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Abstract

A practical method is developed for estimating the performance of highly reliable
dynamic systems in random environment. The method uses concepts of univariate
extreme value theory and a relatively small set of simulated samples of system states.
Generalized extreme value distributions are fitted to state observations and used to
extrapolate Monte Carlo estimates of reliability and failure probability beyond data.
There is no need to postulate functional forms of extreme value distributions since
they are selected by the estimation procedure. Our approach can be viewed as an
alternative implementation of the method in [7, 8] for estimating system reliability.
Numerical examples involving Gaussian and non-Gaussian system states are used to
illustrate the implementation of the proposed method and assess its accuracy.

1 Introduction

The probability ps(τ) = P
(
X(t) ∈ D, 0 ≤ t ≤ τ

)
that a system state X(t) does not

leave a safe set D during a time interval [0, τ ], and the probability pf (τ) = 1 − ps(τ) that
X(t) exits D at least once in [0, τ ], referred to as reliability and failure probability, are
essential quantities of interest in dynamics. They provide useful metrics for the development
of economical and safe designs.

Monte Carlo simulation is the only method that can be used to find the probabilities
ps(τ) and pf (τ) irrespective of a system size and complexity. System reliability is estimated
by p̂s(τ) = n−1

∑n
i=1 1

(
xi(t) ∈ D, 0 ≤ t ≤ τ

)
, where {xi(t)} are n independent samples

of X(t). However, the method is not feasible in applications involving large-dimensional
(d ≫ 1), highly-reliable (pf (τ) ≃ 0) dynamic systems because of the computational demand
that can be excessive. For example, approximately 106 independent samples of X(t) are
needed to estimate failure probabilities of order 10−5 and the generation of these samples
would require about 105 hours if a single sample can be obtained in 10 minutes.

To reduce the computation time for estimating ps(τ) and pf (τ), it has been proposed
to change the measure of the state vector such that failure and survival events occur ap-
proximately in equal proportion [1]. If such measure change can be constructed, accurate
estimates of ps(τ) result from a relatively small number of samples of X(t) even for highly-
reliable systems. Although the Girsanov theorem provides the theoretical framework for
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measure change when dealing with dynamic system driven by Gaussian noise, the con-
struction of measures providing efficient reliability estimates poses significant difficulties in
applications [5] (Sect. 5.4).

Analytical solutions for ps(τ) and pf (τ) are available in special cases of limited practical
interest. Generally, numerical methods need to be employed to calculate these probabilities.
The theory of random vibration provides exact and approximate methods for calculating the
reliability of dynamic systems. The exact methods involve solutions of partial differential
equations, e.g., the Fokker-Plack equation and partial differential equations for the charac-
teristic function of X(t) with appropriate boundary conditions. They are practical only for
dynamic systems with small state vectors [5] (Sect. 7.3). The approximate methods, e.g., the
stochastic averaging, stochastic linearization, moment closure, perturbation, and crossing of
random processes, have been used with mixed success to solve a broad range of applications
[5] (Sect. 7.3.1.5). It is difficult to assess the accuracy of these methods in a general setting
since they are based on heuristic assumptions.

Recently, an alternative method has been proposed for estimating the performance
of highly-reliable dynamic systems [7, 8]. The method uses a relatively small number of
independent samples of X(t) to estimate the mean rate νD at which this process exits D,
referred to as meanD-outcrossing rate, and approximate ps(τ) from νD under the assumption
that the D-outcrossings of X(t) are Poisson events with intensity νD. Since the sample size
is relatively small, Monte Carlo estimates of ps(τ) based solely on samples of X(t) can
only be obtained for at most moderately-reliable systems. Monte Carlo estimates of mean
D-outcrossing rates and concepts of the extreme value theory are employed in [7, 8] to
construct approximations of ps(τ) beyond data that can be used to assess the performance
of highly-reliable systems.

This paper presents an alternative implementation of the main idea in [7, 8]. Like in
these studies, our objective is to find the probabilities ps(τ) and pf (τ) for highly-reliable
dynamic systems from a relatively small set of samples of X(t). In contrast to these studies,
we use exclusively the theory of univariate extreme value distribution to estimate system
reliability. Our estimates of ps(τ) and pf (τ) are derived from generalized extreme value
(GEV) and generalized Pareto (GP) distributions fitted to samples of X(t). The type of the
extreme value distribution used to construct our approximations for ps(τ) and pf (τ) does
not have to be postulated. It is selected by the estimation procedure.

The proposed GEV and GP estimates of ps(τ) and pf (τ) are satisfactorily in all nu-
merical examples presented in the paper. GEV estimates are more attractive since they
are conceptually simple, apply to both stationary and non-stationary states, and have low
storage demand. On the other hand, GP estimates involve some technicalities, apply only
to stationary states in the form considered in our discussion, and may require significant
storage. Our preference for GEV estimates is at variance with current estimates of floods,
high wind speeds, excessive ozone levels, and other environmental extreme events that are
frequently based on GP distributions [3, 10]. In this setting, GP estimates are often pre-
ferred since they have the potential of extracting more information from single records. For
example, excesses of daily wind speed maxima over a specified threshold can be used to fit
GP distributions and estimate wind speeds of specified return periods. Depending on the
threshold, the number of these excesses can be larger or smaller than the number of years of
daily wind speeds. The sample size for corresponding GEV estimates is equal to the number
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of years in the wind speed record.
Our results are limited to stationary state processes. Following a review of essen-

tials of extreme value theory, the probabilities ps(τ) and pf (τ) are estimated for indepen-
dent/dependent, Gaussian/non-Gaussian discrete-time state processes. Time series rather
than stochastic processes are used to represent samples of X(t) since observations of system
states are recorded at discrete times.

2 Problem definition

Let X(t) be an Rd-valued stationary stochastic process defining the state of a dynamic
system in the steady-state regime. Let Dz = {x ∈ Rd : g(x) ≤ z} denote a safe set,
where g : Rd → (0,∞) is a specified smooth function. The safe set D used previously to
define system reliability ps(τ) coincides with Dz for a particular value of z > 0. We use Dz

rather thenD in our further considerations since this safe set can be expanded and contracted
while preserving its shape so that it can accommodate lowly- to highly-reliable systems. This
definition of Dz is used to calculate the reliability of a broad range of structural/mechanical
systems [2] (Chap. 6).

In this setting, our objective is to estimate the probability

ps(z; τ) = P
(
X(t) ∈ Dz, 0 ≤ t ≤ τ

)
(1)

that X(t) does not leave Dz during the time interval [0, τ ], referred to as system reliability.
The complement pf (z; τ) = 1−ps(z; τ) of this probability is the system probability of failure.

It is assumed that (1) the system state X(t) is a stationary process, (2) the information
on X(t) consists of samples of this process, and (3) the time interval [0, τ ] is sufficiently long
in a sense defined later in the paper. We develop estimates for ps(τ ; z) and pf (τ ; z) under
these assumptions and construct confidence intervals on these estimates. The accuracy of
the estimates depends essentially on properties of X(t), available samples of these process,
and the length of the reference time τ .

An alternative formulation of the reliability problem in Eq. 1 is

ps(z; τ) = P
(
Z(t) ≤ z, 0 ≤ t ≤ τ

)
= P

(
Zτ ≤ z

)
, (2)

where
Z(t) = g

(
X(t)

)
, t ≥ 0, (3)

and Zτ = max0≤t≤τ{Z(t)}. The latter formulation is adequate for our objective and is used
exclusively in the paper. The construction of estimates of ps(z; τ) based on Eq. 2 is simpler
since it involves concepts of the univariate extreme value theory. In contrast, estimates
of this probability based on the formulation in Eq. 1 involve elements of the multivariate
extreme value theory.

3 Estimates of system reliability

Generalized extreme value distributions are fitted to data and used to approximate the
law of Zτ and the probabilities ps(z; τ) and pf (z; τ) = 1 − ps(z; τ). The type of extreme
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value distributions used for the law of Zτ does not have to be specified. It is selected by the
estimation procedure.

Samples of system state are generated from the defining equation of X(t) by Monte
Carlo simulation. If the law of the stationary system state is known, stationary samples
result by assuming that the initial state X(0) follows the stationary distribution of X(t).
Otherwise, stationary samples of X(t) are produced in two steps. First, samples of X(t)
are generated in a time interval [0, τ + τ ′] starting from an arbitrary initial condition, where
τ ′ > 0 is such that transients do not extend beyond τ ′. Second, sections of these samples
during the time interval [τ ′, τ + τ ′] are kept and viewed as stationary samples of X(t).

Monte Carlo estimates of ps(z; τ) and pf (z; τ) are not feasible when dealing with realis-
tic, highly-reliable dynamic systems since they require large numbers of samples of Z(t) and
the generation of a single sample of this process is likely to be computationally demanding.
Moreover, these estimates are only available in the data range. In contrast to Monte Carlo
estimates, the estimates of ps(z; τ) and pf (z; τ) by the proposed method require relatively
small numbers of samples of Z(t) and extend beyond data as illustrated by the numerical ex-
amples in Sect. 4. Block maxima and threshold models are used to implement the proposed
estimates of ps(z; τ) and pf (z; τ).

Exact, GEV and GP estimates, and asymptotic approximations of pf (z;m) are reported
whenever available, e.g., exact failure probabilities are reported only for iid series. GEV and
GP estimates of pf (z;m) are derived from GEV and GP distributions fitted to observations.
Asymptotic approximations are theoretical distributions of extremes of Z(t) corresponding
to infinite reference times.

3.1 Block maxima model

Estimates of the distribution of Zτ are constructed from independent samples zτ,i =
max0≤t≤τ{zi(t)}, i = 1, . . . , nb, of the random variable Zτ = max0≤t≤τ{Z(t)}. Resulting
estimates are used to approximate system reliability and failure probability.

As previously stated, it is assumed that the exposure time τ is sufficiently long such
that Zτ can be assumed to follow a generalized extreme value distribution approximately.
Otherwise, approximations of ps(z; τ) based on the assumption that Zτ follows a GEV dis-
tribution will be biased irrespective of the size of nb. Since the samples of Z(t) are recorded
at discrete times, the available information consists of independent samples of time series(
Z1 = Z(t1), . . . , Zm = Z(tm)

)
, where (t1, . . . , tm) are measurement times in [0, τ ]. Accord-

ingly, the probabilities ps(z; τ) and pf (z; τ) are referred to as ps(z;m) and pf (z;m).

3.1.1 GEV distribution

The univariate extreme value theory constructs approximations for the distribution of
maxima Mm = max{Y1, . . . , Ym} of independent identically distributed (iid) random vari-
ables {Yj}. It can be shown that if there exist sequences of constants {am > 0} and {bm}
such that P

(
(Mm−bm)/am ≤ y

)
→ G(y) as m → ∞ and G is a non-degenerate distribution,

then G belongs to the family of GEV distributions

G(y) = exp

{
−

[
1 + ξ

(
y − µ

σ

)]−1/ξ}
, (4)
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with support {y : 1 + ξ (y − µ)/σ > 0}, where µ ∈ R, σ > 0, and ξ ∈ R are referred to as
location, scale, and shape parameters [3] (Theorem 3.1.1). The subset of the GEV family
with ξ = 0 interpreted as the limit of Eq. 4 as ξ → 0 is the Gumbel family of distributions

G(y) = exp

{
− exp

[
−

(
y − µ

σ

)]}
, y ∈ R. (5)

Note also that the supports of the GEV distributions with ξ > 0 and ξ < 0 are bounded to
the left and the right, i.e., y > µ− σ/ξ for ξ > 0 and y < µ− σ/ξ for ξ < 0.

This theorem implies the approximation P
(
(Mm − bm)/am ≤ y

)
≃ G(y) provided m is

sufficiently large or, equivalently,

P
(
Mm ≤ y

)
≃ G

(
(y − bm)/am

)
= G∗(y), for large m, (6)

where G∗ is another member of the GEV family of distributions. Generally, the GEV dis-
tributions G and G∗ have different parameters. The approximation P

(
Mm ≤ y

)
≃ G∗(y) in

Eq. 6 is particularly useful for applications since it does not involve the sequence of constants
{am} and {bm}. Independent samples of Mm can be used to estimate the parameters of G∗

by, for example, the maximum likelihood method. If m is not sufficiently large, the distribu-
tion of Mm may differ significantly from the GEV distributions so that the approximation
in Eq. 6 is biased. Unfortunately, there are no practical methods for finding m such that
P
(
Mm ≤ y

)
can be assumed to belong to the family of GEV distributions. Useful informa-

tion on the rate of convergence of P
(
Mm ≤ y

)
to extreme value distributions can be found

in [6] (Sects. 2.4 and 4.6).
SupposeMm = max(Y1, . . . , Ym) andMm′ = max(Y1, . . . , Ym′) follow GEV distributions.

Let (µm, σm, ξm) and (µm′ , σm′ , ξm′) denote the parameters of the GEV distributions of Mm

and Mm′ . If the parameters (µm, σm, ξm) are known, then (µm′ , σm′ , ξm′) can be calculated
from µm′ = µm + σm qξm/ξm − σm/ξm, σm′ = σm qξm , and ξm′ = ξm, where q = m′/m.
Hence, failure probabilities can be obtained for any time interval [0,m′] from the asymptotic
distribution of Mm provided m′ is sufficiently long such that Mm′ can be assumed to follow
a GEV distribution.

The above asymptotic results for the distribution of Mm can be extended to dependent
series {Yj} under some conditions [6] (Chap. 3). Following are examples of two sufficient
conditions, referred to as D and D(um). The condition D holds if for any integers 1 ≤ i1 <
· · · < ip < j1 < · · · < jp for which j1 − ip ≥ l and any u ∈ R we have

∆(u) =
∣∣P(

Yi1 ≤ u, . . . , Yip ≤ u, Yj1 ≤ u, . . . , Yjp ≤ u
)

− P
(
Yi1 ≤ u, . . . , Yip ≤ u

)
P
(
Yj1 ≤ u, . . . , Yjp ≤ u

)∣∣ ≤ g(l), (7)

with g(l) → 0 as l → ∞. The condition D(um) requires that Eq. 7 holds for some sequences
{um} rather than an arbitrary u, that is, for any integers 1 ≤ i1 < · · · < ip < j1 < · · · <
jp ≤ m for which j1 − ip ≥ l we have

∆(um) ≤ αm,l, (8)

with αm,lm → 0 as m → ∞ for some sequence lm ∼ o(m). If there are constants {am >
0} and {bm} such that P

(
(Mm − bm)/am ≤ y

)
converges to a nondegenerate distribution
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G(y) and D(um) holds for um = am y + bm and each y, then G(y) is a GEV distribution
[6] (Theorem 3.3.3). We conclude this brief review with the observation that maxima of
dependent series satisfying the conditions D or D(um) and maxima of independent series are
similar in the following sense. Let {Yj} and {Y ∗

j } be dependent and independent stationary
series that have the same marginal distribution, and set Mm = max(Y1, . . . , Ym) and M∗

m =
max(Y ∗

1 , . . . , Y
∗
m). If {Yj} satisfies the condition D(um) with um = am y+ bm, then P

(
(Mm−

bm)/am
)
→ G(y) for a nondegenerate distribution G if and only if P

(
(M∗

m − bm)/am
)
→

G(y) [6] (Theorem 3.5.2). Simpler versions of these results are available for Gaussian series
(Sects. 4.2 and 4.3).

Generally, large values of dependent series tend to cluster so that the distributions of
their maxima may differ from those of stationary independent series with the same marginal
distributions, unless they satisfy conditions of the type stated above. The extremal index is a
correction factor that can be used to obtain distributions of maxima of dependent series from
distributions of maxima of independent series that have the same marginal distributions. Let
{Yj} and {Y ∗

j } be dependent and independent stationary series that have the same marginal

distribution. Under some conditions, P
(
(M∗

m − bm)/am ≤ y
)
→ G(y) as m → ∞, where

{am > 0} and {bm} are some sequences of constants and G is a non-degenerate distribution,
if and only if P

(
(Mm − bm)/am ≤ y

)
→ G(y)η, where η ∈ (0, 1] is a constant referred to

as extremal index [3] (Theorem 5.2). The inverse of η provides an approximation for the
average size of clusters of extremes of {Yj}.

3.1.2 Reliability estimates

Maximum likelihood estimates (MLE) are obtained for the parameters θ = (µ, σ, ξ) of
GEV distributions fitted to independent samples {zτ,i}, i = 1, . . . , nb, of Zτ . The estimates
are used to construct approximations for system reliability ps(z; τ) and failure probability
pf (z; τ) and find confidence intervals for these probabilities.

Under the assumption that Zτ follows a GEV distribution, the log-likelihood function
for the GEV parameters has the expression [3] (Sect. 3.3.2)

ℓ(µ, σ, ξ) = −µ log(σ)− (1+1/ξ)

nb∑
i=1

log
[
1+ξ

(
(zτ,i−µ)/σ

)]
−

nb∑
i=1

[
1+ξ

(
(zτ,i−µ)/σ

)]−1/ξ
,

provided ξ ̸= 0 and 1 + ξ (zτ,i − µ)/σ > 0, i = 1, . . . , nb. If ξ = 0, the log-likelihood function
becomes

ℓ(µ, σ) = −nb log(σ)−
nb∑
i=1

(zτ,i − µ)/σ −
nb∑
i=1

exp
(
(zτ,i − µ)/σ

)
.

The vectors θ̂ that maximizes ℓ(µ, σ, ξ) or ℓ(µ, σ) give the MLE estimates (µ̂, σ̂, ξ̂) of the
parameters of the GEV distribution or the MLE estimates (µ̂, σ̂) of the Gumbel distribution.
The MLE estimator Θ̂ is approximately Gaussian with mean θ and covariance matrix γ(θ)
for large nb, where γ(θ)−1 = {−∂2ℓ(θ)/∂θp ∂θq} [3] (Theorem 2.2). This observation can be

used to construct approximate confidence intervals for the components Θ̂i of Θ̂, for example,
the (1−α) confidence interval for Θ̂i is θ̂i± ξα/2

√
γ(θ)ii, where ξα/2 is the (1−α/2) quantile

of the standard Gaussian variable. Since θ is not known, we replace γ(θ) with γ(θ̂), where θ̂
is an estimate of θ.

6



Estimates of system reliability and failure probability can be obtained by using the MLE
estimates in the expression of the approximate GEV distribution of Zτ [3] (Theorem 2.3).
For example, pf (z; τ) can be approximated by

pf (z; τ) ≃ 1− exp

{
−
[
1 + ξ̂

(
z − µ̂

σ̂

)]−1/ξ̂}
≃

[
1 + ξ̂

(
z − µ̂

σ̂

)]−1/ξ̂

, (9)

where the latter approximation holds for ξ̂ > 0 and z > 0 sufficiently large.
The delta method and the asymptotic normality of Θ̂ for large nb [3] (Theorem 2.4)

can be used to construct confidence intervals for ps(z; τ) and pf (z; τ). Denote the failure
probability pf (z; τ) by pf (z; τ, θ) to emphasize its dependence on θ. This probability becomes

a random element if θ is replaced with Θ̂ ∼ N(θ, γ(θ)). The first order Taylor expansion of
the resulting function about θ has the expression

P̂f (z; τ, Θ̂) = pf (z; τ, θ) +
3∑

i=1

∂pf (z; τ, θ)

∂θi

(
Θi − θi

)
, (10)

so that P̂f (z; τ, Θ̂) is a Gaussian variable with mean E
[
P̂f (z; τ, Θ̂)

]
= pf (z; τ, θ) = pf (z; τ)

and variance γpf (θ) =
∑3

p,q=1

(
∂pf (z; τ, θ)/∂θp

) (
∂pf (z; τ, θ)/∂θq

)
γpq(θ). Since θ is not

known, we replace it with its MLE estimate θ̂ and use the properties of P̂f (z; τ, Θ̂) with

expansion point θ = θ̂ to construct confidence intervals on failure

3.2 Threshold model

In contrast to the block model that uses a single reading from an entire sample Z(t),
0 ≤ t ≤ τ , to fit GEV distributions, the threshold model uses observations of Z(t) that exceed
specified thresholds. Excesses of Z(t) above these thresholds are used to fit generalized Pareto
distributions.

Let Y1, . . . , Ym be iid random variables for which there are sequences of constants {am >
0} and {bm} such that P

(
(Mm − bm)/am ≤ y

)
converges to G(y) in Eq. 4 as m → ∞, where

Mm = max(Y1, . . . , Ym) and G is the GEV distribution in Eq. 4 with location, scale, and
shape parameters µ, σ, and ξ. Then, for large u,

P
(
Y1 ≤ y | Y1 > u

)
≃ H(y) = 1−

(
1 +

ξ (y − u)

σ̃

)−1/ξ

, on {y > u : 1 + ξ (y − u)/σ̃ > 0}

(11)
where ξ is the shape parameter of the GEV distribution G and

σ̃ = σ + ξ (u− µ). (12)

The family of distributions H(y) is called generalized Pareto (GP) [3] (Theorem 4.1).
Let y1, . . . , ym be m independent observations of {Yi} and suppose a threshold u has

been selected. If ξ ̸= 0, the log-likelihood function of the generalized Pareto parameters is

ℓ(σ̃, ξ) = −
( m∑

k=1

1(yk > u)

)
log(σ̃)− (1 + 1/ξ)

m∑
k=1

1(yk > u) log
(
1 + ξ (yk − u)/σ̃

)
7



provided 1 + ξ (yk − u)/σ̃ > 0 for yk > u. k = 1, . . . ,m. If ξ = 0, then

ℓ(σ̃) = −
( m∑

k=1

1(yk > u)

)
log(σ̃)− (1/σ̃)

m∑
k=1

1(yk > u) (yk − u).

The values of (σ̃, ξ) or σ̃ that maximize the above expressions are the MLE estimates.
The selection of the threshold u for which the above result holds is not straightforward.

If u is too small, the approximation in Eq. 11 does not hold so that its use results in biased
estimators. If u is too large, only a few excesses are observed so that resulting estimators
of Pareto parameters will have large variances. The selection of u is commonly guided by
the fact that ξ does not change with u and σ̃ varies linear with u in the range of thresholds
for which Eq. 11 holds. The following two-step approach can be used to select a u. First,
calculate estimates ˆ̃σ and ξ̂ of σ̃ and ξ for a range of values of u. Second, identify intervals
in which ˆ̃σ and ξ̂ are approximately linear and constant functions of u. Thresholds in these
intervals are considered to be admissible. A difficulty in applications is that intervals with
these properties may be difficult to identify by visual inspection. For example, suppose {Yj}
is an iid series with Fréchet marginal distribution F (x) = exp

(
− x−1.9

)
, x > 0. Estimates

of the shape parameter ξ are ξ̂ = 0.5016 using nb = 100 blocks of size m = 1000 and ξ̂ = 0.5
using a single sample of length n = nb m = 100000 for the GEV and GP distributions,
respectively. The estimates of σ̃ and ξ have the desired properties for u ∈ [1, 6]. On the
other hand, such an interval is difficult to identify for an iid Gaussian series {Yj}. Using the

same number of samples as for the Fréchet series, ξ̂ = −0.12 for u in the interval [3.5, 4] that
seems to be admissible. The corresponding estimate based on block maxima is ξ̂ = −0.13.
The actual value of the shape parameter is ξ = 0 [6] (Example 1.7.1).

An alternative method has been recently developed for estimating the tail parameter
[9]. The main idea is based on the fact that upper order statistics of samples that fall in the
tail region behave like a Poisson random measure with a power intensity. This observation is
used to construct an automated algorithm for estimating the tail index that does not require
visual inspection. This method has not been used in the following numerical examples since
it was possible to obtain satisfactory estimates of the tail index by method currently used
in applications.

4 Numerical illustrations

Let {Zi}, i = 1, 2, . . ., be a real-valued stationary series defining a system state. Our
objective is to estimate the probability ps(z;m) = P

(
max1≤i≤m{Zi} ≤ z

)
= P

(
Mm ≤ z

)
that {Zi} does not exceed a critical level z, referred to as system reliability for the safe set
Dz = (−∞, z] or, equivalently, system failure probability pf (z;m) = 1 − ps(z;m), where
Mm = max(Z1, . . . , Zm) and m is a reference time. Three cases are examined. For the
first two cases, {Zi} are independent and first order Markov sequences. For the third case,
{Zi} are displacements of linear single degree of freedom systems recorded at discrete times.
Reliability estimates are obtained by block maxima and threshold models.

The GEV and GP estimates of ps(z;m) and pf (z;m) are based on nb independent
sets of samples of {Zi} with size m and single samples of this series with size n = nbm,
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respectively. Hence, the same number of observations of {Zi} are used to construct both
estimates of system reliability.

The following expressions, approximations, and estimates are presented for pf (z;m). If
{Zi} is an iid series, pf (z;m) can be calculated exactly and is reported. Generally, pf (z;m)
cannot be obtained exactly for other types of time series. Theoretical GEVs, i.e., asymp-
totic distributions of Mm, can be constructed for iid series {Zi} and used to approximate
pf (z;m) by pf (z;m) ≃ G

(
(z − bm)/am

)
, where G is given in Eq. 4 and {am > 0} and {bm}

are sequences of constants depending on the marginal distribution of {Zi}. GEV and GP
estimates of pf (z;m) are estimates of P (Mm > z) obtained by using block maxima and
threshold models. These estimates are reported in all cases. When needed, extremal indices
are used to correct GP estimates of pf (z;m) obtained under the assumptions of independence
between extremes of {Zi}.

4.1 Stationary independent series

Sequences {Zi} with various marginal distributions are considered. First, exact and
asymptotic distributions of Mm = max(Z1, . . . , Zm) are compared to find values of m below
which asymptotic distributions cannot be used to characterize Mm. Second, estimates of
ps(z;m) and pf (z;m) are obtained by block maxima and threshold models using the same
number of observations of {Zi}.

Example 1. Exact and asymptotic probabilities P (Mm > z) are calculated and compared
for iid series {Zi} with marginal distributions F (z) = Φ(z), F (z) = 1 − exp(−z), and
F (z) = 1/2 + (1/π) tan−1(z). The exact distribution of Mm is P (Mm ≤ z) = F (z)m.
The asymptotic distribution of Mm is the GEV distribution in Eq. 6, i.e., the limit of
P
(
(Mm − bm)/am ≤ z

)
as m → ∞, where the scaling and shifting constants {am > 0} and

{bm} depend on the marginal distribution of {Zi} and are

Gauss : am =
(
2 ln(m)

)−1/2
; bm = 1/am − (1/2) am

(
ln(ln(m))− ln(π)

)
,

Exponential : am = 1; bm = ln(m), and

Cauchy : am = 1/ tan(π/m); bm = 0.

for the Gauss, Exponential, and Cauchy series considered in this example [6] (Sect. 1.7). The
asymptotic laws of Mm are the Gumbel distribution for the Gauss and Exponential series
and the Fréchet distribution for the Cauchy series.

Figures 1 to 2 show exact and asymptotic probabilities P (Mm > z) with solid and dash
lines, i.e., the probabilities 1−

(
F (am z+ bm)

)m
and 1−G(z), where G(z) = exp[− exp(−z)]

for the Gaussian and Exponential series and G(z) = exp(−1/z) for the Cauchy series. The
exact distributions approach rapidly the asymptotic distributions of Mm for exponential and
Cauchy sequences. The convergence of the exact distribution to its GEV attractor is much
slower for Gaussian series, a numerical observation that is consistent with statements in [6]
(Sect. 2.4). The practical implication of this result is that, for a given exposure time m, Mm

may or may not be assumed to follow its asymptotic GEV distribution depending on the
marginal distribution of {Zi}.
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Figure 1: Exact (solid lines) and asymptotic (dash lines) probabilities P
(
Mm > z

)
for

standard Gaussian series with size m = 100 (left panel), m = 1000 (middle panel), and
m = 10000 (right panel)
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Figure 2: Exact (solid lines) and asymptotic (dash lines) probabilities P
(
Mm > z

)
for

exponential (left panel) and Cauchy (right panel) series with size m = 10. The dash and
solid lines coincide in the left panel

Example 2. Suppose the iid series {Zi} follows a standard Gaussian distribution, an Ex-
ponential distribution with unit mean and variance, or a GEV distribution with location
µ = 0, scale σ = 1, and shape parameter ξ = 0.2. The scaling and shifting parameter for
Mm = max(Z1, . . . , Zm) corresponding to the GEV model are am = mξ and bm =

(
am−1

)
/ξ.

The scaling and shifting parameter for Gaussian and Exponential series are in the previous
example. Estimates are constructed for the failure probability pf (z;m) = P (Mm > z) by
using block maxima and threshold models. The data set consists of nb sets of samples of {Zi}
with length m = 1000 and single samples of this series with length n = nbm for the block
maxima and threshold models, so that the two models use the same number of observations
of {Zi}.
Block maxima model. The dash lines in Figs. 3 to 5 have the same meaning as the dash
lines in Figs. 1-2, i.e., they are asymptotic distributions of Mm. They are Gumbel for the
Gaussian and Exponential series and GEV for the GEV series. The solid lines are estimates
p̂f (z;m) of pf (z;m) obtained by the block maxima model described in Sect. 3.1, i.e., Mm is
assumed to follow a GEV distribution whose parameters are estimated from the maxima of
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Figure 3: GEV estimates (solid lines) and asymptotic approximations (dash lines) of failure
probability for Gaussian series based on nb = 100 (left panel) and nb = 1000 (right panel).
Stars are MC estimates

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log(z)

lo
g
(

p
f
(z
;m

))

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

log(z)

lo
g
(

p
f
(z
;m

))

Figure 4: GEV estimates (solid lines) and asymptotic approximations (dash lines) of failure
probability for Exponential series based on nb = 100 (left panel) and nb = 1000 (right panel).
Stars are MC estimates

nb sets of samples of {Zi} with length m. The GEV estimate of pf (z;m) has the expression

p̂f (z;m) = 1− exp

{
−
[
1 + ξ̂m

(
z − µ̂m

σ̂m

)]−1/ξ̂m}
, (13)

where µ̂m, σ̂m, and ξ̂m denote MLE estimates for the location, scale, and shape parameters of
the GEV model of Mm. The MATLAB function gevfit was used to estimate the parameters
of the above GEV distributions and corresponding confidence intervals. The stars in the
figure are Monte Carlo (MC) estimates of pf (z;m) obtained from nb samples of Mm.

The accuracy of the MLE estimates µ̂m, σ̂m, and ξ̂m depends on the distribution of
{Zi}, number of blocks nb, and block length m. The MLE estimates (µ̂m, σ̂m, ξ̂m) are
(3.0573, 0.2773,−0.1502), (3.0871, 0.2902,−0.0979), and (3.0832, 0.2999,−0.0680) for nb =
100, 1000, and 10000, respectively, if {Zi} is a Gaussian series. The corresponding 90%
confidence intervals are

(2.9970, 3.1176), (0.2385, 0.3225), and (−0.2775,−0.0229), for nb = 100,

(3.0671, 3.1071), (0.2765, 0.3047), and (−0.1389,−0.0570), for nb = 1000, and

(3.0767, 3.0897), (0.2953, 0.3046), and (−0.0804,−0.0556), for nb = 10000.
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GEV series

Figure 5: GEV estimates (solid lines) and asymptotic approximations (dash lines) of failure
probability for GEV series based on nb = 100 (left panel) and nb = 1000 (right panel). Stars
are MC estimates

The shape parameter of the asymptotic GEV distribution of Mm is zero since {Zi} is
Gaussian. The estimates ξ̂m are in a small vicinity of ξ = 0 but their confidence in-
tervals do not contain the actual value of the shape parameter. If {Zi} is Exponential,
(µ̂m, σ̂m, ξ̂m) = (6.8507, 1.0592,−0.0563) and (6.8798, 0.9673,−0.0026) for nb = 100 and
1000. The corresponding 90% confidence intervals are

(6.6161, 7.0853), (0.9033, 1.2420), and (−0.2043, 0.0917), for nb = 100 and

(6.8125, 6.9471), (0.9197, 1.0175), and (−0.0473, 0.0421), for nb = 1000.

As for the Gaussian series, Mm follows approximately a Gumbel distribution for large m,
i.e., a GEV distribution with shape parameter ξ = 0. The confidence intervals on ξ̂m include
the actual shape parameter in this case.

The MLE estimates for GEV series are (µ̂m, σ̂m, ξ̂m) = (14.7423, 4.0647, 0.1689) and
(15.0568, 4.0315, 0.1720) for nb = 100 and 1000 for GEV series. The corresponding 90%
confidence intervals are

(13.8447, 15.6399), (3.4229, 4.8270), and (0.0190, 0.3188)), for nb = 100 and

(14.7761, 153375), (3.8185, 4.2564), and (0.1248, 0.2192), for nb = 1000.

The actual parameters of the GEV distribution of Mm are µm = (mξ − 1)/ξ = 14.9054,
σm = mξ = 3.9811, and ξm = ξ = 0.2. The confidence intervals contain the parameters of
the GEV of Mm and are tighter for larger nb. The horizontal lines generated by stars in
the left panel of Fig. 5 is caused by a block maxima that is much larger than all the other.
Similar results can be seen in other plots.

Differences between exact and asymptotic distributions of Mm are caused by the finite-
ness of the sample size m and the number of blocks nb. Figures 1 and 2 show that the exact
distribution of Mm approaches its GEV attractor as m increases. Since m < ∞, the asymp-
totic distribution of Mm is biased. Figures 3 to 5 illustrate effects of statistical uncertainty.
The uncertainty in the estimates (µ̂m, σ̂m, ξ̂m) decreases with nb. Yet, the confidence inter-
vals on these parameters may not include the parameters of the asymptotic distribution of
Mm since, if m is not sufficiently large, the asymptotic distribution is biased. An illustration
is provided by the confidence intervals on ξ̂m for Gaussian series.
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The plots show that GEV distributions fitted to observation match Monte Carlo esti-
mates of P (Mm > z). This suggests that Mm can be assumed to follow a GEV distribution
even for relatively small values of m. Figures 3 to 5 suggest that GEV distributions fitted
to observation can be used to estimate failure probabilities for thresholds z way outside the
data range.

Threshold model. Suppose a single samples of {Zi} with size n = nbm is available, so that
we use the same number of observations for GEV and GP estimates of system reliability.
The estimation procedure is outlined in Sect. 3.2.1. A range I of thresholds u is selected,
MLE estimates ξ̂(u) and ˆ̃σ(u) are constructed for the parameters of the GP distribution in
Eq. 11 for u ∈ I, and a threshold u0 ∈ I is selected such that ξ̂(u) is invariant and ˆ̃σ(u)
varies linearly with u in a vicinity of u0.

Excesses of {Zi} above z > u0 define a Binomial sequence with probability of success
P (Z1 > z). The probability P (Z1 > z) can be estimated from data for relatively low z
but not for large thresholds z, as considered in our discussion. To estimate P (Z1 > z) for
large thresholds z that are outside data range, observations need to be supplemented by
models. Since z > u0, we have P (Z1 > z) = P (Z1 > u0)P

(
Z1 > z | Z1 > u0

)
. The

probability P (Z1 > u0) can be estimated from observations since u0 is in data range. The
GP distribution for excesses of {Zi} above u0 delivers the approximation

P
(
Z1 > z | Z1 > u0

)
=

P (Z1 > z)

P (Z1 > u0)
≃ 1−H(y) =

(
1 +

ξ̂(u0) y

ˆ̃σ(u0)

)−1/ξ̂(u0)

, z > u0, (14)

The probability that there is at least a success in a Binomial sequence with length m, i.e.,
the failure probability pf (z;m), can be approximated by

pf (z;m) ≃ 1− exp
[
−mP (Z1 > z)

]
≃ 1− exp

[
−mP (Z1 > u0)

(
1−H(y)

)]
(15)

provided m and P (Z1 > z) are sufficiently large and small, respectively. Under these con-
ditions, the Binomial sequence can be approximated by a Poisson process with intensity
P (Z1 > z) in the time interval [0,m].

Figure 6 shows with solid lines estimates of the probability 1 − H(y) in Eq. 14 for
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Figure 6: Estimates of 1−H(y) (solid lines) for Gaussian (left panel), Exponential (middle
panel), and GEV (right panel) series based on single samples of size n = 1000000 and
corresponding MC estimates of P

(
Z1 > y + u0 | Z1 > u0

)
. Stars are MC estimates

Gaussian, Exponential, and GEV series based on single samples with length n = nb m =
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1000000 corresponding to nb = 1000 sets of samples of length m = 1000 under the block
maxima model. The thresholds u0 are those used in the following figures, i.e., u0 = 2, 6.5,
and 17. The stars are MC estimates of P

(
Z1 > y+u0 | Z1 > u0

)
. The GP and MC estimates

in the figure are consistent and remain consistent for other samples of {Zi}, which suggests
that the approximation in Eq. 14 is satisfactory.

The dash lines in Fig. 7 are approximations of pf (z;m) based on asymptotic distribu-
tions of Mm, i.e., pf (z;m) ≃ P (Mm > z) = P

(
(Mm − bm)/am > (z − bm)/am

)
, which is

approximated by pf (z;m) ≃ 1−exp
[
−exp

(
(z−bm)/am

)]
for Gaussian and Exponential se-

ries. The solid lines are GP estimates of Mm based on single samples of {Zi} with length n =
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Figure 7: GP estimates (solid lines) and asymptotic approximations (dash lines) of failure
probability (solid and dash lines) for Gaussian (left panel), Exponential (middle panel), and
GEV (right panel) series based on single samples of size n = 1000000

nbm = 1000000. The two solid lines in the left and middle panels correspond to two indepen-
dent samples of {Zi} with size n = 1000000. The two lines in the right panel coincide at the
figure scale. The MLE estimates for the parameters (ξ, σ̃) of the generalized Pareto (GP) dis-
tribution corresponding to one of the samples of {Zi} are (−0.1132, 0.4142), (0.0037, 0.9697),
and (0.1939, 4.2594) for the Gaussian, Exponential, and GEV series. The corresponding 90%
confidence intervals are (−0.1245,−0.1019), (−0.0499, 0.0573), and (0.0983, 0.2885) for the
estimates of ξ and (0.4072, 0.4214), (0.9004, 1.0443), and (3.7693, 4.8132) for the estimates
of σ̃. As already mentioned, the thresholds used to obtained these estimates are u0 = 2,
6.5, and 17 for the Gaussian, Exponential, and GEV series, and have been selected by the
algorithm in Sect. 3.2.1. The estimates of ξ and σ̃ vary slowly with and depend linearly on
u in vicinities of the thresholds u0 selected in this manner. The MATLAB function gpfit
was used to estimate the parameters of GP distributions and confidence intervals for these
estimates.

The GEV and GP approximate distributions of Mm are consistent. For examples, the
estimates of the shape parameter ξ are -0.0979 and -0.1132 for the Gaussian series, -0.0026
and 0.0037 for the Exponential series, and 0.1720 and 0.1939 for the GEV series by the block
maxima and threshold models, respectively. The plots in Fig. 7 also illustrate differences
in the rate of convergence of the distribution of max1≤i≤m{Zi} to corresponding asymptotic
distributions. The GP estimates of P (Z1 > z | Z1 > u), z > u, in Fig. 6 match closely Monte
Carlo estimates and provide models for these probabilities beyond data although m < ∞ so
that the distribution of Mm differs from its asymptotic distribution.

We conclude this section with the following observation. The GEV and GP estimates
of pf (z;m) in Example 2 and in all subsequent examples in the paper are based on the same
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number of observations of {Zi}. The parameters of the GP distribution used to estimate
pf (z;m) are based on excesses of {Zi} above a threshold u0 that is selected by statistical
arguments. Generally, the number of excesses of {Zi} relative to this threshold differs from
nb, i.e., the numbers of samples of Mm = max(Z1, . . . , Zm) used to construct GEV estimates
of pf (z;m) by the block maxima model. Suppose now that u0 is such that the number of
excesses of {Zi} above this threshold is approximately nb, i.e., u0 ≃ Φ−1

(
1−nb/n

)
= 3.0902

for {Zi} Gaussian, so that the GEV and GP parameters are estimated from the same number
of data. The heavy solid and dash lines and the stars in Fig. 8 are those in Fig. 3. The
solid thin lines are GP estimates obtained from excesses of {Zi} above u0 ≃ Φ−1

(
1− nb/n

)
.
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Figure 8: GEV and GP estimates (heavy and thin solid lines) and asymptotic approximations
(dash lines) of failure probability for Gaussian series based on nb = 100 (left panel) and
nb = 1000 (right panel). Stars are MC estimates

The estimates of (ξ, σ̃) are (−0.0575, 0.2931) and (−0.1138, 0.2968) for nb = 100 and nb =
1000. The 90% confidence intervals for the estimates of ξ and σ̃ are (−0.2823, 0.1752) and
(0.1720, 0.3157) for nb = 100 and (−0.1711,−0.0566) and (0.2729, 0.3228) for nb = 1000.
The GEV and GP estimates of pf (z;m) are consistent and match MC estimates of this
probability. The two estimates nearly coincide as the sample size is increased from nb = 100
to nb = 1000 blocks. The threshold u0 selected in this manner simplifies the implementation
of GP estimates, yields accurate approximations of pf (z;m) in this illustration.

Results in this section show that, if the asymptotic law of Mm = max(Z1, . . . , Zm) is the
Gumbel distribution, the estimates ξ̂ of the shape parameters of the GEV and GP estimates
fitted to samples of Mm are in a small vicinity of zero. Figure 9 shows with dash and solid
the Gumbel distribution with scale σ = 1.3 and location µ = 3 and GEV estimates fitted to
several sets of 100 (left panel) and 1000 (right panel) independent samples of this Gumbel
distribution. The estimates ξ̂ of the GEV models are in the ranges (−0.1913, 0.0228) and
(−0.0384, 0.0549) for sets of 100 and 1000 Gumbel samples. The GEV estimates correspond-
ing to negative values of ξ̂ are inconsistent with the asymptotic distribution of Mm since their
upper tails are bounded. Yet, they are satisfactory over a relatively large range of probabili-
ties. The accuracy of the GEV estimates improves significantly with the sample size and the
estimates show much less sample to sample variability. Two options are suggested for cases
in which ξ̂ ≃ 0. If computationally feasible, increase the sample size to reduce the uncer-
tainty in ξ̂ and obtain reliable GEV estimates over a relatively large range of probabilities.
Otherwise, use the resulting GEV estimates over a smaller range of probabilities.
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Figure 9: Gumbel distribution (dash lines) and GEV estimates (solid lines) fitted to sets of
100 (left panel) and 1000 (right panel) independent Gumbel samples

4.2 Stationary Markov series

Let {Zi} be the state of a dynamic system defined by the recurrence formula

Zi = ρZi−1 + (1− ρ2)1/2 Wi, i = 1, 2, . . . , (16)

where {Wi} are iid random variables with mean 0 and variance 1. The marginal distribution
of {Wi} is assumed to be Gaussian or Exponential, so that the first order Markov series {Zi}
may or may not be Gaussian. Estimates are calculated for the failure probability pf (z;m) by
the block maxima and threshold models for stationary series {Zi} in Eq. 16. Approximate
confidence intervals are derived for estimates of pf (z;m) based on the approach in Eq. 10.

Let {Z∗
i } be an iid series that has the same marginal distribution as {Zi}. The

asymptotic distributions of Mm = max1≤i≤m{Zi} and M∗
m = max1≤i≤m{Z∗

i } may coin-
cide under some conditions that are simple to check for Gaussian series. For example, let
r(k) = E[Zi Zi+k] denote the correlation function of a stationary Gaussian series {Zi}. If
r(k) log(k) → 0 as k → ∞, then Mm follows approximately a Gumbel distribution, i.e.,
P
(
(Mm− bm)/am ≤ z

)
→ exp

(
− exp(−z)

)
, where {am > 0} and {bm} are the constants for

independent Gaussian series given in a previous section [6] (Theorem 4.3.3). This implies
P
(
(Mm − bm)/am ≤ z

)
≃ P

(
(M∗

m − bm)/am ≤ z
)
for sufficiently large m. It can also be

shown that if r(k) log(k) → 0 and k
(
1 − Φ(uk)

)
is bounded for a sequences of constants

{uk}, then the condition D(um) stated in Sect. 3.1.1 holds [6] (Theorem 4.4.1).
Generally, large values of {Zi} cluster so that they are not independent. We have seen

that, if P
(
(M∗

m − bm)/am ≤ z
)
→ G(z), m → ∞, where M∗

m = max(Z∗
1 , . . . , Z

∗
m) and

{Z∗
i } is an iid series with the same marginal distribution as {Zi}, then P

(
(Mm − bm)/am ≤

z
)
→ G(z)η, where η ∈ (0, 1] denotes the extremal index. Since G(z)η ≥ G(z), the failure

probability pf (z;m) ≃ 1 − G(z)η ≤ 1 − G(z) will be overestimated if clustering of large
value of {Zi} is disregarded. Designs based on the independence assumption for {Zi} will be
conservative. The degree of conservatism may or may not be significant depending on the
properties of {Zi} and the reliability level.

Example 3. Suppose {Wi} in Eq. 16 is Gaussian and the initial state is a standard Gaussian
variable that is independent of the driving noise, so that {Zi} is a stationary Gaussian
series. Since {Zi} is a Gaussian series with correlation function r(k) = E[Zi Zi+k] = ρ|k| and
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r(k) log(k) → 0 as k → ∞, we have P
(
(Mm − bm)/am ≤ z

)
→ exp

(
− exp(−z)

)
, where

{am > 0} and {bm} are the constants for independent Gaussian series given in a previous
section [6] (Theorem 4.3.3). This implies that the extremal index for this series is η = 1 and
the asymptotic distributions of Mm and M∗

m coincide.

Block maxima model. The approach for estimating the distribution of Mm is identical with
that used for independent series since the samples of Mm, i.e., block maxima, are indepen-
dent. It is assumed as previously that m is sufficiently large such that Mm follows approx-
imately a GEV distribution. A useful discussion on the rate at which the distributions of
maxima of stationary Gaussian series converge to the Gumbel distributions can be found in
[6] (Sect. 4.6).

The solid and dash lines in Fig. 10 are Monte Carlo (MC) and GEV estimates of
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Figure 10: Estimates of pf (z;m) for ρ = 0.0 (left panel) and ρ = 0.7 (right panel) for two
sets of nb = 100 samples with length m = 1000 by MC (solid lines) and GEV (dash lines)

pf (z;m) = P
(
Mm > z

)
for m = 1000 obtained from two sets of nb = 100 independent

samples of (Z1, . . . , Zm). The MLE estimates (µ̂, σ̂, ξ̂) of the GEV parameters (µ, σ, ξ) for
the two sets of nb = 100 samples of (Z1, . . . , Zm) are

(3.0679, 0.2560,−0.1027) and (3.0439, 0.2683,−0.1551), for ρ = 0.0 and

(3.1015, 0.2800,−0.1679) and (3.0038, 0.3249,−0.0351), for ρ = 0.7.

The estimates of pf (z;m) can differ significantly for large thresholds z, i.e., highly reli-
able systems, if based on nb = 100 blocks. The number of blocks needs to be increased
to obtain reliable estimates for failure probabilities up to, e.g., order 10−10. For example,
MLE estimates (µ̂, σ̂, ξ̂) of the GEV parameters based on nb = 10000 independent sam-
ples of (Z1, . . . , Zm) exhibit less sample-to-sample variability. For two sets of nb = 10000
blocks these estimates are (3.0886, 0.2982,−0.0663) and (3.0882, 0.2974,−0.0545) if ρ = 0.0
and (3.0163, 0.3235,−0.0877) and (3.0204, 0.3284,−0.0891) if ρ = 0.7. The corresponding
estimates of pf (z;m) based on these sets of samples of {Z} nearly coincide for failure prob-
abilities up to order 10−10. As for results in Figs. 4 and 5, the GEV estimates in Fig. 10
match closely Monte Carlo estimates of pf (z;m) and provide simple models for extending
MC estimates of pf (z;m) beyond data.
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Figure 11: Approximate 90% confidence intervals for the MLE estimator of pf (z;m) for
m = 1000, nb = 100, ρ = 0.0 (left panel) and ρ = 0.7 (right panel)

Figure 11 shows symmetric 90% confidence intervals for the estimator of the failure
probability in Eq. 10 based on nb = 100 independent samples of (Z1, . . . , Zm), m = 1000,
with correlation coefficients ρ = 0.0 and ρ = 0.7. They correspond to one of the sets of
samples used in Fig. 10. The confidence intervals for ρ = 0.7 are slightly larger than those
for ρ = 0.0 for this numerical illustration.

Threshold model. The procedure used to estimate pf (z;m) for stationary independent Gaus-
sian series holds in this case since {Zi} is a stationary Gaussian series and its correlation
function r(k) satisfies the condition r(k) log(k) → 0 as r → ∞. Estimates ξ̂(u) and ˆ̃σ(u) are
calculated for the parameters ξ and σ̃ of the GP distributions corresponding to excesses of
{Zi} above thresholds u in an interval I, a threshold u0 ∈ I is selected following the approach
in Example 2, the conditional probability P (Z1 > z | Z1 > u0), z > u0, is approximated by
Eq. 14, and an estimate of pf (z;m) results from Eq. 15.

MLE estimates (ξ̂, ˆ̃σ) of the GP parameters are (−0.1347, 0.4160) and (−0.1430, 0.4225)
for ρ = 0.0 and ρ = 0.7, respectively, and a sample of {Zi} with length n = 100000. The cor-
responding 90% confidence intervals on ξ̂ and ˆ̃σ are (−0.1707,−0.0988) and (0.3940, 0.4392)
for ρ = 0 and ˆ̃σ are (−0.1760,−0.1100) and (0.4011, 0.4451) for ρ = 0.7. The estimates are
for a threshold u0 = 2. The quality of these estimates improves significantly if based on a
sample of length n = 1000000. For ρ = 0.0 the MLE estimates of (ξ, σ̃) are (−0.0987, 0.3616)
and 90% confidence intervals on ξ̂ and ˆ̃σ are (−0.1188,−0.0786) and (0.3511, 0.3725), respec-
tively. They suggest that ξ̂ approaches zero as n increases, which is the shape parameter for
the Gumbel distribution.

Monte Carlo (MC), GEV, and GP estimates of pf (z;m) are shown in Fig. 12 with solid
lines, dash lines, and circular markers. The solid and dash lines are those from Fig. 10. The
MC and GEV estimates are obtained from sets of nb = 100 samples of {Zi} with length
m = 1000 while the GP estimates are derived from single samples of {Zi} with length
n = nbm = 100000. The GEV and GP estimates show larger sample-to-sample variability
for correlated series. Also, differences between GEV and GP estimates seem to increase
with the correlation of {Zi}. The GEV and GP estimates have a common feature, which is
essential for estimating performance of highly-reliable systems. In contrast to MC estimates

18



0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−12

−10

−8

−6

−4

−2

0

log(z)

lo
g
(

p
f
(z
;m

))

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−12

−10

−8

−6

−4

−2

0

log(z)

lo
g
(

p
f
(z
;m

))

Figure 12: MC (solid lines), GEV (dash lines), and GP (circular markers) estimates of
pf (z;m) for {Zi} defined by Eq. 16 driven by Gaussian white noise for ρ = 0.0 (left panel)
and ρ = 0.7 (right panel)

that are limited to the range of observations, the GEV and GP estimates extend beyond
data.

Example 4. Suppose the driving noise {Wi} in Eq. 16 follows a shifted marginal exponential
with mean 0 and variance 1, so that the time series {Zi} is not Gaussian. The relationships
between the skewness and kurtosis coefficients, γ3 and γ4, of {Zi} in the stationary regime
and the corresponding coefficients, γW,3 = 2 and γW,4 = 9, of {Wi} are [4] (Example 3.35)

γ3 =
(1− ρ2)3/2

1− ρ3
γW,3 and γ4 =

6 ρ2 + (1− ρ2) γW,4

1 + ρ2
.

For example, the skewness and kurtosis coefficients of {Zi} are (γ3, γ4) = (1.1087, 5.0537)
and (0.6112, 3.6298) for ρ = 0.7 and ρ = 0.9, respectively.

Block maxima model. Samples of block maxima are used, as in the previous case in which
the driving noise is Gaussian, to construct GEV approximations for the distribution of Mm.
Numerical results are for m = 1000. The solid lines in Figs. 13 and 14 are GEV estimates of
failure probability pf (z;m) based on two sets of nb = 100 and nb = 1000 samples of {Zi} with
length m = 1000 for ρ = 0.0 and ρ = 0.7. The dash lines are MC estimates obtained from
the same observations of {Zi}. Previous comments for Gaussian series apply, i.e., the GEV
estimates of pf (z;m) fit data satisfactorily but exhibit notable sample-to-sample variation
for relatively small number of blocks. This variation is caused by statistical uncertainty and
can be reduced by increasing the number of blocks.

The left and right panels in Fig. 13 show MC and GEV estimates of pf (z;m) for ρ = 0.0
and ρ = 0.7, respectively, that are obtained from two sets of nb = 100 blocks of samples
of {Zi} with length m = 1000. The MLE estimates (µ̂m, σ̂m, ξ̂m) of the GEV distributions
for ρ = 0.0 and ρ = 0.7 are (5.7436, 0.9070, 0.0627) and (5, 9499, 1.1310,−0.1647). The 90%
confidence intervals for the estimates µ̂m, σ̂m, and ξ̂m are (5.5421, 5.9451), (0.7685, 1.0703),
and (−0.0931, 0.2186) for one of the data sets and (5.7023, 6.1974), (0.9681, 1.3213), and
(−0.3008,−0.0286) for the other. Similar results are for the GEV estimates shown in the
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Figure 13: MC (dash lines) and GEV (solid lines) estimates of pf (z;m) for AR1 state driven
by Exponential white noise for nb = 100, ρ = 0.0 (left panel) and ρ = 0.7 (right panel)
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Figure 14: MC (dash lines) and GEV (solid lines) estimates of pf (z;m) for AR1 state driven
by Exponential white noise for nb = 1000, ρ = 0.0 (left panel) and ρ = 0.7 (right panel)

right panel of the figure. The estimates improve significantly as the sample size is increased
from nb = 100 to nb = 1000 blocks, as illustrated in Fig. 14. For example, the MLE estimates
of the shape parameter based on two sets of nb = 1000 blocks, ρ = 0.0, are ξ̂m = −0.0247
and ξ̂m = 0.0187 with 90% confidence intervals (−0.0654, 0.0160) and (−0.0281, 0.0655).
The corresponding estimates for ρ = 0.7 are ξ̂m = −0.0520 and ξ̂m = −0.0214 with 90%
confidence intervals (−0.0922,−0.0119) and (−0.0620, 0.0192).

Threshold model. Estimates of pf (z;m) are constructed from single samples of {Zi} with
length n = nb m = 1000000 corresponding to nb = 1000 sets of samples of {Zi} with
size m = 1000. MLE estimates (ξ̂, ˆ̃σ) for the parameters (ξ, σ̃) of excesses above selected
thresholds u0 assumed to follow GP distributions are constructed as in the previous example.
The extremal index is estimated from the observed number nclust(z, k) of clusters of {Zi} with
size k = 1, 2, . . . above z. A cluster of size k above a level z is defined by k consecutive values
of {Zi} above z, e.g., {Zr < z,Zr+1 ≥ z, . . . , Zr+k ≥ z, Zr+k+1 < z} produses such a cluster.
Since the estimated average cluster size above z is

∑
k≥1 k nclust(z, k)/

∑
k≥1 nclust(z, k), we
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estimate the extremal index by

η̂(z) =

∑
k≥1 nclust(z, k)∑

k≥1 k nclust(z, k)
. (17)

The entries in the above definition of η̂(z), i.e., the number of clusters {nclust(z, k)} of various
sizes k, are obtained by counting from the sample of {Zi}. The solid, dash, and dash-dot
lines in Fig. 15 are estimates η̂(z) for ρ = 0.0, 0.7, and 0.9 that are derived from clusters
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Figure 15: Estimates η̂(z) of extremal index for ρ = 0.0 (solid line), ρ = 0.7 (dash line), and
ρ = 0.9 (dash-dot line)

of {Zi} above levels z. Since η̂(z) increases with z and approaches 1, the extremes of this
series do not cluster so that there is no need to correct the estimates of pf (z;m) constructed
under the assumption of independence between extremes of {Zi}.

Figure 16 shows MC and GP estimates of pf (z;m) based on a sample of {Zi} with size
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Figure 16: MC (dash lines) and GP (solid lines) estimates of pf (z;m) based on nb = 1000
blocks with length m = 1000 for ρ = 0.7 (left panel) and ρ = 0.9 (right panel)

n = nb m = 1000000 for ρ = 0.7 (left panel) and ρ = 0.9 (right panel). The dash lines are
MC estimates of pf (z;m). The solid line are GP estimates of pf (z;m) is obtained under the
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assumption that extremes of {Zi} do not cluster in agreement with the estimates of extremal
indices in Fig. 15. The GP estimates of pf (z;m) are less satisfactory for ρ = 0.9 probably
because excesses of {Zi} above the threshold considered in analysis are not independent.

Figure 17 presents results as in Fig. 8 presented at the end of Example 2. It shows,
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Figure 17: MC (dash lines), GEV (heavy solid lines), and GP (thin solid lines) estimates of
pf (z;m) for AR1 state driven by Exponential white noise for nb = 100, ρ = 0.0 (left panel)
and ρ = 0.7 (right panel)

in addition to the GEV and MC estimates of pf (z;m) in Fig. 14, GP estimates of this
probability in thin solid lines that correspond to u0 = 5.9078. This threshold results from
the condition 1 − F (u0) = nb/n, where F is an estimate of the marginal distribution of
{Zi}, nb = 100, n = nbm, and m = 1000. For ρ = 0.0 the estimates of (ξ, σ̃) for the two
GP approximation of pf (z;m) are (0.1778, 0.6463) and (−0.3228, 1.3360) with rather large
confidence intervals. As for the estimates by the block model, these estimates stabilize if the
sample size is increased from n = 105 to n = 106, in which cases they are (−0.0357, 1.0233)
and (−0.0572, 1.0702). For ρ = 0.7 the estimates of (ξ, σ̃) for the two GP approximation of
pf (z;m) are (0.3536, 0.3637) and (−0.3929, 1.0819) with rather large confidence intervals. As
for the estimates by the block model, these estimates stabilize if the sample size is increased
from n = 105 to n = 106, in which cases they are (0.0485, 0.6705) and (−0.1139, 0.7222).
The GEV and GP estimates of pf (z;m) are similar and consistent with MC estimates in
the data range but differ for higher thresholds. Results also suggest that the sample size in
Fig. 17 needs to be increase to obtain informative estimates of system reliability.

4.3 Displacement of simple oscillators

Suppose X(t) is displacement of single degree of freedom system defined by

Ẍ(t) + 2 ζ0 ν0 Ẋ(t) + ν2
0 X(t) = V (t) t ≥ 0, (18)

where ν0 > 0 and ζ0 > 0 are frequency and damping parameters. The input is V (t) = Y (t)
or V (t) = Y (t)2, where Y (t) is an Ornstein-Uhlenbeck process defined by

dY (t) = −λY (t) dt+
√
2λ dB(t), (19)

22



and B(t) is a standard Brownian motion.
Our objective is to approximate system reliability ps(z;m), i.e., the probability that

X(t) does not leave a safe set Dz = (−∞, z], z > 0, during a time interval [0, τ ]. Since X(t) is
recorded at discrete times {ti}, this safety condition can only be imposed at a finite numberm
of times. Accordingly, we calculate ps(z;m) = P

(
X(ti) ∈ Dz, i = 1, . . . ,m

)
or, equivalently,

ps(z;m) = P (Mm ≤ z), where Mm = max(Z1, . . . , Zm), Zi = X(ti), ti+1 = ti + ∆t, and
∆t = 0.1 denotes the time step.

Example 5. Suppose X(t) denotes the displacement of the linear oscillator in Eq. 18
with V (t) = Y (t). The R3-valued process

(
X1(t) = X(t), X2(t) = Ẋ(t), X3(t) = Y (t)

)
becomes stationary as time increases indefinitely. Let cij(τ) = E[Xi(t + τ)Xj(t)] and γij =
cij(0) denote the stationary covariance functions and covariances of this vector process. The
stationary covariances are γ11 = (λ − β) δ/(αβ), γ12 = 0, γ13 = δ, γ23 = λ δ, γ22 = −λ δ/β,
γ33 = 1, where α = −ν2

0 , β = −2 ζ0 ν0, and δ = 1/(λ2 − α − β λ). The covariance function
of X1(t) = X(t) is the solution of ċ11(τ) = c21(τ) that depends on c21(τ) defined ċ21(τ) =
α c11(τ)+β c21(τ)+ c31(τ) which involves c31(τ) defined by ċ31(τ) = −λ c31(τ). The solution
of this system of equations with cij(0) = γij shows that c11(τ) ∼ O

(
exp(−min(λ, ζ0 ν0) τ)

)
for large τ > 0, so that c11(τ) log(τ) → 0 as τ → ∞. Since X(t) = X1(t) is a Gaussian
process, we conclude that P

(
(Mm − bm)/am ≤ z

)
→ exp

(
− exp(−z)

)
, where {am > 0}

and {bm} are the constants for independent Gaussian series given in a previous section [6]
(Theorem 4.3.3). In this case, the asymptotic distributions of Mm and M∗

m coincide so that
the extremal index is η = 1. Following are estimates pf (z,m) obtained by block maxima
and threshold models.

Block maxima model. Numerical results in Fig. 18 are for Zτ = max0≤t≤τ{X(t)}, ν0 = π,
ζ0 = 0.05, λ = 1, and V (t) = Y (t). The left and right panels in Fig. 18 show estimates
of pf (z; τ) based on two sets of nb = 100 independent samples with length τ = 10000,
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Figure 18: MC (solid lines) and GEV (dash lines) estimates of pf (z; τ) for two sets of nb = 100
independent samples of X(t) for τ = 10000 and D = (−∞, z], z > 0

so that the block size coincides with τ . Since X(t) was sampled at every ∆t = 0.1, the
length of all time series is τ/∆t = 100000. The solid and dash lines are MC and GEV
estimates. MC estimates of pf (z; τ) extend over the range of data while GEV estimates
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of this probability can be extended beyond data provided the estimates (µ̂, σ̂, ξ̂) of the
parameters (µ, σ, ξ) of the asymptotic GEV distributions are accurate. These estimates
are (0.8698, 0.0533,−0.1171) and (0.8677, 0.0476, 0.0476) for the plots in the left and right
panels. The GEV estimates of pf (z; τ) differ significantly because of the large uncertainty
in estimates of the shape parameter ξ. The discrepancy between these estimates can be
reduced significantly by increasing nb. Figure 19 shows plots as in Fig. 18 for nb = 1000
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Figure 19: MC (solid lines) and GEV (dash lines) estimates of pf (z; τ) for two sets of
nb = 1000 independent samples of X(t) for τ = 10000 and D = (−∞, z], z > 0

rather than nb = 100. The corresponding GEV estimates of pf (z;m) and estimates of the

shape parameter ξ, ξ̂ = −0.0853 and -0.0955, are similar.

Threshold model. Estimates are constructed for pf (z; τ) from two samples of X(t) containing
the same information as those used to construct the estimates of this probability in Fig. 19.
The length of these samples is τ nb so that there are τ nb/∆t = 108 observations in each
sample since τ = 10000, nb = 1000, and ∆t = 0.1. These samples are used to construct the
estimates of pf (z; τ) in Fig. 20. Storage of samples of this size demands significant memory
particularly when dealing with large dimensional vector state processes.

The solid and dash lines in Fig. 20 are MC and GP estimates of pf (z; τ). The GP
and MC estimates are consistent and exhibit limited sample-to-sample variation, in agree-
ment with results in Fig. 19. Following considerations in Sect. 3.2.1, a threshold u0 =
0.5 has been used to construct both estimates. The estimates of ξ for the plots in the
left and right panels are ξ̂ = −0.0825 and −0.0874. The corresponding estimates of σ̃
are ˆ̃σ = 0.0730 and 0.0731. The 90% confidence intervals on the two estimates of ξ
are (−0.0845,−0.0804) and (−0.0894,−0.0854). The 90% confidence intervals on ˆ̃σ are
(0.0728, 0.0732) and (0.0729, 0.0734).

Figure 21 shows, in addition to the estimates of pf (z;m) in Fig. 20, GP estimates of
this probability for u0 = 0.87. This threshold is exceeded by {Zi} approximately nb = 1000
times, so that the excesses of this time series above u0 matches the number of blocks nb. The
latter estimates, which are plotted in thin solid lines, match MC estimates in the data range
but differ from the other GP estimates of pf (z;m) and the corresponding GEV estimates in
Fig. 19.
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Figure 20: MC (solid lines) and GP (dash lines) estimates of pf (z; τ) for two sets of inde-
pendent samples of X(t) with length τ nb for τ = 10000 and nb = 1000 and D = (−∞, z],
z > 0
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Figure 21: MC (solid lines) and GP (dash lines) estimates of pf (z; τ) for two sets of inde-
pendent samples of X(t) with length τ nb for τ = 10000 and nb = 1000 and D = (−∞, z],
z > 0. This solid lines are GP estimates for u0 = 0.87

Example 6. Suppose the input to the oscillator in Eq. 18 is the square of the Ornstein-
Uhlenbeck process in Eq. 19, i.e., V (t) = Y (t)2, so that both V (t) and X(t) are non-Gaussian
processes. Our objective is to estimate pf (z; τ) = P

(
Zτ > z

)
from samples of X(t) similar

to those in the previous example by the block maxima and threshold models. Data for these
models consists of sets of nb = 1000 samples with length τ = 10000 and single samples with
length τ nb sampled at ∆t = 0.1.

Block maxima model. Figure 22 shows with solid and dash lines MC and GEV estimates of the
failure probability pf (z; τ) for two sets of nb = 1000 independent samples of X(t) with length

τ = 10000. The two panels correspond to two sets of samples. The estimates (µ̂, σ̂, ξ̂) of the
parameters (µ, σ, ξ) of the asymptotic GEV distributions are (2.5585, 0.2802,−0.0311) and
(2.5489, 0.2752,−0.0170) for the plots in the left and right panels. The 90% confidence inter-
vals on the estimates µ̂, σ̂, and ξ̂ of the GEV approximations of pf (z; τ) are (2.5391, 2.5779),
(0.2667, 0.2944), and (−0.0740, 0.0118) in the left panel and (2.5298, 2.5680), (0.2618, 0.2892),
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Figure 22: MC (solid lines) and GEV (dash lines) estimates of pf (z; τ) for two sets of
nb = 1000 independent samples of X(t) with length τ = 10000

and (−0.0598, 0.0259) in the right panel.
As in the previous example, the GEV estimates of pf (z; τ) are consistent with MC

results within the data range. Also, the GEV estimates of pf (z; τ) corresponding to the two
data sets are similar for thresholds z much larger than available observations suggesting that
they can be used to assess the performance of highly reliable dynamic systems.

Threshold model. The panels in Fig. 23 show estimates of pf (z; τ) derived from two samples
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Figure 23: MC (heavy solid lines), GP disregarding clusters (this solid lines), and GP con-
sidering clusters (dash lines) estimates of pf (z; τ) for two sets of independent samples of X(t)
with length τ nb for τ = 10000 and nb = 1000 and D = (−∞, z], z > 0

of X(t) with length τ nb for τ = 10000 and nb = 1000, so that they use the same number of
observations as the estimates of this probability based on the block maxima model in Fig. 22.
As in this figure, the heavy solid lines are MC estimates of pf (z; τ). The thin solid and heavy
dash lines are GP estimates of pf (z; τ) that do not and do account for clustering of extremes

via extremal indices. The estimates (ξ̂, ˆ̃σ) of the parameters (ξ, σ̃) of the GP distributions
in the two panels of Fig. 23 are (−0.0333, 0.2626) and (−0.0312, 0.3081), and have been
calculated for u0 = 3. The corresponding 90% confidence intervals are (−0.1091, 0.0424) and
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(−0.1085, 0.0461) for ξ̂ and (0.2340, 0.2903) and (0.2754, 0.3447) for ˆ̃σ.
Figure 24 shows, in addition to the estimates of pf (z;m) in Fig. 23, GP estimates of this
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Figure 24: MC (heavy solid lines), GP disregarding clusters (this solid lines), and GP consid-
ering extreme clusters (dash lines) estimates of pf (z; τ) for two sets of independent samples
of X(t) with length τ nb for τ = 10000 and nb = 1000 and D = (−∞, z], z > 0

probability for a threshold u0 = 2.86 that is exceeded by approximately nb = 1000 obser-
vations. The latter estimates of pf (z;m) are obtained under the assumption that extremes
of {Zi} do not cluster and are shown with dot lines. Since these estimates differ from the
GP estimates based on thresholds u0 derived following considerations in Sect. 3.2.1, their
versions corrected for clustering are not presented.

The thin solid and heavy dash lines in Figs. 23 and 24 are identical and represent
GP estimates of pf (z;m) that disregard and account for clustering of extremes of {Zi}.
Since there are no simple criteria for determining whether extremes of non-Gaussian series
cluster, we estimated extremal indices from Eq. 17. The left and right panels in Fig. 25 show
estimates η̂(z) of the extremal index for two independent samples of the Gaussian series in
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Figure 25: Estimates of extremal indices in Eq. 17 for two samples of X(t) with length
n = 108 under V (t) = Y (t) (left panel) and V (t) = Y (t)2 (right panel)

Example 5 and the non-Gaussian series in this example. The estimates in the left panel
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increase steadily with z indicating that the extremes of {Zi} in Example 5 do not cluster, in
agreement with theoretical arguments. On the other hand, the estimates η̂(z) in the right
panel seem to reach a plateau, which suggest that the extremes of {Zi} in this example
cluster. The corresponding value of the extremal index is equal approximately to η̂ = 0.4.
The heavy dash lines in Figs. 23 and 24 are derived from the thin solid lines by the following
calculations. Let pf,0(z;m) denote GP estimates of pf (z;m) obtained under the assumption
that the extremes of {Zi} do no cluster. These estimates are shown with solid thin lines.

The GP estimates that account for clustering of extremes are given by 1−
(
1− pf,0(z;m)

)η̂
.

They are shown with heavy dash lines.
We note that the GEV and GP estimates of failure probabilities reported in this study

are based on nb = 100; 1000 blocks of length m = 1000 for the block model and a single
sample of length nbm = 105; 106 for the threshold model. For nb = 1000 andm = 1000, these
estimates are accurate up failure probabilities of order 10−15 to 10−20 provided the estimates
ξ̂ of the shape parameter ξ are not in a small vicinity of zero. In contrast, Monte Carlo
estimates of failure probability based on samples of size nbm = 105; 106, i.e., the sample
size used to construct GEV and GP estimates, are reliable up to thresholds corresponding
to instantaneous failure probabilities of order 10−4; 10−5. Monte Carlo estimates for failure
probabilities of order 10−15 would require 1016 samples.

5 Conclusions

Generalized extreme value (GEV) and generalized Pareto (GP) distributions fitted to
relatively small sets of samples of state processes have been used to estimate the reliability
of dynamic systems during a reference time τ . The GEV and GP distributions are fitted to
extremes of state processes in τ and excesses of these processes above specified thresholds.
Block maxima and threshold models have been used to fit these distributions. The GEV
and GP estimates can be used to assess performance of highly-reliable dynamic systems
since they extend outside the data range. In contrast, Monte Carlo estimates based on the
same observations can only be used to assess the performance of at most moderately-reliable
dynamic systems since they are available only within data range.

The computational effort required for implementing the GEV and GP estimates is
minimal relative to that for generating state samples for realistic dynamic systems. The
GEV estimates have some notable features that made them attractive for system reliability
analysis. They are conceptually simple, apply to both stationary and non-stationary states,
and require low storage. The GP estimates are conceptually less simple, apply directly to
only stationary series, and require relatively high storage. Although both estimates are
accurate, the GEV estimates are believe to be preferable for analyzing dynamic systems.

The errors of GEV and GP estimates of system reliability are of two types. The first
relates to the assumption that extremes of state processes follow GEV distributions although
the reference time is finite. The second type of error relates to the fact that the parameters of
the GEV and GP distributions are estimated from finite sets of observations. The first type
of error results in biased estimates and cannot be eliminated. The second type of error can
be reduced by increasing the sample size. This error can be dominant when the estimates of
the shape parameters of the GEV and GP distributions are in a small vicinity of zero.
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Numerical examples involving independent/dependent, Gaussian/non-Gaussian time
series representing observations of state processes show that the GEV and GP estimates of
system reliability are accurate and simple to implement. Confidence intervals and compar-
isons between reliability estimates based on different sets of observations have been used to
quantify the performance of the proposed reliability estimates. Generally, the GEV and GP
estimates are accurate and can be used to extend Monte Carlo estimates of failure probabil-
ities several order of magnitude beyond data.
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