r

∫
S1

∫
S1

R
(
ρ‖t1 − t2‖)

μ(dt1)μ(dt2).(3.17)

If, for every 0 ≤ ρ ≤ D such that R(ρ) ≥ rD(ρ), the function V∗(ρ, b),0 ≤ b ≤ 1
achieves its maximum at b = 0, then

lim
u→∞

1

u2 log�sp(u; r) = −1

2
min

0≤ρ≤D

(
Wρ(r)

)−1
,(3.18)

where Wρ(r) is defined by (3.4).

PROOF. It follows from (3.15), (3.1) and Theorem 2.3 that we only need to
check that Mρ(r) = inf0≤b≤1 Mρ(r;b) for all 0 ≤ ρ ≤ D. Notice that by (4.1),
(4.2) and isotropy,

Mρ(r;b) = (
min

(
D(ρ),V∗(ρ, b)

))−1
,

where D(ρ) is given in (3.5). Further, Mρ(r) = Mρ(r;0). If R(ρ) < rD(ρ), then
V∗(ρ,0) = ∞, so there nothing to check. If, on the other hand, R(ρ) ≥ rD(ρ),
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then V∗(ρ, ·) achieves its maximum at the origin, so the claim of the theorem
follows. �

The condition

V∗(ρ,0) = max
0≤b≤1

V∗(ρ, b),(3.19)

for 0 ≤ ρ ≤ D such that R(ρ) ≥ rD(ρ), deserves a discussion. We claim that this
condition is implied by the following, simpler, condition.

min
0≤b≤1

∫
S1

R
(
ρ‖t − be1‖)

μh(dt) =
∫
S1

R
(
ρ‖t‖)

μh(dt) = R(ρ),(3.20)

where μh is the rotation invariant probability measure on S1.
To see this let R(ρ) ≥ rD(ρ). It follows by (3.20) that the constraint (4.2) is

satisfied for the measure μh and the vector be1 for any 0 ≤ b ≤ 1. Therefore,

V∗(ρ, b) ≤ V (ρ, b;μh) = G

(∫
S1

R
(
ρ‖t − be1‖)

μh(dt)
)
,

where

G(x) = D(ρ) − x2

1 − 2rx + r2D(ρ)
, R(ρ) ≤ x ≤ 1.

Notice that

G′(x) = −2(x − rD(ρ))(1 − rx)

(1 − 2rx + r2D(ρ))2 ≤ 0,

so that the function G achieves its maximum at x = R(ρ). We conclude that

V∗(ρ, b) ≤ V (ρ,0;μh) = V∗(ρ,0),

so that (3.19) holds.
Numerical experiments indicate that the condition (3.20) tends to hold for values

of the radius ρ exceeding a certain positive threshold. For instance, in dimension
d = 2 for both R(t) = e−t2

and R(t) = e−|t |, this threshold is around ρ = 1.18.
However, it is clear that condition (3.20) is not necessary for condition (3.19).

In fact, for condition (3.19) to be satisfied one only needs a measure μ ∈ M+
1 (S1)

satisfying (3.17) such that

V (ρ, b;μ) ≤ V (ρ,0;μh),(3.21)

and what condition (3.20) guarantees is that this measure can be taken to be the
rotationally invariant measure on S1. If (3.20) fails, then there is no guarantee that
the rotationally invariant measure will play the required role.

At least in the case when the covariance function R is monotone, one can con-
sider a measure μ that puts a point mass at the point on the sphere closest to the
point be1. We have considered measures μ ∈ M+

1 (S1) of the form

μ = wδsign(b)e1 + (1 − w)μh(3.22)
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for some 0 ≤ w ≤ 1, where δa is, as usual, the Dirac point mass at a point a. With
this choice, the function V in (3.16) becomes the ratio of two quadratic functions
of w, and one can choose the value of w that minimizes the expression, because
(3.21) requires us to search for as small V as possible.

In our numerical experiments, we have followed an even simpler procedure and
chosen the value of w that minimizes the quadratic polynomial in the numerator of
(3.16). For the cases of R(t) = e−t2

and R(t) = e−|t |, the resulting measure μ in
(3.22) satisfied, for all 0 ≤ ρ ≤ D such that R(ρ) ≥ rD(ρ), both (3.17) and (3.21).
Therefore, in all of these cases the conclusion (3.18) of Theorem 3.3 holds.

4. Optimal measures. With the special, but informative, case of isotropy be-
hind us, we now return to the general large deviations setting of Section 2 and, in
particular, the optimization problems in (2.10). As we have already pointed out,
these are typically not simple to solve. In this section, we discuss important prop-
erties of the probability measures that are optimal in these optimization problems.

We start with the first minimization problem on the right-hand side of (2.10).
In this case, we can provide necessary and sufficient condition for a probability
measure to be optimal.

THEOREM 4.1. A probability measure μ ∈ M+
1 (K1) is optimal in the mini-

mization problem

min
μ∈M+

1 (K1)

∫
K1

∫
K1

RX(t1, t2)μ(dt1)μ(dt2)

if and only if∫
K1

∫
K1

RX(t1, t2)μ(dt1)μ(dt2) = min
t2∈K1

∫
K1

RX(t1, t2)μ(dt1).

This theorem can be proven in the same manner as part (ii) of Theorem 4.3 in
Adler, Moldavskaya and Samorodnitsky (2014), so we do not repeat the argument.

Next, observe that if the constraint (2.11) in the second minimization problem
in (2.10) holds with equality, then∫

K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2) = AK1,K2(μ1,μ2)

BK1,K2(μ1,μ2; r) ,

so it is of particular interest to consider optimality of μ1 ∈ M+
1 (K1) and μ2 ∈

M+
1 (K2) for the second minimization problem in (2.10) when the inequality in

(2.11) is strict. It turns out that we can shed some light on this question in an im-
portant special case, when one of the sets K1 or K2 is a singleton. For the purpose
of this discussion, we will assume that the set K2 is a singleton.
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Therefore, let K2 = {b}, for some b ∈ R
d such that Var(X(b)) > 0. In that case,

the second optimization problem in (2.10) turns out to be of the form

min
μ∈M+

1 (K1)

∫
K1

∫
K1

R
(1)
X (t1, t2)μ(dt1)μ(dt2)∫

K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)μ(dt2)

(4.1)

subject to ∫
K1

RX(t,b)μ(dt) ≥ r

∫
K1

RX(t1, t2)μ(dt1)μ(dt2),(4.2)

where

R
(1)
X (t1, t2) = RX(t1, t2)RX(b,b) − RX(t1,b)RX(t2,b)

and

R
(2)
X (t1, t2) = r2RX(t1, t2) − r

(
RX(t1,b) + RX(t2,b)

) + RX(b,b).

Notice that both R
(1)
X and R

(2)
X are nonnegative definite, that is, legitimate covari-

ance functions on T . In fact, up to the positive factor RX(b,b), the function R
(1)
X is

the conditional covariance function of the random field X given X(b), while R
(2)
X

is the covariance function of the random field

Y(t) = rX(t) − X(b), t ∈ T .

This problem is a generalization of the first optimization problem in (2.10), with
the optimization of a single integral of a covariance function replaced by the opti-
mization of a ratio of the integrals of two covariance functions.

The following result presents necessary conditions for optimality in the opti-
mization problem (4.1) of a measure for which the constraint (4.2) is satisfied as a
strict inequality. Note that the validity of the theorem does not depend on particu-
lar forms for R

(1)
X and R

(2)
X . Observe that the nonnegative definiteness of R

(1)
X and

R
(2)
X means that both the numerator and the denominator in (4.1) are nonnegative.

If the denominator vanishes at an optimal measure, then the numerator must vanish
as well (and the ratio is then determined via a limiting procedure). In the theorem,
we assume that the denominator does not vanish.

THEOREM 4.2. Let μ ∈ M+
1 (K1) be such that (4.2) holds as a strict inequal-

ity. Let μ be optimal in the optimization problem (4.1) and∫
K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)μ(dt2) > 0.

Then ∫
K1

R
(1)
X (t1, t)μ(dt1)

∫
K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)μ(dt2)

(4.3)
≥

∫
K1

R
(2)
X (t1, t)μ(dt1)

∫
K1

∫
K1

R
(1)
X (t1, t2)μ(dt1)μ(dt2)
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for every t ∈ K1. Moreover, (4.3) holds as equality μ-almost everywhere.

PROOF. Let

�(η) =
∫
K1

∫
K1

R
(1)
X (t1, t2)η(dt1)η(dt2)∫

K1

∫
K1

R
(2)
X (t1, t2)η(dt1)η(dt2)

for those η ∈ M(K1), the space of finite signed measures on K1 for which the
denominator does not vanish. It is elementary to check that � is Fréchet differen-
tiable at every such point, in particular at the optimal μ in the theorem. Its Fréchet
derivative at μ is given by

D�(μ)[η]
= 2

(
∫
K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)μ(dt2))2

×
(∫

K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)μ(dt2)

∫
K1

∫
K1

R
(1)
X (t1, t2)μ(dt1)η(dt2)

−
∫
K1

∫
K1

R
(1)
X (t1, t2)μ(dt1)μ(dt2)

∫
K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)η(dt2)

)

for η ∈ M(K1). We view the problem (4.1) as the minimization problem (2.1)
in Molchanov and Zuyev (2004). In our case, the set A coincides with the cone
M+

1 (K1) of probability measures, the set C is the negative half-line (−∞,0], and
H : M(K1) →R is given by

H(η) = r

∫
K1

∫
K1

RX(t1, t2)η(dt1)η(dt2) −
∫
K1

RX(t,b)η(dt).

This function is also easily seen to be Fréchet differentiable at μ, and

DH(μ)[η] = 2r

∫
K1

∫
K1

RX(t1, t2)μ(dt1)η(dt2) −
∫
K1

RX(t,b)η(dt)

for η ∈ M(K1). Finally, the fact that (4.2) holds as a strict inequality implies that
the measure μ is regular according to Definition 2.1 in Molchanov and Zuyev
(2004).

The claim (4.3) now follows from Theorem 3.1 in Molchanov and Zuyev
(2004). �

If, for example, the covariance function R
(2)
X is strictly positive on K1, then an

alternative way of writing the conclusion of Theorem 4.2 is∫
K1

R
(1)
X (t1, t)μ(dt1)∫

K1
R

(2)
X (t1, t)μ(dt1)

≥
∫
K1

∫
K1

R
(1)
X (t1, t2)μ(dt1)μ(dt2)∫

K1

∫
K1

R
(2)
X (t1, t2)μ(dt1)μ(dt2)
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for every t ∈ K1, with equality for μ-almost every t. This is a condition of the
same nature as the condition in Theorem 4.1. The convexity of the double integral
as a function of the measure μ in the optimization problem in Theorem 4.1 makes
the necessary condition for optimality also sufficient. This convexity is lost in The-
orem 4.2, and it is not clear at the moment when the necessary condition in that
theorem is also sufficient.

APPENDIX A

PROOF OF THEOREM 2.3. For part (a) of the theorem, let (Hn) ⊂ L be
a sequence of elements satisfying the constraints in (2.7) such that EH 2

n →
DK1,K2(r) as n → ∞. By the Banach–Alaoglu theorem [see, e.g., Theorem 2,
page 424 in Dunford and Schwartz (1988)], the sequence (Hn) is weakly rel-
atively compact in L, and so there is H ∈ L and a subsequence nk → ∞
such that E(Hnk

Y ) → E(HY) as k → ∞ for each Y ∈ L. Further, EH 2 ≤
lim infk→∞ EH 2

nk
= DK1,K2(r). Therefore, H is an optimal solution to the prob-

lem (2.7). The uniqueness of H follows from the convexity of the norm.
For part (b), we will use the Lagrange duality approach of Section 8.6 in

Luenberger (1969). Let Z = C(K1) × C(K2), which we equip with the norm
‖(ϕ1, ϕ2)‖Z = max(‖ϕ1‖C(K1),‖ϕ2‖C(K2)). Consider the closed convex cone in Z
defined by P= {(ϕ1, ϕ2) : ϕi(t) ≥ 0 for all t ∈ Ki, i = 1,2}. Its dual cone, which
is a subset of Z∗, can be identified with M+(K1) × M+(K2), under the action

(μ1,μ2)
(
(ϕ1, ϕ2)

) =
∫
K1

ϕ1 dμ1 +
∫
K2

ϕ2 dμ2

for a finite measure μi on Ki , i = 1,2. Define a convex mapping G : L→ Z by

G(H) = ((
1 − wH(t), t ∈ K1

)
,
(
wH(t) − r, t ∈ K2

))
.

We can write(
DK1,K2(r)

)1/2 = inf
{(

EH 2)1/2 : H ∈ L,G(H) ∈ −P}
.(A.1)

We start with the assumption that the feasible set in (2.7) and (A.1) is not empty.
Let z > r , and consider the optimization problems (2.7) and (A.1) for DK1,K2(z).
The feasible set in these problems has now an interior point, and in this case The-
orem 1 (page 224) in Luenberger (1969) applies. We conclude that(

DK1,K2(z)
)1/2

= max
μ1∈M+(K1),μ2∈M+(K2)

inf
H∈L

[(
EH 2)1/2 +

∫
K1

(
1 − wH(t)

)
μ1(dt)(A.2)

+
∫
K2

(
wH(t) − z

)
μ2(dt)

]
,
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and the “max” notation is legitimate, because the maximum is, in fact, achieved.
For i = 1,2 and μi ∈ M+(Ki) denote by ‖μi‖ its total mass, and by μ̂i ∈ M+

1 (Ki)

the normalized measure μ̂i = μi/‖μi‖ [if ‖μi‖ = 0, we use for μ̂i an arbitrary
fixed probability measure in M+(Ki)]. Then

(
DK1,K2(z)

)1/2 = max
μ1∈M+(K1),μ2∈M+(K2)

{
‖μ1‖ − z‖μ2‖

+ inf
H∈L

[(
EH 2)1/2 − ‖μ1‖

∫
K1

wH(t)μ̂1(dt)

+ ‖μ2‖
∫
K2

wH(t)μ̂2(dt)
]}

.

Note that for fixed μi ∈ M+(Ki), i = 1,2 we have

inf
H∈L

[(
EH 2)1/2 − ‖μ1‖

∫
K1

wH(t)μ̂1(dt) + ‖μ2‖
∫
K2

wH(t)μ̂2(dt)
]

= inf
a≥0

a

{
1 − sup

H∈L,EH 2=1

[
‖μ1‖

∫
K1

wH(t)μ̂1(dt) − ‖μ2‖
∫
K2

wH(t)μ̂2(dt)
]}

=
⎧⎪⎨
⎪⎩

0, if sup
H∈L,EH 2=1

[· · ·] ≤ 1,

−∞, if sup
H∈L,EH 2=1

[· · ·] > 1.

Therefore, (
DK1,K2(z)

)1/2 = max
μ1∈M+(K1),μ2∈M+(K2)

(‖μ1‖ − z‖μ2‖)
subject to

sup
H∈L,EH 2=1

[
‖μ1‖

∫
K1

wH(t)μ̂1(dt) − ‖μ2‖
∫
K2

wH(t)μ̂2(dt)
]

≤ 1.

Note that by the reproducing property, for fixed μ1 ∈ M+(K1),μ2 ∈ M+(K2),

sup
H∈L,EH 2=1

[
‖μ1‖

∫
K1

wH(t)μ̂1(dt) − ‖μ2‖
∫
K2

wH(t)μ̂2(dt)
]

= sup
w∈H,‖w‖H=1

(
w,‖μ1‖

∫
K1

Rt(·)μ̂1(dt) − ‖μ2‖
∫
K2

Rt(·)μ̂2(dt)

)
H

.

Assuming that the element in the second position in the inner product is nonzero,
the supremum is achieved at that element scaled to have a unit norm. Therefore,
value of the supremum is∥∥∥∥‖μ1‖

∫
K1

Rt(·)μ̂1(dt) − ‖μ2‖
∫
K2

Rt(·)μ̂2(dt)

∥∥∥∥
H

,
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which is also trivially the case if the element in the second position in the inner
product is the zero element. In any case, using the definition of the norm in H, we
conclude that(

DK1,K2(z)
)1/2 = max

m1≥0,m2≥0
max

μ1∈M+
1 (K1),μ2∈M+

1 (K2)

(m1 − zm2)

subject to

m2
1

∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2)

− 2m1m2

∫
K1

∫
K2

RX(t1, t2)μ1(dt1)μ2(dt2)(A.3)

+ m2
2

∫
K2

∫
K2

RX(t1, t2)μ2(dt1)μ2(dt2) ≤ 1.

Next, we show that (A.3) holds for z = r as well. Let A(z), z ≥ r be the value
of the maximum in the right-hand side of (A.3). We know that DK1,K2(z) = A(z)2

for z > r . Moreover, it is clear that A(z) ↑ A(r) as z ↓ r . Therefore, in order to
extend (A.3) to z = r it is enough to prove that

lim
z↓r

DK1,K2(z) = DK1,K2(r).(A.4)

To this end, choose a sequence zn ↓ r . For n ≥ 1 there is, by part (a), the optimal
solution Hn of the problem (2.7) corresponding to zn. Appealing to the Banach–
Alaoglu theorem, we see that the sequence (Hn) is weakly relatively compact in L,
and so there is H ∈ L to which it converges weakly along a subsequence. This H

is, clearly, feasible in (2.7) for z = r . Furthermore, EH 2 ≤ limn→∞ DK1,K2(zn),
implying that DK1,K2(r) ≤ limz↓r DK1,K2(z), thus giving us the only nontrivial
inequality in (A.4). Therefore, (A.3) holds for z = r .

A part of the optimization problem in (A.3) with z = r has the form

max
m1≥0,m2≥0

(m1 − rm2) subject to am2
1 − 2bm1m2 + cm2

2 ≤ 1(A.5)

for fixed numbers a ≥ 0, c ≥ 0 and b ∈ R. In our case,

a =
∫
K1

∫
K1

RX(t1, t2)μ1(dt1)μ1(dt2),(A.6)

b =
∫
K1

∫
K2

RX(t1, t2)μ1(dt1)μ2(dt2)(A.7)

and

c =
∫
K2

∫
K2

RX(t1, t2)μ2(dt1)μ2(dt2).(A.8)

These specific numbers satisfy the condition

b2 ≤ ac,(A.9)
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and we will assume that this condition holds in the problem (A.5) we will presently
consider.

As a first step, it is clear that replacing the inequality constraint in this problem
by the equality constraint

a2m
2
1 − 2bm1m2 + cm2

2 = 1

does not change the value of the maximum, so we may work with the equality
constraint instead. The resulting problem can be easily solved, for example, by
checking the boundary values m1 = 0 or m2 = 0, and using the Lagrange mul-
tipliers if both m1 > 0 and m2 > 0. The resulting value of the maximum in this
problem is

a−1/2 if b ≤ ra,
(A.10) (

c + r2a − 2rb

ac − b2

)1/2

if b > ra.

Moreover, it is elementary to check that we always have(
c + r2a − 2rb

ac − b2

)1/2

≥ 1

a1/2 .

Substituting (A.10) into (A.3) with z = r and using the values of a, b, c given in
(A.6)–(A.8) gives us the representation (2.10).

It remains to consider the case when the feasible set in (2.7) and (A.1) is empty.
In this case DK1,K2(r) = ∞, so we need to prove that the optimal value in the
dual problem (A.3) (with max replaced by sup in the statement) is infinite as well.
For this purpose, we use the idea of sub-consistency in Section 3 of Anderson
(1983). We write the minimization problem (2.7) as a linear program with conic
constraints, called IP in that paper, with the following parameters. The space X =
R×L is in duality with itself, Y = X. The space Z = C(K1) × C(K2) (as above)
is in duality with the space W = M(K1) × M(K2), the product of the appropriate
spaces of finite signed measures. The vector c ∈ Y has the unity as its R element,
and the zero function as its L element. The function A : X → Z is given by

A(α,H) = ((
E

(
HX(t)), t ∈ K1

)
,
(
E

(
HX(t)

)
, t ∈ K1

))
, α ∈ R,H ∈ L.

The vector b ∈ Z is given by a pair of continuous functions; the first one takes
the constant value of 1 over K1, while the second one takes the constant value of
r over K2. The positive cone Q in Z is defined by Q = C+(K1) × (−C+(K2)),
where C+(Ki) is the subset of C(Ki) consisting of nonnegative functions, i = 1,2.
Finally, the positive cone P in X is defined by

P = {
(α,H) : α ≥ (

EH 2)1/2}
.

It is elementary to verify that the dual problem IP∗ of Anderson (1983) coincides
with the maximization problem (A.3).
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Note that the dual problem is consistent (has a feasible solution). By Theorem 3
in Section 3 of Anderson (1983) (see a discussion at the end of that section), in
order to prove that the optimal value of the dual problem is infinite, we need to rule
out the possibility that the original (primal) problem is sub-consistent with a finite
sub-value. With a view of obtaining a contradiction, assume the sub-consistency
with a finite sub-value of the primal problem. Then there are sequences (xn) ⊂ P

and (zn) ⊂ Q such that Axn − zn → b as n → ∞ and the sequence of evaluations
(c, xn) is bounded from above. With the present parameters, this means that there
is a sequence (Hn) ⊂ L with the bounded sequence (EH 2

n ) of the second moments
and two sequences of functions (ϕi,n) ⊂ C+(Ki), i = 1,2, such that, weakly,(

E
(
HnX(t)

) − ϕ1,n(t), t ∈ K1
) → (1, t ∈ K1),(

E
(
HnX(t)

) + ϕ2,n(t), t ∈ K2
) → (r, t ∈ K2)

as n → ∞, with the obvious notation for constant functions. Appealing, once
again, to the Banach–Alaoglu theorem, we find that there is H ∈ L such that,
along a subsequence, Hn → H weakly. Since weak convergence implies point-
wise convergence, we immediately conclude that E(X(t)H) ≥ 1 for each t ∈ K1
and E(X(t)H) ≤ r for each t ∈ K2, contradicting the assumption that the feasible
set (2.7) is empty. The obtained contradiction completes the proof of Theorem 2.3.

�

REMARK A.1. It is an easy calculation to verify that, in the optimization prob-
lem (A.5) above, the optimal solution (m1,m2) has the following properties. In the
case b ≤ ra in (A.10), one has m2 = 0, whereas if b > ra in (A.10), then the num-
bers m1 and m2 are both positive, and

m1

m2
= rb − c

ra − b
.

We will use these facts in Appendix 4.

APPENDIX B

Finally, we turn to the proof of Theorem 2.7, which contains an explicit com-
putation of the limiting shape xC in Theorem 2.6 in terms of the optimal measures
in the dual problem. In this theorem, we restrict ourselves to the case where the
optimal pair (K

(r)
1 ,K

(r)
2 ) is such that K

(r)
2 is a singleton. This would always be the

case, of course, if, a priori, we considered a family C consisting of a single pair of
sets, (K1,K2), with K2 a singleton.

PROOF OF THEOREM 2.7. By Theorem 2.6, all we need to do is to prove the
following representations of the unique minimizer H(K

(r)
1 ,K

(r)
2 ) in the optimiza-

tion problem (2.7) for the pair (K
(r)
1 ,K

(r)
2 ). If the first minimum in (2.10) does not
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exceed the second minimum, then

H
(
K

(r)
1 ,K

(r)
2

) = DC(r)
∫
K1

X(t1)μ
(r)(dt1),(B.1)

and, if the first minimum in (2.10) is larger than the second minimum, then

H
(
K

(r)
1 ,K

(r)
2

) = a
(
μ(r))[∫

K1

X(t1)μ
(r)(dt1) − b

(
μ(r))X(b)

]
.(B.2)

We start by observing that, under the assumptions of Theorem 2.6, the feasible
set in the optimization problem (2.7) for the pair (K

(r)
1 ,K

(r)
2 ) has an interior point.

Therefore, Theorem 1 (page 224) in Luenberger (1969) applies. It follows that the
vector H(K

(r)
1 ,K

(r)
2 ) solves the inner minimization problem in (A.2) when we use

μ1 = m1μ
(r), μ2 = m2δb,

where m1 and m2 are nonnegative numbers solving the optimization problem
(A.5) corresponding to the measures μ(r) and δb. It follows immediately that
H(K

(r)
1 ,K

(r)
2 ) must be of the form

H
(
K

(r)
1 ,K

(r)
2

) = a

[
m1

∫
K1

X(t1)μ
(r)(dt1) − m2X(b)

]
(B.3)

for some a ≥ 0.
We now consider separately the two cases of the theorem. Suppose first that the

first minimum in (2.10) does not exceed the second minimum. In that case, we
have m2 = 0 above; see Remark A.1. According to that remark, this happens when∫

K1

RX(t1,b)μ(r)(dt1) ≤ r

∫
K1

∫
K1

RX(t1, t2)μ
(r)(dt1)μ

(r)(dt2).(B.4)

We combine, in this case, a and m1 in (B.3) into a single nonnegative constant,
which we still denote by a. We then consider vectors of the form

H
(
K

(r)
1 ,K

(r)
2

) = a

∫
K1

X(t1)μ
(r)(dt1)(B.5)

as candidates for the optimal solution in (2.7). The statement (B.1) will follow
once we show that a = DC(r) is the optimal value of a. By Theorem 2.3, we need
to show that the optimal value of a is

a =
(∫

K1

∫
K1

RX(t1, t2)μ
(r)(dt1)μ

(r)(dt2),

)−1

.(B.6)

The first step is to check that using a given by (B.6) in (B.5) leads to a feasible
solution to the problem (2.7). Indeed, the fact that the constraints of the type “≥”
in that problem are satisfied follows from the optimality of the measure μ(r) and
Theorem 4.1. The fact that the constraint of the type “≤” in that problem is satisfied
follows from (B.4). This establishes the feasibility of the solution. Its optimality
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now follows from the fact that using a given by (B.6) in (B.5) leads to a feasible
solution whose second moment is equal to the optimal value DC(r).

Suppose now that the first minimum in (2.10) is larger than the second min-
imum. According to Remark A.1 this happens when (B.4) fails and, further, we
have

m1

m2
= (

b
(
μ(r)))−1

,

where b(μ(r)) is defined in (2.21). Combining, once again, a and m1 in (B.3) into
a single nonnegative constant, which is still denoted by a, we consider vectors of
the form

H
(
K

(r)
1 ,K

(r)
2

) = a

[∫
K1

X(t1)μ
(r)(dt1) − b

(
μ(r))X(b)

]
(B.7)

as candidates for the optimal solution in (2.7). The proof will be complete once we
show that the value of a = a(μ(r)) given in (2.20) is the optimal value of a.

Notice that for vectors of the form (B.7), the optimal value of a solves the
optimization problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
a≥0

a, subject to

a

[∫
K1

RX(t, t1)μ
(r)(dt1) − b

(
μ(r))RX(t,b)

]
≥ 1, for each t ∈ K1,

a

[∫
K1

RX(b, t1)μ
(r)(dt1) − b

(
μ(r))RX(b,b)

]
≤ r.

(B.8)

The first step is to check that the value of a = a(μ(r)) given in (2.20) is feasible
for the problem (B.8). First of all, nonnegativity of this value of a follows from the
fact that (B.4) fails. Furthermore, it takes only simple algebra to check that the “≤”
constraint is satisfied as an equality. In order to see that the “≥” constraints are sat-
isfied as well, notice that, since (B.4) fails, we are in the situation of Theorem 4.2.
Therefore, the measure μ(r) satisfies the necessary conditions for optimality given
in (4.3). Again, it takes only elementary algebraic calculations to see that these
optimality conditions are equivalent to the “≥” constraints in the problem (B.8).

Now that the feasibility has been established, the optimality of the solution to
the problem (2.7) given by using in (B.7) the value of a = a(μ(r)) from (2.20),
follows, once again, from the fact that this feasible solution has second moment
equal to the optimal value DC(r), as can be checked by easy algebra. �
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