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SUMMARY 

We propose two peaks-over-threshold methods for discrete random variables, and show that 15 

they can provide accurate tail probability estimates in simulated and real data. 

Some key words: Extreme value theory; Tail approximation; Count data; Discrete distribution; Generalized Pareto 
distribution; Zipf distribution; Peaks over threshold. 

1. INTRODUCTION 

Extreme quantile estimation is an important but diffcult problem in statistics, especially when 20 

the quantile is beyond the range of the data. In the univariate case, an approach that often works 
well in practice is to model observations above a large threshold with a parametric family of 
distributions which can be motivated as follows. Let X be a random variable taking values in 
[0, xF ) for xF ∈ (0, ∞], and suppose that there exists a strictly positive sequence au such that 

−1 a (X − u) | X ≥ u → Z, (1) 25u 

in distribution as u → xF , for some Z following a non-degenerate probability distribution on 
[0, ∞). Then, Z follows a generalized Pareto distribution, defned by its survival function � �−1/ξx

F̄GPD(x; σ, ξ) = 1 + ξ 1{x<τ }, x ≥ 0,
σ 

with σ > 0, τ = σ/|ξ| if ξ < 0 and τ = ∞ otherwise, 1{x<τ } = 1 if x < τ and 0 otherwise, and 
x(1 + ξx)1/ξ = e if ξ = 0 (Pickands, 1975). Condition (1), written as X ∈ MDAξ, means that 30 

X is in the maximum domain of attraction of an extreme value distribution with shape param-
eter ξ (see e.g. Resnick (1987)). In this case, the sequence of cumulative distribution functions 

−1 ¯of a (X − u) | X ≥ u converges uniformly to 1 − FGPD on [0, ∞). Thus, the distribution of u 
exceedances above a large threshold u (also called “peaks-over-threshold”) can be approximated 
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35 in the following manner: � −1 −1 ¯ pr(X − u > x | X ≥ u) = pr au (X − u) > au x | X ≥ u ≈ FGPD(x; σau, ξ) , (2) 

(Davison & Smith, 1990). This approximation, called the generalized Pareto approximation, is 
convenient in practice because it does not rely on a specifc distributional assumption; X is 
only required to belong to some maximum domain of attraction, which holds for most common 

40 continuous distributions. 
In the discrete case, by contrast, tail distributions are less understood. It is not clear how 

discrete exceedances over high threshold should be modeled and, consequently, the generalized 
Pareto approximation is often applied ignoring the discrete nature of the data. This poses two 
issues: frst, a necessary condition for a discrete random variable X to be in some maximum 

¯ 45 domain of attraction in the case xF = ∞ is that X is long-tailed,1 i.e., FX (u + 1)/F̄  
X (u) → 1 

as u →∞ (Shimura, 2012). However, many common discrete distributions, including geometric, 
Poisson and negative binomial distributions, are not long-tailed. 

Specifc convergence results for maxima of discrete data have thus been derived (Anderson, 
1970, 1980; Dkengne et al., 2016), but the limit proposed is always a continuous distribution, 

50 which leads to the second issue: treating discrete data as continuous introduces a bias in the 
likelihood function. Since the shape and location parameters ξ and σ of the generalized Pareto 
approximation are unknown in practice, they must be estimated from the exceedance data. In 
this context, we will see that the bias renders the approximation inadequate if there are many tied 
observations — even when X is long-tailed, that is, when (2) is valid in theory. 

55 Our contribution is to overcome these limitations by proposing two peaks-over-threshold 
methods, each relying on a parametric family of discrete distributions: the discrete generalized 
Pareto and the generalized Zipf distribution. The latter distributions exist in the literature but 
have not been put forward by a limiting argument for modeling extremes. We will show that 
these new approximations can be theoretically motivated for X belonging to a broad class of 

60 discrete distributions, and that they outperform the generalized Pareto approximation when the 
data contain many tied observations. They perform very similarly to one another but it is still 
unclear if one of them should be preferred. 

From now on, we assume that X is a discrete random variable with non-negative values, and 
ξ ≥ 0. The frst method is introduced by adapting condition X ∈ MDAξ to the discrete case as 

65 follows. Suppose that there exists a random variable Y ∈ MDAξ such that pr(X ≥ k) = pr(Y ≥ 
k) for k = 0, 1, 2, . . . , that is, the equality in distribution, X = bY c, holds. In this case, we say 
that X is in the discrete maximum domain of attraction, which we write as X ∈ D-MDAξ. We 
call Y an extension of X and such an extension is not unique. Shimura (2012) proved that X ∈ 
MDAξ if and only if X ∈ D-MDAξ and X is long-tailed.2 It was also shown by Shimura (2012) 

70 that geometric, Poisson and negative binomial distributions belong to the discrete maximum 
domain of attraction. Therefore, MDAξ ( D-MDAξ for discrete distributions. If X ∈ D-MDAξ 

and Y ∈ MDAξ is a corresponding extension satisfying X = bY c in distribution, then, for large 
integers u, we use (2) to fnd 

pr(X − u = k | X ≥ u) = pr(Y − u ≥ k | Y ≥ u) − pr(Y − u ≥ k + 1 | Y ≥ u) 

75 ≈ pD-GPD(k; σau, ξ), (3) 

1 All long-tailed distributions are heavy-tailed, but the converse is false. 
2 In this case, an extension of X can thus be X itself. 
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where pD-GPD is the probability mass function of the discrete generalized Pareto distribution 
defned by 

¯ ¯ pD-GPD(k; σ, ξ) = FGPD(k; σ, ξ) − FGPD(k + 1; σ, ξ), 

for k = 0, 1, 2, . . .. Equation (3) provides a method for modeling exceedances over threshold that 
we call the discrete generalized Pareto approximation. The latter distribution has been applied 
by Prieto et al. (2014) to model road accidents, while various aspects of discrete Pareto-type 80 

distributions were studied in Krishna & Pundir (2009), Buddana & Kozubowski (2014), and 
Kozubowski et al. (2015). 

¯Whereas the frst method is based on an extension of FX by a survival function in the 
maximum domain of attraction, the second method assumes instead an extension of pX , the 
probability mass function of X. Suppose that there exists a non-negative random variable 85 

¯Y ∈ MDAξ/(1+ξ) such that pX (k) = c FY (k) for k = d, d + 1, d + 2, . . . , for some c > 0 and 
d ∈ N0 = {0, 1, . . .}. In this case, we say that pX is in the discrete maximum domain of attrac-

¯tion which is denoted by pX ∈ D-MDAξ/(1+ξ), and call FY an extension of pX . We will show 
that pX ∈ D-MDAξ/(1+ξ) implies X ∈ MDAξ (under a mild condition in the case ξ = 0), and 
that geometric, Poisson and negative binomial satisfy pX ∈ D-MDA0. It follows from (2) that, 90 

for large integers u, 

pr(Y > u + k)/pr(Y > u) � 
pr(X − u = k | X ≥ u) = P∞ ≈ pGZD k; (1 + ξ)σau, ξ , (4) 

i=0 pr(Y > u + i)/pr(Y > u) 

where � �−1/ξ−1 
1 + ξ σ

k 

pGZD(k; σ, ξ) = , k = 0, 1, 2, . . . (5)P∞ � �−1/ξ−1 
i=0 1 + ξ i σ 

which is the probability function of a distribution that we call the generalized Zipf distribution. 95 

In the case ξ = 0, the latter is a geometric distribution (and so is the discrete generalized Pareto 
distribution), and in the case ξ > 0, it is a Zipf–Mandelbrot distribution (Mandelbrot, 1953). 
Zipf-type families have been ftted to various discrete datasets such as word frequencies (Booth, 
1967), city sizes (Gabaix, 1999), company sizes (Axtell, 2001) and website visits (Clauset et al., 
2009). The Zipf law, arising in the case ξ = σ, is sometimes presented as the discrete counterpart 100 

of the Pareto distribution (Arnold, 1983). We refer to the approximation procedure in (4) as the 
generalized Zipf approximation. 

2. THEORETICAL RESULTS 

We start by showing that the probability density and mass functions of the generalized Pareto, 
discrete generalized Pareto and Zipf distributions are asymptotically equivalent as σ tends to 105 

infnity. Proofs are given in the Supplementary Material. 

PROPOSITION 1. For σ > 0, ξ ≥ 0 and q, q̃  ∈ {fGPD, pD-GPD, pGZD}, it holds 

q(k; σ, ξ)
lim sup − 1 = 0. 
σ→∞ k=0,1,2,... q̃(k; σ, ξ) 

This suggests that modeling a sample from X − u | X ≥ u by maximum likelihood using either 
fGPD, pD-GPD or pGZD should not differ too much if the estimated scale parameter σ̂ is suffciently 110 

large. When the sample size and u grow, σ̂ only goes to infnity if the sequence au defned in 
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(1) satisfes au →∞, which occurs if and only if X is long-tailed. Even in this case, au might 
converge too slowly for the three methods to be similar in practice, as we will see in Section 3. 

We now attempt to put the approximation procedures on frmer theoretical grounds, starting 
115 with a convergence result for the discrete generalized Pareto approximation. 

PROPOSITION 2. If X ∈ D-MDAξ for ξ ≥ 0, then there exists a positive sequence (au, u = 
1, 2, . . .) such that 

lim sup pr(X = u + k | X ≥ u) − pD-GPD(k; au, ξ) = 0. (6) 
u∈N0, u→∞ k=0,1,2,... 

We remark that (6) is not interesting if au →∞ because the two terms converge to 0. The next 
120 result sheds light on the approximation procedures when, this time, pX ∈ D-MDA. Recall that a 

distribution F is in MDA0 if and only if the survival function has a representation� Z � x 1
F̄ (x) = c(x) exp − dy , −∞ < x < xF , (7) 

a(y)0 

where c(·) is a positive function with c(x) → c > 0 as x ↑ xF , and a(·) is a positive, differen-
tiable function a(·) with limx↑xF a

0(x) = 0. If c(x) = c on (d, xF ) for some d < xF , then we 
say that the distribution F satisfes the von Mises condition. The function a(·) in (7) is some-
times called the auxiliary function. Note that it is only uniquely defned on (d, xF ) under the von 
Mises condition; see Embrechts et al. (2013). We also remind that in the sequel we only consider 
the case of unbounded support, i.e. xF = ∞. 

THEOREM 1. If pX ∈ D-MDAξ/(1+ξ) and ξ > 0, then X ∈ MDAξ and, for any sequence of 
nonnegative integers (ku)u∈N0 such that supu ku/u < ∞, 

pr(X = ku + u | X ≥ u) 
130 lim = 1. (8) 

u∈N, u→∞ q(ku; ξu, ξ) 

where q ≡ fGPD, pD-GPD and pGZD. 
¯If pX ∈ D-MDA0 and if the auxiliary function of an extension F of pX satisfes 

limx→∞ a(x) = σ > 0, then X ∈ D-MDA0 and 

lim pr(X = k + u | X ≥ u) = pD-GPD(k; σ, 0) = pGZD(k; σ, 0), (9) 
u∈N, u→∞ 

135 for k = 0, 1, 2, . . . . 

The condition pX ∈ D-MDA is satisfed, among others, by the Zipf–Mandelbrot, geometric, 
Poisson and negative binomial distributions as shown below and in the Supplementary Material. 

Example 1. The probability mass function of a Zipf–Mandelbrot distribution is proportional 
to (k + q)−1−1/ξ for k = 0, 1, 2, . . . , q ≥ 0, ξ > 0, and satisfes pX ∈ D-MDAξ/(1+ξ) because it 

¯ 140 can be extended by FY (y) = c(y + q)−1−1/ξ for y ≥ 0 and some c > 0 with Y ∈ MDAξ/(1+ξ). 
The probability mass function of a geometric distribution belongs to D-MDA0 as it coincides 
up to a constant with the survival function of an exponential distribution. The latter distribution 
clearly satisfes the von Mises condition and thus is a member of MDA0. The auxiliary function 
is, in fact, equal (eventually) to 1/λ, where λ is the rate of the exponential distribution. 

145 To summarize, for a discrete random variable X and ξ ≥ 0, it holds X ∈ MDAξ if and only if 
X ∈ D-MDAξ and X is long-tailed. If ξ > 0, then pX ∈ D-MDAξ/(1+ξ) implies X ∈ D-MDAξ; 
the same implication holds in the case ξ = 0 if the auxiliary function of the extension of pX 

satisfes a(x) → σ ∈ (0, ∞) as x →∞. 
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Fig. 1: On the left: frequency plot of a sample of X − 2 | X ≥ 2 of size 739 simulated from (10). On the right: 
frequency plot of the length of the 2875 longest French words. 

3. EMPIRICAL RESULTS 

We assess the performance of the discrete generalized Pareto and the generalized Zipf approx- 150 

imations for estimating the probability of a rare event from discrete data, and illustrate why they 
should be preferred to the generalized Pareto approximation when there are many tied observa-
tions, whether X is long-tailed or not. Let α = 2, β = 1 and 

Y ∼ Inverse-gamma(α, β), X = bY c, (10) 

where inverse-gamma distribution has density function f(x) = Γ(α)−1βαx−α−1 exp(−β/x), 155 

x > 0. The experiment described below is repeated 500 times. An independent and identically 
distributed sample of size 8000 is drawn from the distribution of X . From these observations, 
the goal is to estimate the probability of the extreme region 

pe = pr(X ≥ bqec), qe = 70, (11) 

where qe is the 99.99 percentile of Y, i.e., the value exceeded once every 10 000 times on av- 160 

erage. The strategy pursued is to select an integer threshold u as the 95th empirical percentile 
of the sample,3 ft parametric distributions to the exceedances X − u | X ≥ u, and use them to 
extrapolate the tail and estimate pe. It holds X ∈ D-MDAξ and X ∈ MDAξ for ξ = 1/α, but 
it is not immediate if pX ∈ D-MDAξ/(1+ξ) and we thus apply the approximations heuristically. 
The generalized Pareto distribution is ftted to the data either directly or after shifting them by 165 

1a continuity correction δ = . As a benchmark, we will also estimate pe from a sample of the 2 
continuous variable Y (as opposed to its discretization X). In this context, using a generalized 
Pareto distribution is motivated by the fact that Y ∈ MDA1/2, and we ft it to Y − u | Y ≥ u. 

A frequency plot of a sample of X − u | X ≥ u is displayed on the left-hand side in Fig-
ure 1. For each model, we compute maximum likelihood estimators σ̂ and ξ̂ by performing a two 170 

3 Selecting an appropriate threshold is crucial when estimating high quantiles and can be based on techniques such as mean residual 
plots (see e.g. Davison & Smith (1990)). 
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Table 1: Performance of several methods in estimating the probability pe of a rare event defned in (11) from about 
700 exceedances in each experiment. The table displays average maximum likelihood estimators for pe, ξ and σ 
across 500 experiments. Coverage c, average length l and true length l? of 90% confdence intervals are shown 
between brackets. The discrete generalized Pareto and Zipf approximations are superior in this case. 

p̂e · 103 (c, l, l?) ξ̂  (c, l) σ̂ (l) 
Truth 0.10 0.5 

Fitted to Y − u | Y ≥ u 
Generalized Pareto distribution 0.10 (87%, 0.16, 0.16) 0.49 (95%, 0.22) 1.19 (0.30) 

Fitted to X − u | X ≥ u, X = bY c 
Discrete generalized Pareto distribution 0.10 (86%, 0.17, 0.16) 0.49 (95%, 0.23) 1.19 (0.33) 
Generalized Zipf distribution 0.11 (88%, 0.17, 0.17) 0.50 (95%, 0.24) 1.39 (0.29) 
Generalized Pareto distribution, δ = 1

2 0.04 (20%, 0.07, 0.08) 0.37 (22%, 0.18) 1.43 (0.32) 
Generalized Pareto distribution, δ = 0 7.93 (83%, 23.97, 11.25) 8.27 (0%, 1.24) 0.00 (0.00) 

Table 2: Fit of several distributions to the length of the 2875 longest French words, and to the number of tornadoes 
during the 435 most extreme outbreaks in the United States. The table displays p-value of discrete Kolmogorov– 
Smirnov tests (of the discretized model in the case of continuous models), negative log-likelihood −` and maximum 
likelihood estimates with 90% confdence intervals and possible temporal trend σ̂t in the scale parameter. Tied obser-
vations are much less frequent in the tornado data than in the word length data, explaining why the generalized Pareto 
approximation is not outperformed in the former case. 

p-val. −` ξ σ̂0 σ̂t 

Word length 
Discrete generalized Pareto dist. 0.85 3894.0 0.02[−0.01,0.06] 1.36[1.30,1.43] 
Generalized Zipf distribution 0.84 3894.0 0.02[−0.01,0.06] 1.37[1.32,1.43] 
Generalized Pareto dist., δ = 1

2 0.00 −0.04[−0.06,−0.01] 1.51[1.45,1.57] 
Negative binomial 0.75 3893.9 

Tornado outbreak 
Discrete generalized Pareto dist. 1439.92 0.27[0.16,0.37] 4.81[3.64,5.99] 6.11[3.74,8.48] 
Generalized Pareto dist., δ = 1

2 1439.93 0.26[0.16,0.37] 4.86[3.68,6.04] 6.13[3.75,8.50] 

dimensional maximization using the function optim of R (R Core Team, 2015) with starting 
values (1, 1). We then compute p̂e and approximate 90% confdence intervals under asymptotic 
normality of the estimators. Table 1 displays: the average estimates p̂e, ξ̂  and σ̂ over the 500 ex-
periments, the coverage4 of the confdence intervals, their average length and their true length.5 It 

175 appears that the discrete generalized Pareto and Zipf approximations accurately estimate pe from 
the discretized data with a coverage close to the correct one of 90%, and that their performance is 
good relative to the situation of full information where the continuous data are available — notice 
how they deliver very similar estimates to one another. On the other hand, the two variants of the 
generalized Pareto approximation perform poorly, the worst being the case δ = 0. Decreasing α 

180 would increase σ̂ and render the estimates from all these methods indistinguishable as expected 
from Proposition 1. We point out that Poisson and negative binomial distributions would poorly 
estimate pe in this example. 

The ability of the discrete generalized Pareto and Zipf approximations to accurately estimate 
the probability of rare events is supported by complementary simulated cases covering ξ = 0 

185 and ξ < 0 (Hitz, 2016, Chapter 2), and illustrated here on three real datasets. The frst consists 
4 Coverage indicates the proportion of time the truth lies in the confdence interval. 
5 True length is the length the intervals should have had to contain the estimates across the 500 experiments 90% of the time. 

https://6.13[3.75,8.50
https://4.86[3.68,6.04
https://0.26[0.16,0.37
https://6.11[3.74,8.48
https://4.81[3.64,5.99
https://0.27[0.16,0.37
https://1.51[1.45,1.57
https://�0.04[�0.06,�0.01
https://1.37[1.32,1.43
https://3894.00.02[�0.01,0.06
https://1.36[1.30,1.43
https://3894.00.02[�0.01,0.06
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Table 3: On the left: frequency table of multiple births in the United States from 1995 to 2014. On the right: per-
formance of several methods in estimating the probability pe of an American women delivering quintuplets or more 
at birth using only one thousandth of the dataset. In each experiment, the threshold was u = 1 and there were about 
2600 exceedances (see Table 1 for notation). The discrete generalized Pareto and Zipf provide useful techniques for 
such extrapolations. 

Multiple Birth p̂e · 105 (c, l, l?) 
Single 78 178 588 Truth 1.7 
Twin 2 500 340 Discrete generalized Pareto distribution 1.4 (74%, 2.9, 2.9) 
Triplet 1 17 603 Generalized Zipf distribution 1.6 (87%, 3.3, 2.8)8 

Quadruplet 8 108 Negative Binomial 1.2 (65%, 2.3, 2.3) 
1Quint. or more 1 353 Generalized Pareto distribution, δ = 
2 n/a9 

of the frequency X of word length in the French lexicon (New et al., 2004); for instance, “anti-
constitutionnellement” is the only word of 25 letters in French. We focus on describing the tail 
distribution and ft the usual models to X − u | X ≥ u with u = 15. A frequency plot of the 
2875 exceedances is shown on the right-hand side of Figure 1. The discrete generalized Pareto 
and Zipf distributions deliver a good ft and similar estimations to one another, and clearly out- 190 

perform the generalized Pareto approximation as shown by discrete Kolmogorov–Smirnov tests6 

in Table 2 (Arnold & Emerson, 2011). Notice that the negative binomial also fts well in this 
case. 

The second dataset studied in Tippett et al. (2016) reports the number X of tornadoes per 
extreme outbreak in the United States between 1965 and 2015, where an outbreak is a sequence 195 

of twelve or more tornadoes occurring close to each other in time and that are high on Fujita 
scale. The authors found that the 435 observations from X − u | X ≥ u for u = 12 were well 
modeled by a generalized Pareto distribution with linear temporal trend in the scale parameter7 

1and continuity correction δ = 2 . Table 2 shows that the discrete generalized Pareto distribution 
(and the generalized Zipf) yields almost the same estimates. Indeed, there are fewer ties in this 200 

case: about 38% of the data consists of values shared with no more than 20 other observations, 
compared to 13% for the simulated data and 1% for the word length data. The location parameter 
is larger and, thanks to Proposition 1, the generalized Pareto approximation is appropriate. 

The third dataset counts the number X of multiple births in the United States from 1995 to 
2014 and is displayed on the left-hand side of Table 3 (Hamilton et al., 2015). The observations 205 

only take 5 distinct values, and it is thus interesting to see if the discrete generalized Pareto and 
Zipf distributions can still describe the tail of the data in this non-standard estimation problem. 
We randomly select from the dataset a sample that contains thousand times fewer observations, 
and estimate from these the probability pe that an American women delivers quintuplets or more. 
As the data are censored from above, we ft a right-censored version of the usual models to 210 

XC − u | XC ≥ u for u = 1, where XC = min(X, 5). The experiment was repeated 500 times, 
and each sample contained on average 9 quatruplets and 1 quintuplet or more. Table 3 shows that 
the discrete generalized Pareto and Zipf distributions outperform common alternatives, and seem 
to be useful techniques for inference from such limited data. The applicability of peaks-over-
threshold methods when u is a particularly small integer should be more rigorously explored. 215 

Future work could assess the validity of the approximations in the case ξ < 0. The discrete 
generalized Pareto distribution benefts from its closed-form survival and probability mass func-
6 p-values are here computed by Monte Carlo simulation. 
7 More precisely, σ0 + σ1t, where t is the covariate vector in years. In our case, we rescaled t between [0, 1]. 
8 In 52 experiments out of 500, maximum likelihood estimates could not be computed numerically. In 70 experiments, the hessian 

matrix could not be computed numerically. 
9 The log-likelihood function could not be maximized numerically. 
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tion, allowing for exact likelihood based inference. It would be interesting to further understand 
how it relates to the generalized Zipf distributions which seems to deliver comparable perfor-

220 mance in the data analysis carried out. 
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