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Abstract We propose a new definition of a multivariate subexponential distribution.
We compare this definition with the two existing notions of multivariate subexponen-
tiality, and compute the asymptotic behaviour of the ruin probability in the context of
an insurance portfolio, when multivariate subexponentiality holds. Previously such
results were available only in the case of multivariate regularly varying claims.
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1 Introduction

Subexponential distributions are commonly viewed as the most general class of heavy
tailed distributions. The notion of subexponentiality was introduced by Chistyakov
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(1964) for distributions supported by [0, ∞); if F is such a distribution, and X1, X2
are i.i.d. random variables with the law F , then F is subexponential if

lim
x→∞

P(X1 + X2 > x)

P (X1 > x)
= 2 . (1.1)

The notion of subexponentiality was later extended to distributions supported by the
entire real line (and not only by the positive half-line); see e.g. Willekens (1986).
The best known subclass of subexponential distributions is that of regularly varying
distributions, but the membership in the class of subexponential distributions does
not require power-like tails; we review the basic information on one-dimensional
subexponential distributions in Section 2.

The definition (1.1) of subexponential distributions means that the sum of two
i.i.d. random variables with a subexponential distribution is large only when one
of these random variables is large. The same turns out to be true for the sum of
an arbitrary finite number of terms and, in many cases, for the sum of a random
number of terms. Theoretically, this leads to the “single large jump” structure of
large deviations for random walks with subexponentially distributed steps; see e. g.
Foss et al. (2007). In practice, this has turned out to be particularly important in
applications to ruin probabilities. In ruin theory the situation where the claim sizes
(often assumed to be independent with identical distribution) have a subexponential
distribution is usually referred to as the non-Cramér case. The “single large jump”
property of subexponential distributions leads to a well known form of the asymptotic
behaviour of the ruin probability, and to a particular structure of the surplus path
leading to the ruin; see e.g. Embrechts et al. (1997) and Asmussen (2000).

It is desirable to have a notion of a multivariate subexponential distribution. The
task is of a clear theoretical interest, and it is of an obvious interest in applications.
A typical insurance company, for instance, has multiple insurance portfolios, with
dependent claims, so it would be useful if one could build a model in which claims
could be said to have a multivariate subexponential distribution. Recall that there
exists a well developed notion of a multivariate distribution with regularly varying
tails; see e.g. Resnick (2007). In comparison, a notion of a multivariate subexponen-
tial distribution has not been developed to nearly the same extent. To the best of our
knowledge, a notion of multivariate subexponentiality has been introduced twice, in
Cline and Resnick (1992) and in Omey (2006). Both of these papers define a class
(or classes) of multivariate distributions that extend the one-dimensional notion of a
subexponential distribution in a natural way. They show that their notions of multi-
variate subexponentiality possess multidimensional analogs of important properties
of one-dimensional subexponential distributions. Nonetheless, these notions have not
become as widely used as that of, say, a multivariate distribution with regularly vary-
ing tails. In this paper we introduce yet another notion of multivariate subexponential
distribution. As the reader will observe, this notion is created with ruin probability
applications in mind. We hope, therefore, that this notion will turn out to be useful in
that area. However, we also hope that the notion we introduce will be found useful in
other areas as well.

This paper is organized as follows. In Section 2 we review the basic properties
of one-dimensional subexponential distributions, in order to have a benchmark for
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the properties we would like a multivariate subexponential distribution to have. In
Section 3 we discuss the definitions of multivariate subexponentiality of Cline and
Resnick (1992) and in Omey (2006). Our notion of multivariate subexponential dis-
tributions is introduced in Section 4. Some applications of that notion to multivariate
ruin problems are discussed in Section 5.

2 A review of one-dimensional subexponentiality

In this section we review the basic properties of one-dimensional subexponential dis-
tributions. We denote the class of such distributions (and random variables with such
distributions) by S . Unless stated explicitly, we do not assume anymore that a ran-
dom variable with a subexponential distribution F is nonnegative; such a random
variable (or its distribution) is called subexponential if the nonnegative random vari-
able X+ = max(X, 0) is subexponential. Most of the not otherwise attributed facts
stated below can be found in Embrechts et al. (1979). We use the standard notation
F̄ = 1 − F for the tail of a distribution F .

If a distribution F ∈ S , then F is long-tailed: for any y ∈ R,

lim
x→∞

F̄ (x + y)

F̄ (x)
= 1 (2.1)

(implicitly assuming that F̄ (x) > 0 for all x.) The class of all long-tailed distributions
is denoted by L . Note that S is a proper subset of L ; see e.g. Embrechts and
Goldie (1980). Furthermore, the class L of long-tailed distributions is closed under
convolutions, while the class S of subexponential distributions is not, see Leslie
(1989).

A distribution F has a regularly varying right tail if there is α ≥ 0 such that for
every b > 0

lim
x→∞

F̄ (bx)

F̄ (x)
= b−α , (2.2)

and the parameter α is the exponent of regular variation. The class of distributions
with a regularly varying right tail is denoted by R (or R(α) if we wish to emphasize
the exponent of regular variation.) Then R ⊂ S . If one views R as the class of dis-
tributions with “power-like” right tails, all distributions with “power-like” right tails
are subexponential (note that here and in the sequel we are stretching even this infor-
mal terminology somewhat since the case α = 0 refers to distributions whose tail is
slowly varying, i.e. heavier than any power tail). This informal statement, however,
should be treated carefully; other classes of distributions can be referred to as having
”power-like” right tails, and not all of them form subclasses of S . Indeed, consider
the class D of distributions with dominated varying tails, defined by the property

lim inf
x→∞

F̄ (2x)

F̄ (x)
> 0 . (2.3)

One could view a distribution F ∈ D as having a “power-like” right tail. However,
D �⊂ S . We note, on the other hand, that it is still true that D ∩ L ⊂ S ; see Goldie
(1978).
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Many distributions that do not have “power-like” right tails are subexponen-
tial as well. Examples include the log-normal distribution, as well as the Weibull
distribution with the shape parameter smaller than 1; see e.g. Pitman (1980).

Let X1, X2, . . . be i.i.d. random variables with a subexponential distribution. The
defining property (1.1) extends, automatically, to any finite number of terms, i.e.

lim
x→∞

P(X1 + . . . + Xn > x)

P (X1 > x)
= n for any n ≥ 1. (2.4)

Moreover, the number of terms can also be random. Let N be a random vari-
able independent of the i.i.d. sequence X1, X2, . . . and taking values in the set of
nonnegative integers. If

EτN < ∞ for some τ > 1, (2.5)

then

lim
x→∞

P(X1 + . . . + XN > x)

P (X1 > x)
= EN . (2.6)

The classical one-dimensional (Cramér-Lundberg) ruin problem can be described
as follows. Suppose that an insurance company has an initial capital u > 0. The
company receives a stream of premium income at a constant rate c > 0 per unit
of time. The company has to pay claims that arrive according to a rate λ Poisson
process. The claim sizes are assumed to be i.i.d. with a finite meanμ and independent
of the arrival process. If U(t) is the capital of the company at time t ≥ 0, then the
ruin probability is defined as the probability the company runs out of money at some
point. This probability is, clearly, a function of the initial capital u, and it is often
denoted by

ψ(u) = P
(
U(t) < 0 for some t ≥ 0

)
.

The positive safety loading, or the net profit condition,

ρ := c

λμ
− 1 > 0

says that, on average, the company receives more in premium income than it spends
in claim payments. If the net profit condition fails, then an eventual ruin is certain. If
the net profit condition holds, then the ruin probability is a number in (0, 1), and its
behaviour for large values of the initial capital u strongly depends on the properties
of the distribution F of the claim sizes. Let

FI (x) = 1

μ

∫ x

0
F̄ (y) dy, x ≥ 0

be the integrated tail distribution. If FI ∈ S , then

ψ(u) ∼ ρ−1FI (u) as u → ∞; (2.7)

see Theorem 1.3.6 in (Embrechts et al. 1997).

3 Existing definitions of multivariate subexponentiality

In this section, and in the rest of the paper, we will use the notation F , interchang-
ingly, as denoting a law (so that the notation F(A) for a Borel set A makes sense), or
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as denoting a distribution function (so that the notation F(x1, . . . , xd) makes sense.)
Correspondingly, we will use the notation F = 1 − F for the complementary distri-
bution function F onRd . That is, if F is the law of a random vector (X(1), . . . , X(d)),
then F(x1, . . . , xd) = P

(
X(j) > xj for some j = 1, . . . , d

)
.

The first known to us definition of multivariate subexponential distributions was
introduced by Cline and Resnick (1992). They consider distributions supported by the
entire d-dimensional space Rd (and not only by the nonnegative orthant). That paper
defines both multivariate subexponential distributions, and multivariate exponential
distributions. In our discussion here we only consider the subexponential case. The
definition is tied to a function b(t) = (b1(t), . . . , bd(t)) such that bi(t) → ∞ as
t → ∞ for i = 1, . . . , d .

One starts with defining the class of long-tailed distributions, i.e. a multivariate
analog of the class L in Eq. 2.1. Let E = [−∞, ∞]d \ {−∞∞∞}, and let ν be a finite
measure on E concentrated on the purely infinite points, i.e. on {−∞, ∞}d \ {−∞∞∞},
and such that ν(x ∈ E : xi = ∞) > 0 for each i = 1, . . . , d . Then a probability
distribution F is said to belong to the class L (ν; b) if, as t → ∞,

tF
(
b(t) + ·) v→ ν (3.1)

vaguely in E (see Resnick (1987) for a thorough treatment of vague convergence of
measures.) The class of subexponential distributions (with respect to the same func-
tion b and the same measure ν) is defined to be that subset S (ν; b) of distributions
F in L (ν; b) for which

tF ∗ F
(
b(t) + ·) v→ 2ν

vaguely in E.
Corollary 2.4 in Cline and Resnick (1992) shows that F ∈ S (ν; b) if and only

if F ∈ L (ν; b) and the marginal distribution Fi of F is in the one-dimensional
subexponential class S for each i = 1, . . . , d .

It is shown in Cline and Resnick (1992) that the distributions in S (ν,b) possess
the natural multivariate extensions of the properties of the one-dimensional subexpo-
nential distributions mentioned in Section 2. For example, if F ∈ S (ν,b), then for
any n ≥ 1, F ∗n ∈ S (nν, b). More generally, if N is a random variable satisfying
(2.5), and H = ∑∞

n=0 P(N = n)F ∗n, then H ∈ S (ENν,b).
The distributions in S (ν,b) also possess the right relation with the distributions

with multivariate regularly varying tails. It is natural, in this situation, to consider
only distributions supported by the nonnegative quadrant Rd+ = [0, ∞)d . Recall that
any distribution F supported by R

d+ is said to have regularly varying tails if there is
a Radon measure μ on [0, ∞]d \ {0} concentrated on finite points, and a function b
as above such that, as t → ∞,

tF
(
b(t)·) v→ μ (3.2)

vaguely in [0, ∞]d \ {0}; see Resnick (2007). Note that Eq. 3.2 allows for different
scaling in different directions, hence also different marginal exponents of regular
variation. This situation is sometimes referred to as non-standard regular variation. If
we denote by R(μ,b) the class of distributions with regularly varying tails satisfying
(3.2), then, as shown in Cline and Resnick (1992), R(μ,b) ⊂ S (ν,b) for some ν.
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As mentioned above, this definition of multivariate subexponentiality requires,
beyond marginal subexponentiality for all components, only the joint long tail prop-
erty (3.1). This property, together with the nature of the limiting measure, makes this
notion somewhat inconvenient in applications, because it is not easy to see how to
use it on sets in Rd that are not “asymptotically rectangular”.

Another observation worth making is that in probability theory, many well estab-
lished multivariate extensions of important one-dimensional notions have a “stability
property” with respect to projections on one-dimensional subspaces (i.e., with respect
to taking linear combinations of the components.) Specifically, if the distribution of a
random vector (X(1), . . . , X(d)) has, say, a property Gd (the subscript d specifying the
dimension in which the property holds), then the distribution of any (non-degenerate)
linear combination

∑d
1aiX

(i) has the property G1. This is true, for instance, for mul-
tivariate regular variation, multivariate Gaussianity, stability and infinite divisibility.
Unfortunately, the definition of multivariate subexponentiality by S (ν,b) does not
have this feature, as the following example shows.

Example 3.1 Consider a 2-dimensional random vector (X, Y )with nonnegative coor-
dinates such that P(X + Y = 2n) = 2−(n+1) for n ≥ 0, with the mass distributed
uniformly on the simplex {(x, y) : x, y ≥ 0, x + y = 2n} for each n ≥ 0. It is ele-
mentary to check that X, Y ∈ L ∩ D ⊂ S . Furthermore, for 2n ≤ x ≤ 2n+1,
n = 0, 1, 2, . . . we have

P(X > x) = P(Y > x) = 2−(n+1) − x

3
2−(2n+1) = 2P(X > x, Y > x) .

If we define a function b by tP (X > b(t)) = 1 for t ≥ 2, then it immediately follows
that (X, Y ) ∈ L (ν; b) with b(t) = (b(t), b(t)) and

ν = 1

2
δ(−∞,∞) + 1

2
δ(∞,−∞) + 1

2
δ(∞,∞) ,

and the result of Cline and Resnick (1992) tells us that (X, Y ) ∈ S (ν; b). It is clear,
however, that

lim inf
x→∞

P(X + Y > x + 1)

P (X + Y > x)
= 1

2
,

so X + Y does not even have a long-tailed, let alone subexponential, distribution.

The second existing definition of multivariate subexponentiality we are aware of is
due to Omey (2006). Once again, this definition concentrates on rectangular regions.
The paper presents 3 versions of the definition. The versions are similar, and we
concentrate only on one of them. Let F be a probability distribution supported by the
nonnegative quadrant in R

d . Then one says that F ∈ S(Rd) if for all x ∈ (0, ∞]d
with min(xi) < ∞,

lim
t→∞

F ∗2(tx)
F (tx)

= 2. (3.3)

In subsequent papers, Baltrunas et al. (2006) and Omey and Vesilo (2011), the authors
studied, under different assumptions, the rate of convergence to the limit in Eq. 3.3.

The definition (3.3), like the definition of Cline and Resnick (1992), has the fol-
lowing property: a distribution F ∈ S(Rd) if and only if each marginal distribution
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Fi of F is a one-dimensional subexponential distribution, and a multivariate long-tail
property holds. In the present case the long-tail property is

lim
t→∞

F(tx − a)

F (tx)
= 1 (3.4)

for each x ∈ (0, ∞]d with min(xi) < ∞ and each a ∈ [0, ∞)d . This follows from
Theorem 7 and Corollary 11 in Omey (2006).

The following statement shows that, in fact, the definition (3.3) of multivariate
subexponentiality requires only marginal subexponentiality of each coordinate. In
fact, this statement was already mentioned in Baltrunas et al. (2006) as a by-product
of their Proposition 11.

Proposition 3.2 Let F be a probability distribution supported by the positive quad-
rant in R

d . Then F ∈ S(Rd) if and only if all marginal distributions Fi of F are
subexponential in one dimension.

Proof By choosing x with only one finite coordinate, we immediately see that if
F ∈ S(Rd), then Fi ∈ S for each i = 1, . . . , d .

In the other direction, we know by the results of Omey (2006), that only the
long-tail property (3.4) is needed, in addition to the marginal subexponentiality, to
establish that F ∈ S(Rd). Therefore, it is enough to check that the long-tail property
(3.4) follows from the marginal subexponentiality. In fact, we will show that, if each
Fi is long-tailed, i.e. satisfies (2.1), i = 1, . . . , d , then (3.4) holds as well.

Let ε > 0. Fix x = (x1, . . . , xd) ∈ (0, ∞)d (allowing some of the components
of x be infinite only leads to a reduction in the dimension), and a = (a1, . . . , ad) ∈
[0, ∞)d .

Since Fi ∈ L , i = 1, . . . , d , for sufficiently large t we have

0 ≤ Fi(txi − ai) − Fi(txi) < εFi(txi)

for i = 1, . . . , d . Further, it is clear that

0 ≤ F(tx − a) − F(tx) ≤
d∑

i=1

(
Fi(txi − ai) − Fi(txi)

)
.

Hence for sufficiently large t ,

0 ≤ F(tx − a) − F(tx)

F (tx)
≤

d∑

i=1

(
Fi(txi − ai) − Fi(txi)

)

F(tx)

≤
d∑

i=1

(
Fi(txi − ai) − Fi(txi)

)

Fi(txi)

< dε.

Letting ε → 0 gives the desired result.
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Remark 3.3 It is worth noting that the above statement and Corollary 11 in Omey
(2006) show that for any probability distribution F supported by the positive quadrant
in R

d , such that the marginal distribution Fi of F is subexponential for every i =
1, . . . , d , we have, for all a ∈ [0, ∞)d , x ∈ (0, ∞)d and n ≥ 1,

lim
t→∞

F ∗n(tx − a)

F (tx)
= n. (3.5)

We also mention that, in the multivariate case, it is possible to obtain in Eq. 3.3
the limit equal to 2 (i.e. corresponding to the subsexponential behaviour) for some
directions x and a limit different from 2 in other directions. This was explored in
Omey et al. (2006).

Given Proposition 3.2, using Eq. 3.3 as a definition of multivariate subexponential-
ity is, therefore, equivalent to merely requiring one-dimensional subexponentiality
for each marginal distribution. Such requirement, in particular, cannot guarantee
one-dimensional subexponentiality of the linear combinations, as we have seen in
Example 3.1. In fact, it was shown in Leslie (1989) that even the sum of indepen-
dent random variables with subexponential distributions does not need to have a
subexponential distribution.

4 Multivariate subexponential distributions

In this section we introduce a new notion of a multivariate subexponential distribu-
tion. We approach the task with the multivariate ruin problem in mind. We start with
a familyR of open sets in Rd . Recall that a subset A of Rd is increasing if x ∈ A and
a ∈ [0, ∞)d imply x + a ∈ A. Let

R = {A ⊂ R
d : A open, increasing, Ac convex, 0 /∈ A}. (4.1)

Remark 4.1 Note that R is a cone with respect to the multiplication by positive
scalars. That is, if A ∈ R, then uA ∈ R for any u > 0. Further, half-spaces of the
form

H = {x : a1x1 + · · · + adxd > b} , b > 0, a1, . . . , ad ≥ 0 with a1 + . . . + ad = 1
(4.2)

are members ofR.

Remark 4.2 We can write a set A ∈ R (in a non-unique way) as A = b + G, with
b ∈ (0, ∞)d and 0 ∈ ∂G (with ∂G being the boundary of G). It is clear that the set
G is then also increasing. We will adopt this notation in some of the proofs to follow.

To see a connection with the multivariate ruin problem, imagine that for a fixed
set A ∈ R we view A as the “ruin set” in the sense that if, at any time, the excess of
claim amounts over the premia falls in A, then the insurance company is ruined. Note
that, in the one-dimensional situation, all sets in R are of the form A = (u, ∞) with
u > 0, so the ruin corresponds to the excess of claim amounts over the premia being
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over the initial capital u. The different shapes of sets inR can be viewed as allowing
different interactions between multiple lines of business. For example, choosing A of
the form

A = {x : xi > ui for some i = 1, . . . , d} , u1, . . . , ud > 0 (4.3)

corresponds to completely separate lines of business, where a ruin of one line of
business causes the ruin of the company. On the other hand, using as A a half-space
of the form (4.2) corresponds to the situation where there is a single overall initial
capital b and the proportion of ai in a shortfall in the ith line of business is charged
to the overall capital b. The connections to the ruin problem are discussed more
thoroughly in Section 5.

Before we introduce our notion of multivariate subexponentiality, we collect, in
the following lemma, certain facts about the familyR. Note that part (d) is a general
property of convex sets.

Lemma 4.3 Let A ∈ R.

(a) If G = A − b for some b ∈ ∂A, then Gc ⊃ (−∞, 0]d .
(b) If u1 > u2 > 0 then u1A ⊂ u2A.
(c) There is a set of vectors IA ⊂ R

d such that

A =
{
x ∈ R

d : pT x > 1 for some p ∈ IA

}
.

(d) For any a there is u1 > 0 such that for all u > u1 we have (u + u1)A ⊂
uA + a ⊂ (u − u1)A.

(e) Let C be any convex set, and u1, u2 > 0, then u1C + u2C = (u1 + u2)C.

Proof (a) Since Gc is closed, it contains the origin. Since G is increasing, Gc

contains the entire quadrant (−∞, 0]d .
(b) This is an immediate consequence of the fact that Ac is convex and 0 ∈ Ac.
(c) Let x0 ∈ ∂A. Since Ac is convex, the supporting hyperplane theorem (see e.g.

Corollary 11.6.2 in Rockafellar (2015)) tells us that there exists a (not neces-
sarily unique) nonzero vector px0 such that pT

x0x ≤ pT
x0x0 for all x ∈ Ac. Since

0 ∈ Ac, we must have pT
x0x0 ≥ 0. Since A is increasing, the case pT

x0x0 = 0 is
impossible, so pT

x0x0 > 0.
We scale each px0 so that pT

x0x0 = 1. Let IA be the set of all such px0 for all
x0 ∈ ∂A. Since a closed convex set equals the intersection of the half-spaces
bounded by its supporting hyperplanes (see e.g. Corollary 11.5.1 in Rockafellar
(2015)), the collection IA has the required properties.

(d) Since 0 /∈ A, the origin is an interior point of Ac. Therefore, we can choose
u1 > 0 so large that both a/u1 ∈ Ac and −a/u1 ∈ Ac. In order to prove the
leftmost inclusion in the statement, we have to show that for any x ∈ A and
u > u1 we have

u + u1

u
x − 1

u
a ∈ A .
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Suppose that, to the contrary, the vector above is in Ac. Then, by the convexity
of Ac,

x = u

u + u1

(
u + u1

u
x − 1

u
a
)

+ u1

u + u1

1

u1
a ∈ Ac ,

contradicting the assumption that x ∈ A. Similarly, in order to prove the right-
most inclusion in the statement, we have to show that for any x ∈ A and u > u1
we have

u

u − u1
x + 1

u − u1
a ∈ A .

Suppose that, to the contrary, the vector above is in Ac. Then, by the convexity
of Ac,

x = u − u1

u

(
u

u − u1
x + 1

u − u1
a
)

+ u1

u

(
− 1

u1
a
)

∈ Ac ,

once again contradicting the assumption that x ∈ A.
(e) Let x ∈ u1C and y ∈ u2C, then x

u1
,

y
u2

∈ C, and by convexity u1
u1+u2

x
u1

+
u2

u1+u2

y
u2

= 1
u1+u2

(x+y) ∈ C, so x+y ∈ (u1+u2)C, implying that u1C+u2C ⊂
(u1 + u2)C. The other direction is obvious.

Remark 4.4 Note that the set IA is not uniquely determined. If, for example, A is the
half-space given in Eq. 4.2, then we can use, as IA, the singleton

{(
a1/b, . . . , ad/b

)}
.

If A is the complement of “a corner” as in Eq. 4.3, then one can use as IA a set
with d vectors, the ith vector having the form ei/ui , i = 1, . . . , d , where ei is the
corresponding standard coordinate vector. Note also that, once we have chosen a
collection IA for some A ∈ R, for any u > 0 we can use IA/u as IuA.

Let F be a probability distribution onRd supported by [0, ∞)d . For a fixedA ∈ R
it follows from part (b) of Lemma 4.3 that the function on [0, ∞) defined by

FA(t) = 1 − F(tA), t ≥ 0 ,

is a probability distribution function on [0, ∞). We will reserve in the sequel the
notation YA for a generic random variable with the distribution FA. The following
lemma is elementary.

Lemma 4.5 Suppose that X has distribution F . Then the random variable YA =
sup{u : X ∈ uA} has law FA, and P(YA > t) = P(X ∈ tA) = P

(
supp∈IA

pT X > t
)

for t > 0.

Note that the supremum in the definition of YA is taken over u > 0; for simplicity
we omit an explicit statement of that here and in the sequel.

We are now ready to define multivariate subexponentiality.
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Definition 4.6 For any A ∈ R, we say that F ∈ SA if FA ∈ S , and we write
SR := ∩A∈RSA.

We view the class SR as the class of subexponential distributions. However, for
some applications we can use a larger class, such as SA for a fixed A ∈ R, or the
intersection of such classes over a subset ofR.

Note that by Remark 4.1, if X is a random vector in R
d whose distribution

is in SR, then all non-degenerate linear combinations of the components of X
with nonnegative coefficients have one-dimensional subexponential distributions.
More generally, we have the following stability property. We say that a linear
transformation T : R

d → R
k is increasing if T x ∈ [0, ∞)k for any x ∈ [0, ∞)d .

Proposition 4.7 Let T : R
d → R

k be a linear increasing transformation. If X is a
random vector in R

d whose distribution is in SR (in R
d ), then the same is true (in

R
k) for the distribution of the random vector TX.

Proof It suffices to show that for any A ∈ R in Rk , the set T −1A is in R in Rd .
We check that T −1A satisfies each of the conditions in Eq. 4.1. That T −1A is

open follows from that fact that T is continuous and A is open. To show that T −1A

is increasing, let x ∈ T −1A, and a ≥ 0. In this case T x = y for some y ∈ A,
and T a = b for some b ≥ 0. Hence by linearity and the fact that A is increasing,
it follows that T (x + a) = y + b ∈ A. As for convexity of (T −1A)c, notice that
(T −1A)c = T −1Ac. For any x, y ∈ (T −1A)c, then, T x, T y ∈ Ac. For λ ∈ (0, 1),
T (λx + (1 − λ)y) = λT x + (1 − λ)T y ∈ Ac, and convexity of (T −1A)c = T −1Ac

follows. Lastly, notice that T −1A = T −1A, so 0 ∈ T −1A leads to the contradiction
that 0 ∈ A.

Remark 4.8 Note that Proposition 4.7 also holds if instead of the entirety of SR, we
restrict the distributions to those in SRH

, where RH consists only of half-spaces of
the form (4.2), and SRH

:= ∩A∈RH
SA. This follows easily from the above proof

and the fact that T −1H is still a half-space for any half-space H .

The next lemma is useful and follows quite naturally from Lemma 4.5.

Lemma 4.9 For any A ∈ R and n ≥ 1,

(FA)∗n(t) ≥ F ∗n(tA). (4.4)

Proof Let X(1), . . . ,X(n) be independent random vectors with distribution F . Let
Y1, . . . , Yn be one-dimensional random variables defined by

Yi = sup{u : X(i) ∈ uA} = sup
p∈IA

pT X(i), i = 1, . . . , d .
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By Lemma 4.5, P(Yi > t) = FA(t). Hence it follows that

F ∗n(tA) = P(X(1) + · · · + X(n) ∈ tA)

= P
(
sup
p∈IA

pT (X(1) + · · · + X(n)) > t
)

≤ P
(
sup
p∈IA

pT X(1) + · · · + sup
p∈IA

pT X(n) > t
)

= P(Y1 + . . . + Yn > t)

= (FA)∗n(t) ,

as required.

In spite of this lemma, the two probabilities in Eq. 4.4 are asymptotically
equivalent.

Corollary 4.10 A ∈ R. Let X,X(1), . . . ,X(n) be independent random vectors with
distribution F . If F ∈ SA for some A ∈ R, then for all n ≥ 1,

lim
u→∞

P(X(1) + · · · + X(n) ∈ uA)

P (X ∈ uA)
= n. (4.5)

Proof It follows from Lemma 4.9 and Eq. 2.4 that only an asymptotic lower bound
needs to be established. However, since X(1), . . . ,X(n) are all nonnegative, and A is
an increasing set, it must be that ifX(1)+· · ·+X(n) ∈ uAc, then eachX(1), . . . ,X(n) ∈
uAc. Therefore,

P(X(1) + · · · + X(n) ∈ uAc) ≤ P(X(1), . . . ,X(n) ∈ uAc)

= P(X ∈ uAc)n.

It follows that

lim inf
u→∞

P(X(1) + · · · + X(n) ∈ uA)

P (X ∈ uA)
≥ lim inf

u→∞
1 − P(X ∈ uAc)n

P (X ∈ uA)
= n ,

as required.

Remark 4.11 We note at this point that the assumption F ∈ SA is NOT equivalent
to the assumption that Eq. 4.5 holds for all n. In fact, the latter assumption is weaker.
To see that, consider the following example. Let X and Y be two independent non-
negative one-dimensional random variables with subexponential distributions, such
that X + Y is not subexponential; recall that such random variables exist, see Leslie
(1989). We construct a bivariate random vector Z by taking a Bernoulli (1/2) random
variable B independent of X and Y and setting Z = (X, 0) if B = 0 and Z = (0, Y )

if B = 1. Let A = {(x, y) : max(x, y) > 1}. Since the marginal distributions of
the bivariate distribution of Z are, obviously, subexponential, we see by Eq. 3.5 that
Eq. 4.5 holds for all n ≥ 1. However, for u > 0,

FA(u) = 1

2
P(X > u) + 1

2
P(Y > u) ,
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so the distribution FA is a mixture of the distributions of X and Y . By Theorem 2 of
Embrechts and Goldie (1980), any non-trivial mixture of the distributions of X and
Y is subexponential if and only if their convolution is. Since, by construction, that
convolution is not subexponential, we conclude that FA /∈ S and F /∈ SA.

In the next proposition we check that the basic properties of one-dimensional
subexponential distributions extend to the multivariate case.

Proposition 4.12 Let A ∈ R and F ∈ SA.

(a) If G is a distribution on R
d supported by [0, ∞)d , such that

lim
u→∞

F(uA)

G(uA)
= c > 0,

then G ∈ SA.
(b) For any a ∈ R

d ,

lim
u→∞

F(uA + a)
F (uA)

= 1. (4.6)

(c) Let X,X(1), . . . ,X(n) be independent random vectors with distribution F . For
any ε > 0, there exists K > 0 such that for all u > 0 and n ≥ 1,

P(X(1) + · · · + X(n) ∈ uA)

P (X ∈ uA)
< K(1 + ε)n . (4.7)

Proof (a) This is an immediate consequence of the univariate subexponential-
ity of FA and the corresponding property of one-dimensional subexponential
distributions; see e.g. Lemma 4 in Embrechts et al. (1979).

(b) By part (d) of Lemma 4.3, there exists u1 > 0 such that for all u > u1 we have
(u + u1)A ⊂ uA + a ⊂ (u − u1)A. Therefore,

FA(u + u1) = F((u + u1)A)

≤ F(uA + a)

≤ F((u − u1)A) = FA(u − u1) ,

and the claim follows from the one-dimensional long tail property of FA.
(c) The claim follows from Lemma 4.9 and the corresponding one-dimensional

bound; see e.g. Lemma 3 in Embrechts et al. (1979).

Remark 4.13 In our Definition 4.6 of multivariate subexponentiality one can drop
the assumption that a distribution is supported by [0, ∞)d . We can check that both
Corollary 4.10 and Proposition 4.12 remain true in this extended case.

Our next step is to show that multivariate regular varying distributions fall within
the class SR of multivariate subexponential distributions. The definition of non-
standard multivariate regular variation for distributions supported by [0, ∞)d was
given in Eq. 3.2. Presently we would only consider the standard multivariate regular
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variation, but allow distributions not necessarily restricted to the first quadrant. In
this case one assumes that there is a non-zero Radon measure μ on [−∞, ∞]d \ {0},
charging only finite points, and a function b on (0, ∞) increasing to infinity, such
that

tF
(
b(t)·) v→ μ (4.8)

vaguely on [−∞, ∞]d \ {0}. Recall that the measure μ is called the tail measure of
X; it has automatically a scaling property: for some α > 0, μ(uA) = u−αμ(A) for
every u > 0 and every Borel set A ∈ R

d , and the function b in Eq. 4.8 is regularly
varying with exponent 1/α; see Resnick (2007). We say that F (and X) are regularly
varying with exponent α and use the notation F ∈ MRV (α, μ).

Proposition 4.14 MRV (α, μ) ⊂ SR.

Proof We start by showing that for any A ∈ R, μ(∂A) = 0. Since for any u > 0,

μ(∂(uA)) = μ(u∂A) = u−αμ(∂A) ,

it is enough to show that for any u > 1, ∂(uA) ∩ ∂A = ∅ (indeed, μ(∂A) > 0 would
then imply existence of uncountably many disjoint sets of positive measure).

Suppose, to the contrary, that ∂(uA)∩∂A �= ∅, and let x ∈ ∂(uA)∩∂A. The set IA

in part (c) of Lemma 4.3, has, by construction, the property that u−1x, as an element
of u−1∂(uA) = ∂A, satisfies pT u−1x = 1 for some p ∈ IA. But then pT x = u > 1,
which says that x is in A, rather than in ∂A, which is a subset of Ac.

It follows from Eq. 4.8 that for any set A ∈ R,

tP
(
X ∈ b(t)A

) → μ(A) ∈ (0, ∞)

as t → ∞. Since the function b is regularly varying with exponent 1/α, we imme-
diately conclude that the distribution function FA has a regularly varying tail, hence
FA is subexponential. Because A ∈ R is arbitrary, it follows that F ∈ ∩A∈RSA =
SR.

We proceed with clarifying the relation between the class SR we have introduced
in this section and the classes S (ν; b) and S(Rd) of Section 3. We will also provide
several examples of distributions that belong to SR, as well as sufficient conditions
for a distribution to be a member of SR.

Example 3.1, combined with Proposition 4.7, show that neither S (ν; b) nor
S(Rd) are subsets of SR. We will present an example to show that SR �⊂ S (ν; b).

We start with presenting a sufficient condition for a distribution F to be a member
of SR. We assume for the moment that F is supported by [0, ∞)d .

Let X ∼ F be a nonnegative random vector on R
d such that P(X = 0) = 0.

Denote the L1 norm (we could have chosen any other norm as well) of X by

W = ||X||1 =
d∑

i=1

Xi , (4.9)
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and the projection of X onto the d-dimensional unit simplex �d by

I = X
||X||1 = X

W
∈ �d . (4.10)

Let ν be the distribution of I over �d , and let (Fθθθ )θθθ∈�d
be a set of regular condi-

tional distributions of W given I . Notice that, if the law F of X in R
d has a density

f with respect to the d-dimensional Lebesgue measure, then a version of (Fθθθ )θθθ∈�d

has densities with respect to the one-dimensional Lebesgue measure, given by

fθθθ (w) = wd−1f (wθθθ)
∫ ∞
0 ud−1f (uθθθ) du

, w > 0. (4.11)

Proposition 4.15 Suppose X is a random vector on R
d with distribution F , sup-

ported by [0, ∞)d , such that P(X = 0) = 0. Suppose the marginal distributions
Fi , i = 1, . . . , d have dominated varying tails. Further, assume that there is a set of
regular conditional distributions (Fθθθ )θθθ∈�d

of W given I such that Fθθθ ∈ L for each
θθθ ∈ �d and for some C, t0 > 0,

Fθθθ1(2t)

Fθθθ2(t)
≤ C (4.12)

for all t > t0 and for all θθθ1, θθθ2 ∈ �d . Then F ∈ SR.

Proof Let A ∈ R be fixed. We first check that if each of the marginal distributions
have dominated varying tails, then FA also has a dominated varying tail. Let

I = {
i = 1, . . . , d : A ∩ {x : xi ≥ 0, xj = 0, j �= i} �= ∅}

.

Note that I cannot be empty, since otherwise all positive half-axes would belong to
Ac and the latter, by convexity, would cover the entire nonnegative quadrant, contra-
dicting the assumption that A is non-empty. For i ∈ I we choose ai > 0 such that
(0, . . . , 0, ai, 0, . . . , 0) ∈ A. Then F(A) ≥ F i(ai) for each i ∈ I . Furthermore, we
claim that

A′ := A ∩ {x : xi = 0 for all i ∈ I } = ∅ .

Indeed, A′, viewed as a set in a smaller-dimensional space, has the same properties
as A, and for A′ the corresponding set I (again, in a smaller-dimensional space) is
empty. As explained above, this forces A′ to be empty. That is,

{x : xi = 0 for all i ∈ I } ⊂ Ac .

Since 0 is an interior point of Ac, there is ε > 0 such that

{x : xi ≤ ε, i ∈ I, xj = 0, j �∈ I } ∈ Ac .

By convexity of Ac we deduce that

{x : xi ≤ ε/2 for all i ∈ I } ⊂ Ac .
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That is, F(A) ≤ ∑
i∈I F i(ε/2). Therefore,

lim inf
t→∞

FA(2t)

FA(t)
= lim inf

t→∞
F(2tA)

F (tA)
≥ lim inf

t→∞

1
d

∑
i∈I Fi(2tai)

∑
i∈I Fi(tε/2)

> 0,

since each Fi has a dominated varying tail.
Since L ∩ D ⊂ S , it now suffices to show that FA ∈ L . For θθθ ∈ �d , let

hθθθ = inf {w > 0 : wθθθ ∈ A} > 0 , (4.13)

Note that hθθθ is bounded away from 0. Further, we have already proved that h(e(i)) <

∞ for at least one coordinate vector e(i), i = 1, . . . , d . Since the dominated variation
of the marginal tails implies, in particular, that each coordinate of the vector X is
positive with positive probability, we conclude that

ν
{
θθθ ∈ �d : hθθθ < ∞}

> 0 .

We conclude that there is M > 0 and a measurable set B ⊂ �d with δ := ν(B) >

0, such that

1/M ≤ hθθθ ≤ M for all θθθ ∈ B.

Note that for t > 0,

FA(t) =
∫

�d

Fθθθ (thθθθ ) ν(dθθθ). (4.14)

Therefore,

FA(t) − FA(t + 1)

FA(t)
=

∫
�d

(Fθθθ (thθθθ ) − Fθθθ ((t + 1)hθθθ )) ν(dθθθ)
∫
�d

Fθθθ (thθθθ ) ν(dθθθ)
, (4.15)

and we wish to show that this quantity goes to 0 as t → ∞.
By the assumptions, for any fixed θθθ , Fθθθ ∈ L , hence for any fixed θθθ such that

hθθθ < ∞,

lim
t→∞

Fθθθ (thθθθ ) − Fθθθ ((t + 1)hθθθ )

Fθθθ (thθθθ )
= 0.

Therefore, for a given ε > 0, there exists tε > 0 such that, for all t > tε , ν(St,ε) <

ε, where

St,ε =
{

θθθ ∈ �d : hθθθ < ∞ and
Fθθθ (thθθθ ) − Fθθθ ((t + 1)hθθθ )

Fθθθ (thθθθ )
> ε

}

.

Let ε < (δ/2)2. Then ν
(
B ∩ Sc

t,ε

)
>

(
ν(St,ε)

)1/2. By the definition of the set B

and by Eq. 4.12, and recalling that hθθθ is bounded away from 0, we know that for
some C1, t̃0 > 0

Fθθθ1(thθθθ1) ≤ C1Fθθθ2(thθθθ2)
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for any θθθ1 ∈ St,ε and any θθθ2 ∈ B ∩ Sc
t,ε , for all t > t̃0. Therefore, for t > tε + t̃0,

∫

St,ε

Fθθθ (thθθθ ) − Fθθθ ((t + 1)hθθθ ) ν(dθθθ) ≤
∫

St,ε

Fθθθ (thθθθ ) ν(dθθθ)

<
ν(St,ε)

ν(B ∩ Sc
t,ε)

C1

∫

B∩Sc
t,ε

Fθθθ (thθθθ ) ν(dθθθ)

< ε1/2C1

∫

�d

Fθθθ (thθθθ ) ν(dθθθ).

Hence, for t > tε + t̃0, the quantity in Eq. 4.15 is bounded above by ε + ε1/2C1.
Letting ε ↘ 0 gives us the desired result.

We are now ready to give an example showing that SR �⊂ S (ν; b).

Example 4.16 Let 0 < |γ | ≤ 1/12. It is shown in Cline and Resnick (1992) that a
legitimate probability distribution F , supported by [0, ∞)2, satisfies

P(X > x, Y > y) = 1 + γ sin(log(1 + x + y)) cos( 12π
x−y

1+x+y
)

1 + x + y
, x, y ≥ 0 . (4.16)

Then
P(X > x) = P(Y > x) ∼ x−1 as x → ∞ ,

but F /∈ S (ν; b) for any ν and b; see Cline and Resnick (1992). Straightforward
differentiation gives us the density f of F , and one can check that it satisfies

2 − 4γ − 3γπ − π2/4

(1 + x + y)3
≤ f (x, y) ≤ 2 + 4γ + 3γπ + π2/4

(1 + x + y)3
,

so by Eq. 4.11, we have

a
w

(1 + w)3
≤ fθθθ (w) ≤ b

w

(1 + w)3
, w > 0,

for some 0 < a < b < ∞, independent of θθθ . It is clear that the conditions of
Proposition 4.15 are satisfied and, hence, F ∈ SR.

Proposition 4.15 gives us a way to check that a multivariate distribution belongs
to the class SR, but it only applies to distributions that have, marginally, dominated
varying tails. In the remainder of this section we provide sufficient conditions for
membership in SR that do not require marginals with dominated varying tails. We
start with a motivating example.

Example 4.17 [Rotationally invariant case] Assume that there is a one-dimensional
distribution G such that Fθθθ = G for all θθθ ∈ �d . Let A ∈ R, and notice that, in the
rotationally invariant case, a random variable YA with distribution FA can be written,
in law, as

YA
d= ZH−1, (4.17)

with Z and H being independent, Z with the distribution G, and H = h�. Here h

is defined by Eq. 4.13, and � has the law ν over the simplex �d . Recall that the
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function h is bounded away from zero, so that the random variable H−1 is bounded.
If G ∈ S , then the product in the right hand side is subexponential by Corol-
lary 2.5 in Cline and Samorodnitsky (1994). Hence FA ∈ S for all A ∈ R, and
so F ∈ SR.

The rotationally invariant case of Example 4.17 can be slightly extended, without
much effort, to the case where there is a bounded positive function

(
aθθθ , θθθ ∈ �d

)

such that Fθθθ (·) = G(·/aθθθ ) for some G ∈ S . An argument similar to the one in
the example shows that we can still conclude that F ∈ SR. In order to achieve
more than that, we note that the distribution FA can be represented, by Eq. 4.14, as
a mixture of scaled regular conditional distributions. Note also that the product of
independent random variables in Eq. 4.17 is just a special case of that mixture, to
which we have been able to apply Corollary 2.5 in Cline and Samorodnitsky (1994).
It is likely to be possible to extend that result to certain mixtures that are more general
than products of independent random variables, and thus to obtain additional criteria
for membership in the class SR. We leave serious extensions of this type to future
work. A small extension that still steps away from exact products is below, and it
takes a result in Cline and Samorodnitsky (1994) as an ingredient. We formulate
the statement in terms of the distribution of a random variable that only in a certain
asymptotic sense looks like a product of independent random variables.

Theorem 4.18 Let (�i,Fi , Pi), i = 1, 2 be probability spaces. Let Q be a random
variable defined on the product probability space. Assume that there are nonnegative
random variables Xi , i = 1, 2, defined on (�1,F1, P1) and (�2,F2, P2) corre-
spondingly, such that X1 has a subexponential distribution F , and for some t0 > 0
and C > 0,

X1(ω1)X2(ω2) − CX2(ω2) ≤ Q(ω1, ω2) ≤ X1(ω1)X2(ω2) + CX2(ω2) (4.18)

a.s. on the set {Q(ω1, ω2) > t0}. Suppose P(X2 > 0) > 0, and let G be the
distribution of X2. Suppose that there is a function a : (0, ∞) → (0, ∞), such that

(1.) a(t) ↗ ∞ as t → ∞;
(2.) t

a(t)
↗ ∞ as t → ∞;

(3.) limt→∞ F(t−a(t))

F (t)
= 1;

(4.) limt→∞ G(a(t))
P (X1X2>t)

= 0.

Then Q has a subexponential distribution.

Proof Let H denote the distribution of X1X2. It follows by Theorem 2.1 in Cline and
Samorodnitsky (1994) that H is subexponential. We show that P(Q > t) ∼ H(t) as
t → ∞. This will imply that Q has a subexponential distribution.

We start by checking that

lim
t→∞

H(t − a(t))

H(t)
= 1, which will imply that lim

t→∞
H(t + a(t))

H(t)
= 1 , (4.19)



Multivariate subexponential distributions

because by the first limit and monotonicity of a,

1 ≤ lim inf
t→∞

H(t)

H(t + a(t))
≤ lim sup

t→∞
H(t)

H(t + a(t))
≤ lim sup

t→∞
H(t + a(t) − a(t + a(t)))

H(t + a(t))
= 1 .

To verify the limit, suppose first that X2 ≥ 1 a.s., and write

P
(
t − a(t) < X1X2 ≤ t

) ≤ P2(X2 > a(t))

+
∫

�2

P1(t/X2(ω2)−a(t)/X2(ω2) < X1≤ t/X2(ω2)
)
1
(
X2(ω2) ≤ a(t)

)
P2(dω2)

The first term in the right hand side is o(H(t)) by the assumption (4), while the
same is true for the second term by the assumption (3), since by the assumption (2),
a(t)/y ≤ a(t/y) if y ≥ 1. This proves (4.19) if X2 ≥ 1 a.s. and hence, by scaling,
if X2 ≥ ε a.s. for some ε > 0. An elementary truncation argument then shows that
Eq. 4.19 holds if P(X2 > 0) > 0.

Note that for t > t0,

P(Q > t) ≤ P(X1X2 + CX2 > t)

≤ G(a(t)) + H(t − Ca(t)) .

This implies that lim supt→∞ P(Q > t)/H(t) ≤ 1. The statement
lim inft→∞ P(Q > t)/H(t) ≥ 1 can be shown in a similar way.

Despite a limited scope of the extension given in Theorem 4.18, it allows one to
construct a number of examples of multivariate distributions in SR by choosing, for
example, �2 = �d and X2(θθθ) = 1/h(θθθ), θθθ ∈ �d , and selecting a function Q to
model additional randomness in the radial direction.

5 Ruin probabilities

As mentioned in the introduction, the notion of subexponentiality we introduced
in Section 4 was designed with insurance applications in mind. In this section we
describe such an application more explicitly.

Consider a renewal model for the reserves of an insurance company with d lines
of business. Suppose that claims arrive according to a renewal process (Nt )t≥0 given
by Nt = sup{n ≥ 1 : Tn ≤ t}. The arrival times (Tn) form a renewal sequence

T0 = 0, Tn = Y1 + · · · + Yn for n ≥ 1, (5.1)

where the interarrival times (Yi)i≥1 form a sequence of independent and identically
distributed positive random variables. We will call a generic interarrival time Y . At
the arrival time Ti a random vector-valued claim size X(i) = (

X
(i)
1 , . . . , X

(i)
d

)
is

incurred, so that the part of the claim going to the j th line of business is X
(i)
j . We

assume that the claim sizes (X(i)) are i.i.d. random vectors with a finite mean, and
we denote their common law by F . We assume further that the claim size process
is independent of the renewal process of the claim arrivals. The j th line of business
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collects premium at the rate of pj per unit of time. Let p be the vector of the premium
rates, and X a generic random vector of claim sizes.

Suppose that the company has an initial buffer capital of u, out of which the
amount of ubj is allocated to the j th line of business, j = 1, 2, . . . , d . Here
b1, . . . , bd are positive numbers, b1 + · · · + bd = 1. Then ub denotes the vector for
the initial capital buffer allocation. With the above notation, the claim surplus process
(St )t≥0 and the risk reserve process (Rt )t≥0 are given by

St =
Nt∑

i=1

X(i) − tp, Rt = ub − St = ub + tp −
Nt∑

i=1

X(i), t ≥ 0 .

The company becomes insolvent (ruined) when the risk reserve process hits a cer-
tain ruin set L ⊂ R

d . Equivalently, ruin occurs when the claim surplus process enters
the set ub − L. We will assume that the ruin set satisfies the following condition.

Assumption 5.1 The ruin set L is an open decreasing (i.e., −L is increasing) set
such that 0 ∈ ∂L, satisfying L = uL for u > 0, and such that Lc is convex.

Note that this assumption means that the ruin occurs when the claim surplus pro-
cess enters the set uA, with A = b− L ∈ R, as defined in Section 4. In fact, the ruin
set L can be viewed as being of the form −G, as defined in Remark 4.2. Examples
of such ruin sets are, of course, the sets

L = {
x : xj < 0 for some j = 1, . . . , d

}
and L = {

x : x1 + . . . + xd < 0
}
,

discussed in Section 4. A general framework was proposed in Hult and Lindskog
(2006). In this framework capital can be transferred between different business lines,
but the transfers incur costs, and the solvency set has the form

Lc =
⎧
⎨

⎩
x : x =

∑

i �=j

vij (πijei − ej ) +
d∑

i=1

wiei , vij ≥ 0, wi ≥ 0

⎫
⎬

⎭
, (5.2)

where e1, . . . , ed are the standard basis vectors, and � = (πij )
d
i,j=1 is a matrix

satisfying

(i) πij ≥ 1 for i, j ∈ {1, . . . , d},
(ii) πii = 1 for i ∈ {1, . . . , d},
(iii) πij ≤ πikπkj for i, j, k ∈ {1, . . . , d}.
In the financial literature, a matrix satisfying the above constraints is called a bid-ask
matrix. In our context, the entry πij can be interpreted as the amount of capital that
needs to be taken from business line i in order to transfer 1 unit of capital to business
line j .

We note that each of the above ruin sets is a cone, i.e. it satisfies L = uL for
u > 0, as assumed in Assumption 5.1.



Multivariate subexponential distributions

We maintain the notation A = b − L ∈ R. Note that we can write the ruin
probability as

ψb,L(u) = P(Rt ∈ L for some t ≥ 0) (5.3)

= P

(
n∑

i=1

X(i) − Yip ∈ uA for some n ≥ 1

)

= P

(
n∑

i=1

Z(i) ∈ uA for some n ≥ 1

)

,

where Z(i) = X(i) − Yip, i = 1, 2, . . .. We let Z denote a generic element of the
sequence (Z(i))i≥1. We will assume a positive safety loading, an assumption that
takes now the form

c = −E[Z] > 0 ,

see e.g. Asmussen (2000). The assumption of the finite mean for the claim sizes
implies that

θ :=
∫ ∞

0
F

(
[0, ∞)d + vc

)
dv < ∞ ,

and we can define a probability measure on Rd , supported by [0, ∞)d , by

FI (·) = 1

θ

∫ ∞

0
F(· + vc) dv . (5.4)

Denote

H(u) =
∫ ∞

0
F(uA + vc) dv , u > 0 . (5.5)

The following is the main result of this section.

Theorem 5.2 Suppose that the law FI is in SA. Then the ruin probability ψb,L

satisfies

lim
u→∞

ψb,L(u)

H(u)
= 1. (5.6)

Remark 5.3 Notice, for comparison, that in the univariate case, with the ruin set
L = (−∞, 0) (and b = 1) we have A = (1, ∞), and

H(u) =
∫ ∞

0
F(u + vc) dv = 1

c

∫ ∞

u

F (v) dv .

In this case the statement (5.6) agrees with the standard univariate result on subexpo-
nential claims; see e.g. Theorem 1.3.8 in Embrechts et al. (1997). If the claim arrival
process is Poisson, then this is Eq. 2.7 of Section 2.

Proof of Theorem 5.2 We start by observing that the function H is proportional to
the tail of a subexponential distribution FI

A and, hence, can itself be viewed as the
tail of a subexponential distribution. We can and will, for example, simply refer to
the “long tail property” of H .
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We use the “one big jump” approach to heavy tailed large deviations; see e.g.
Zachary (2004), and the first step is to show that

lim
u→∞

∫ ∞
0 P(Z ∈ uA + vc) dv

H(u)
= 1 . (5.7)

Indeed, the upper bound in Eq. 5.7 follows from the fact that A is increasing. For the
lower bound, notice that, by Fatou’s lemma, it is enough to prove that that for each
fixed y,

lim
u→∞

∫ ∞
0 F(uA + vc + yp) dv

H(u)
= 1 .

This, however, follows from the fact that by part (d) of Lemma 4.3, there exists some
u1 > 0 such that for u > u1 we have (u + u1)A + vc ⊂ uA + vc+ yp, and the long
tail property of H .

We proceed to prove the lower bound in Eq. 5.6. Let Sn := ∑n
i=1 Z

(i), n =
1, 2, . . .. Let ε, δ be small positive numbers, by the Weak Law of Large Numbers, we
can choose K = Kε,δ so large that

P
(
Sn > −(K + n(1 + ε))c

)
> 1 − δ, n = 1, 2, . . . .

Define Mn = sup{u > 0 : Si ∈ uA for some 1 ≤ i ≤ n} and M = sup{u > 0 :
Sn ∈ uA for some n ≥ 1}. For u > 0,

ψb,L(u) = P(M > u) =
∑

n≥0

P(Mn ≤ u, Sn+1 ∈ uA)

≥
∑

n≥0

P
(
Mn ≤u, Sn >−(K+n(1+ε))c, Z(n+1) ∈ uA+(K+n(1+ε))c

)

≥
∑

n≥0

(1 − δ − P(Mn > u))P
(
Z(n+1) ∈ uA + Kc + n(1 + ε)c

)

≥ (1 − δ − P(M > u))
∑

n≥0

P
(
Z ∈ uA + Kc + n(1 + ε)c

)
.

Rearranging, using the monotonicity of A and the fact that Z has a finite mean, we
see that

ψb,L(u) ≥ (1 − δ)
∑

n≥0 P(Z ∈ uA + Kc + n(1 + ε)c)

1 + ∑
n≥0 P(Z ∈ uA + Kc + n(1 + ε)c)

∼ 1 − δ

1 + ε

∫ ∞

0
P

(
Z ∈ uA + Kc + vc

)
dv

∼ 1 − δ

1 + ε

∫ ∞

0
P

(
Z ∈ uA + vc

)
dv, u → ∞ .

Specifically, in the first step above we used the fact that the sum in the denominator
is finite and converges to zero as u → ∞ since Z has a finite mean, and replaced the
sum in the numerator by the corresponding integral; the latter step is legitimate since
A is monotone. Finally, we changed the variable of integration in the integral. Note
also that the last step uses the long tail property of FI

A. Letting δ, ε to 0, we have, thus,
obtained the lower bound in Eq. 5.6. We proceed to prove a matching upper bound.
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Fix 0 < ε < 1. For r > 0, we define a sequence (τn) as follows: we set τ0 = 0,
and

τ1 = inf
{
n ≥ 1 : Sn ∈ rA − n(1 − ε)c

}
.

For m ≥ 2, we set τm = ∞ if τm−1 = ∞. Otherwise, let

τm = τm−1 + inf
{
n ≥ 1 : Sn+τm−1 − Sτm−1 ∈ rA − n(1 − ε)c

}
.

If we let γ = P(τ1 < ∞), then for any m ≥ 1, P(τm < ∞) = γ m. By the positive
safety loading assumption, γ → 0 as r → ∞. Note that for u > 0,

P
(
τ1 < ∞, Sτ1 ∈ uA

) =
∑

n≥1

P(τ1 = n, Sn ∈ uA) ≤
∑

n≥1

P
(
Sn−1 ∈ rAc−(n−1)(1−ε)c, Sn ∈ uA

)
.

By part (c) of Lemma 4.3, Sn ∈ uA if and only if supp∈IA
pT Sn > u. Further,

sup
p∈IA

pT Sn ≤ sup
p∈IA

pT
(
Sn−1 + (n − 1)(1 − ε)c

) + sup
p∈IA

pT
(
Z(n) − (n − 1)(1 − ε)c

)
.

Let u > r . Recalling Lemma 4.5, if Sn−1 ∈ rAc − (n − 1)(1 − ε)c, then
supp∈IA

pT
(
Sn−1 + (n − 1)(1 − ε)c

) ≤ r , so for supp∈IA
pT Sn > u to hold, it

must be the case that supp∈IA
pT

(
Z(n) − (n − 1)(1 − ε)c

)
> u − r , implying that

Z(n) ∈ (u − r)A + (n − 1)(1 − ε)c.
Summing up, we see that, as u → ∞,

P
(
τ1 < ∞, Sτ1 ∈ uA

) ≤
∑

n≥1

P
(
Z(n) ∈ (u − r)A + (n − 1)(1 − ε)c

)

∼
∫ ∞

0
P(Z ∈ (u − r)A + v(1 − ε)c) dv

∼ 1

1 − ε
H(u − r) .

Letting ε → 0 and using the long tail property of H , we obtain

lim sup
u→∞

P
(
τ1 < ∞, Sτ1 ∈ uA

)

H(u)
≤ 1 . (5.8)

Let (V(i)) be a sequence of independent identically distributed random vectors
whose law is the conditional law of Sτ1 given that τ1 < ∞. By Eq. 5.8, there is a
distribution B on [0, ∞) such that B(u) ∼ γ −1H(u) as u → ∞ and

P
(
V(1) ∈ uA

) ≤ B(u) for all u ≥ 0.

Note, further, that by the definition of the sequence (τm), for every m ≥ 0, on the
event {τm < ∞}, we have, for 1 ≤ i < τm+1, Sτm+i − Sτm ∈ rAc − i(1 − ε)c ⊂
rAc − (1 − ε)c. If Sτm ∈ (u − r)Ac + (1 − ε)c, then we have Sτm+i ∈ uAc. Hence,
for the event {Sn ∈ uA for some n} to occur, we must have

Sτm ∈ (
(u − r)A + (1 − ε)c

) ∪ uA for some m.
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Therefore, noting that
(
(u − r)A + (1 − ε)c

) ∪ uA ⊂ (u − r)A, we can use Lemma
4.9 to obtain

ψb,L(u) = P(M > u) ≤
∑

m≥1

P
(
Sτm ∈ (

(u − r)A + (1 − ε)c
) ∪ uA

)

≤
∑

m≥1

P
(
Sτm ∈ (u − r)A

)

=
∑

m≥1

γ mP
(
V(1) + · · · + V(m) ∈ (u − r)A

)

≤
∑

m≥1

γ mB(m)(u − r).

By the assumption, the H is the tail of a subexponential distribution, and, hence,
B is subexponential as well. This implies that

lim
u→∞

B(m)(u)

B(u)
= m ,

and that for any ε > 0, there exists K > 0 such that for all u > 0 and m ≥ 1,

B(m)(u)

B(u)
≤ K(1 + ε)m.

Since we can make γ > 0 as small as we wish by choosing r large, we can use
the dominated convergence theorem to obtain

lim sup
u→∞

ψb,L(u)

γB(u − r)
=

∑

m≥1

γ m−1m = 1

(1 − γ )2
.

Letting r → ∞, which makes γ → 0, we have that

lim sup
u→∞

ψb,L(u)

H(u)
≤ 1 ,

which is the required upper bound in Eq. 5.6.

We finish this section by returning to the special case of multivariate regularly
varying claims. Recall that, by Proposition 4.14, the distributions in MRV (α, μ)

are in SR. The asymptotic behaviour of the ruin probability with the solvency set
Lc given by Eq. 5.2, and multivariate regularly varying claims with α > 1, was
determined by Hult and Lindskog (2006). To state their result, notice that the tail
measure of a random vectorX (recall (4.8)) is determined up to a scaling by a positive
constant, and a different scaling in the tail measure can be achieved by scaling appro-
priately the function b in Eq. 4.8. Let us scale the tail measure μ in such a way that
it assigns unit mass to the complement of the unit ball in Rd . The norm we choose is
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unimportant, but for consistency with the notation used elsewhere in the paper, let us
use the L1 norm. With this convention, we can restate (4.8) as

P(X ∈ u·)
P (‖X‖ > u)

v→ μ (5.9)

vaguely on [−∞, ∞]d\{0}. To avoid a degenerate situation (and the resulting compli-
cations in the notation) we will assume that μ{x : xi > 0} > 0 for each i = 1, . . . , d .
It was shown by Hult and Lindskog (2006) that under the assumption (5.9) (and with
the solvency set Lc given by (5.2)), the ruin probability satisfies

lim
u→∞

ψb,L(u)

uP (‖X‖ > u)
=

∫ ∞

0
μ(b − L + vc) dv. (5.10)

We extend the above result to all ruin sets satisfying Assumption 5.1.

Proposition 5.4 Assume that the ruin set L satisfies Assumption 5.1. If the claim
sizes satisfy (5.9) with α > 1 and the non-degeneracy assumption, then (5.10) holds.

Proof By Theorem 5.2, it suffices to show that

lim
u→∞

∫ ∞
0 P(X ∈ uA + vc) dv

uP (‖X‖ > u)
=

∫ ∞

0
μ(A + vc) dv ,

which we proceed to do. By a change of variables,
∫ ∞
0 P(X ∈ uA + vc) dv

uP (‖X‖ > u)
=

∫ ∞
0 P(X ∈ u(A + vc)) dv

P (‖X‖ > u)
, (5.11)

and for every v > 0,

P(X ∈ u(A + vc))
P (‖X‖ > u)

→ μ(A + vc)

as u → ∞. In the last step we use Eq. 5.9, and the fact that the tail measure does not
charge the boundary of sets inR, shown in the proof of Proposition 4.14. Therefore,
we only need to justify taking the limit inside the integral in Eq. 5.11. However, by
the definition of the set A,

P(X ∈ u(A + vc))
P (‖X‖ > u)

≤
d∑

i=1

P(X(i) > ubi + uvci)

P (X(i) > u)
.

The non-degeneracy assumption on the measure μ implies that each X(i) is itself
regularly varying with exponent α. Therefore, by the Potter bounds, there are finite
positive constants Ci, i = 1, . . . , d , and a number ε ∈ (0, α − 1) such that for all
u ≥ 1,

P(X(i) > ubi + uvci)

P (X(i) > u)
≤ Ci(bi + vci)

−(α−ε), i = 1, . . . , d .

Since the functions in the right hand side are integrable, the dominated conver-
gence theorem applies.
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