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Abstract. We investigate the randomized Karlin model with parameter β ∈ (0, 1), 
which is based on an infinite urn scheme. It has been shown before that when the 
randomization is bounded, the so-called odd-occupancy process scales to a fractional 
Brownian motion with Hurst index β/2 ∈ (0, 1/2). We show here that when the ran-
domization is heavy-tailed with index α ∈ (0, 2), then the odd-occupancy process scales 
to a (β/α)-self-similar symmetric α-stable process with stationary increments. 

1. Introduction and main results 

Consider the following infinite urn scheme. Suppose there is an infinite number of urns 
labeled by N = {1, 2, . . . }, all initially empty. Balls are thrown into the urns randomly one 
after another. At each round, a ball is thrown independently into the urn with label k withP 
probability pk, with = 1. This random sampling strategy dates back to at leastk≥1 pk 

the 60s [3, 13]. The urns may represent different species in a population of interest, and in 
various applications an interesting question is to infer the population frequencies (pk)k≥1; 
see [11] and references therein. This urn scheme has been extensively investigated in the 
literature on combinatorial stochastic processes as it induces the so-called paintbox partition 
of N, an infinite exchangeable random partition; see for example [19]. 
Asymptotic results for many statistics of this urn scheme, and in particular of the random 

partition it induces, have been investigated in the literature (e.g. [11] and references therein), 
including in particular the so-called odd-occupancy process. In the sequel, let Yn denote the 
label of the urn that the n-th ball falls into, so P(Yn = k) = pk. Then (Yn)n∈N are i.i.d.Pn
random variables, and we let Yn,k := 1{Yi =k} denote the number of balls in the urni=1 
with label k after first n rounds. The odd-occupancy process is then defined as 

∞X 
Un 
∗ = 1{Yn,k odd}. 

k=1 

This process counts the number of urns that contain an odd number of balls after the first n 
rounds. An interpretation of this process due to Spitzer [25] is as follows. One may associate 
to each urn a lightbulb, and start the sampling procedure with all lightbulbs off. Each time 
a ball falls in an urn, the corresponding lightbulb changes its status (from off to on or from 
on to off). The process U∗ then represents the total number of lightbulbs that are on aftern 
the first n rounds. 

Date: July 24, 2018. 
2010 Mathematics Subject Classification. Primary, 60F17; Secondary, 60G18, 60G52. 
Key words and phrases. Infinite urn scheme, regular variation, functional central limit theorem, self-

similar process, stable process. 

1 



2 OLIVIER DURIEU, GENNADY SAMORODNITSKY, AND YIZAO WANG 

Karlin [13] proposed and investigated the aforementioned model under the following 
assumptions on (pk)k≥1: pk is decreasing in k and 

(1) max{k ≥ 1 | pk ≥ 1/t} = tβ L(t), t ≥ 0, for some β ∈ (0, 1), 

where L is a slowly varying function at infinity. Among many results, Karlin proved that 

U∗ − EU∗ 
n n ⇒ N (0, 1)
σn 

as n → ∞ with σn = 2
β−1(Γ(1 − β)nβ L(n))1/2 . Here and in the sequel ⇒ denotes weak 

convergence and N (0, 1) stands for the standard normal distribution. 
We are interested in the randomized version of the odd-occupancy process, defined as 

∞X 
(2) Un = εk1{Yn,k odd}, 

k=1 

where (εk)k∈N are i.i.d. symmetric random variables independent of (Yn)n∈N. This random-
ization was recently introduced in [8], and it was shown in Corollary 2.8 therein that with 
(εk)k∈N being a sequence of independent Rademacher (±1-valued and symmetric) random 
variables, with the same normalization σn,� � � � 
(3) 

Ubntc ⇒ 2−(β−1)/2 Bβ/2 
tσn t∈[0,1]t∈[0,1] 

in D([0, 1]), where BH is a standard fractional Brownian motion with Hurst index H ∈ (0, 1), 
a centered Gaussian process with covariance function 

1 � �
2HCov(BH

s , BH ) = s + t2H − |t − s|2H , s, t ≥ 0.t 2 
The following aspect of the randomization and the resulting functional central limit theo-

rem is particularly interesting. For an arbitrary symmetric distribution of ε1, the randomized 
odd-occupancy process Un is the partial-sum process for a stationary sequence, 

(−1)Yi,Yi ,(4) Un = X1 + · · · + Xn with Xi = −εYi i ∈ N, n ∈ N. 

Therefore, the infinite urn scheme provides a specific way to generate a stationary sequence 
of random variables whose marginal distribution is the given symmetric law, and whose 
partial-sum process is the randomized odd-occupancy process. Moreover, at least for the 
Rademacher marginal distribution, this stationary sequence (Xn)n≥1 exhibits, in view of 
the limiting result (3), anomalous behavior. Namely, the normalization σn has an order of√ 
magnitude different from the “usual” n normalization needed for partial sums of i.i.d. ran-
dom variables with the same marginal distribution. Such a behavior indicates long-range 
dependence in the stationary sequence [5, 17, 23]. The long-range dependence in this case 
is due to the underlying random partition. In particular, the covariance function of X is 
determined by the law of the random partition. In general, when ε1 is symmetric and in the 
domain of attraction of the normal distribution, it is expected that a fractional Brownian 
motion still arises in the limit with the same order of scaling as in (3). 
In this paper, we are interested in the randomized odd-occupancy process when ε1 has 

a heavy-tailed distribution. Specifically, we will assume that ε1 has infinite variance and, 
even more specifically, is in the domain of attraction of a non-Gaussian stable law. The 
stationary-process representation (4) is, clearly, still valid. However, in a functional central 
limit theorem one expects now a symmetric stable process that is self-similar with station-
ary increments (we abbreviate the latter two properties as the sssi property). The only sssi 
Gaussian process is the fractional Brownian motion; however there are many different sssi 
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symmetric stable processes, which often arise in limit theorems for the partial sums of sta-
tionary sequences with long-range dependence [18, 23, 24]. While many sssi stable processes 
have been well investigated in the literature, new processes in this family are still being dis-
covered [16]. One way to classify different sssi stable processes is via the flow representation, 
introduced by Rosiński [21] and developed by Samorodnitsky [22], of the corresponding in-
crement processes which is, by necessity, stationary. Certain ergodic-theoretical properties 
of these flows are invariants for each stationary stable process, and processes corresponding 
to different types of flows, namely positive, conservative null and dissipative, have drastically 
different properties. 
The main result of this paper is to show that for the Karlin model with a heavy-tailed 

randomization, the scaling limit of the randomized odd-occupancy process is a new self-
similar symmetric stable process with stationary increments. We continue to assume that 
(εk) are i.i.d. and symmetric. For simplicity we will also assume that they are in the normal 
domain of attraction of a symmetric stable law and in particular, for some α ∈ (0, 2), 

P(|ε1| > x)
(5) lim = Cε ∈ (0, ∞).−αx→∞ x

We will define the limiting sssi symmetric α-stable (SαS) process in terms of stochastic 
integrals with respect to an SαS random measure as follows. Let (Ω0 , F 0 , P0) be a probability 
space and N 0 a standard Poisson process defined on this space. Let Mα,β be a SαS random 
measure on R+ × Ω0 with control measure βr−β−1drP0(dω0); we refer the reader to [24] for 
detailed information on SαS random measures and stochastic integrals with respect to these 
measures. The random measure Mα,β is itself defined on a probability space (Ω, F , P), the 
same probability space on which the limiting process Uα,β is defined as Z 
(6) Uα,β := 1{N 0(tr)(ω0) odd}Mα,β (dr, dω

0), t ≥ 0.t 
R+ ×Ω0 

(See (7) below for the characteristic function of finite-dimensional distributions of Uα,β .) 
The process Uα,β is, to the best of our knowledge, a new class of sssi SαS processes, with 

self-similarity index β/α. In particular, we shall show that its increment process is driven 
by a positive flow [21, 22]. The following is the main result of the paper; we use the notation 
f.d.d. → for convergence in finite-dimensional distributions. 

Theorem 1. Under the assumptions (1) and (5), with bn = (n
β L(n))1/α, � � 

Ubntc f.d.d. 
� 
Uα,β 

� 
→ σε ,tbn t∈[0,1]t∈[0,1] R∞

where σα = Cε x−α sin x dx. If, in addition, α ∈ (0, 1), then convergence in distributionε 0 
in the Skorohod J1 topology on D([0, 1]) also holds. 

We will prove this theorem by first conditioning on the urn sampling sequence (Yn)n≥1. 
It turns out that the characteristic function of finite-dimensional distributions of U can 
be expressed in terms of certain statistics of that sequence. The same idea can be used 
in the case of a bounded ε1 (although the proof in [8] was different and actually more 
involved as the results are stronger; see also [9] for the same idea applied to a generalization 
of Karlin model). Indeed, in this case the limit process is Gaussian, so one addresses 
the convergence of the covariance function by essentially examining the joint even/odd-
occupancies at two different time points. In the present case the limit is a stable process 
and, hence, no longer characterized by bivariate distributions. Therefore, as an intermediate 
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step, we have to examine the joint even/odd-occupancies at multiple time points (n1, . . . , nd). 
For this purpose we investigate the following multiparameter process X 

M δ1,...,δd = n1,...,nd 
1{Yn1,k =δ1 mod 2,...,Ynd,k =δd mod 2}, 

k≥1 

with n1, . . . , nd ∈ N0 = {0} ∪ N and (δ1, . . . , δd) ∈ {0, 1}d \ {(0, . . . , 0)}. We refer to this 
process as the multiparameter even/odd-occupancy process. A weak law of large numbers for 
the process M will turn out to be sufficient to prove the first part of Theorem 1. However, we 
will establish a functional central limit theorem for the multiparameter even/odd-occupancy 
process (Theorem 2 below). The limit in that result can be viewed as a multiparameter 
generalization of the bi-fractional Brownian motion [12] and, hence, is of interest on its 
own. There is a huge literature on limit theorems for various counting statistics of the Karlin 
model (see e.g. [2, 11] and references therein). However, the investigation of multiparameter 
even/odd-occupancy process above seems to be new. 
The paper is organized as follows. Section 2 reviews the background on flow representa-

tion of stationary stable processes and shows that the increment process of Uα,β is driven 
by a positive flow. Section 3 establishes limit theorems for the multiparameter even/odd-
occupancy process M . Section 4 presents the proof of main result. 

2. A new class of self-similar stable processes with stationary increments 

We start by verifying the self-similarity of the process Uα,β introduced in (6). It will also 
follow from Theorem 1 and the Lamperti theorem (see e.g. [23]), but a direct argument is 
simple. 

Proposition 1. The process Uα,β is (β/α)-self-similar. That is,� � � � 
f.d.d. Uα,β λβ/α Uα,β= for all λ > 0.λt t 

t≥0 t≥0 

Proof. Fix λ > 0. For any d ∈ N, t1, . . . , td ≥ 0, a1, . . . , ad ∈ R, 
(7) ! ! 

d Z Z dX ∞ X α 

akUα,βE exp i = exp − ak1{N 0 (λtk r)(ω0) odd} P0(dω0)βr−β−1drλtk 
0 Ω0 k=1 k=1 Z ∞ Z d α !X 

λβ = exp − ak1{N 0 (tk r)(ω0) odd} P0(dω0)βr−β−1dr 
0 Ω0 k=1 ! 

dX 
akλ

β/αUα,β= E exp −i ,tk 

k=1 

as required. � 

We now consider the increment process of Uα,β . We will see that the increment process is 
stationary (which, of course, will follow from Theorem 1 as well). More importantly, we will 
classify the flow structure of this process in the spirit of Rosiński [21] and Samorodnitsky 
[22]. We start with a background on the flow structure of stationary SαS processes. It 
was shown by Rosiński [21] that, given a stationary SαS process X = (Xt)t∈R there exist a 
measurable space (S, S, µ), a non-singular flow (Tt)t∈R on it, and a function f ∈ Lα(S, µ), 
such that !Z � �1/α 

f.d.d. dµ ◦ Tt
(8) (Xt)t∈R = ct(s)f ◦ Tt(s) (s) Mα(ds) ,

dµS 
t∈R 
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where Mα is an SαS random measure on (S, S) with control measure µ, and (ct)t∈R is a 
±1-valued cocycle with respect to (Tt)t∈R. Recall that a non-singular flow (Tt)t∈R is a group 
of measurable maps from S onto S such that for all t ∈ R the measure µ ◦ T is equivalent to 
µ. A cocycle (ct)t∈R is a family of measurable functions on (S, S) such that for all t1, t2 ∈ R, 
ct1+t2 (s) = ct1 (s)ct2 ◦ Tt1 (s) µ-almost everywhere. See Krengel [14] and Aaronson [1] for 
more information. In particular, T induces a unique decomposition of (S, S) modulo µ, 

S = P ∪ CN ∪ D, 

where P, CN, D are disjoint T -invariant measurable subsets of S and, restricted to each 
subset (if non-empty), T is positive, conservative null and dissipative, respectively. This 
decomposition generates a unique in law decomposition of the process X in (8) into a sum 

+ XCN of 3 independent stationary SαS processes, X = XP + XD , where XP corresponds 
to a positive flow, XCN corresponds to a conservative null flow, and XD corresponds to a 
dissipative flow, with one or two of the components, possibly, vanishing. In fact, one can 
define all 3 processes as in (8), but integrating over P, CN, D correspondingly. It is known 
that XP is non-ergodic, XD is mixing, while XCN is ergodic, and can be either mixing or 
non-mixing; see [21–23]. The processes generated by a dissipative flow have necessarily a 
mixed moving-average representation. The least understood family of processes are those 
generated by a conservative null flow. 
We will show that the increment process of Uα,β is generated by a positive flow. In fact, 

a stationary SαS process X is generated by positive flow if and only if it can be represented 
as in (8), where now the control measure µ is a probability measure invariant under action 
of the operators (Tt)t∈R (so that the factor (dµ ◦ Tt/dµ)

1/α disappears); see [22, Remark 
2.6]. 
For this purpose, we first present a natural extension of Uα,β to a stochastic process 

indexed by t ∈ R. We may and will assume that Ω0 is the space of Radon measures on R 
equipped with the Borel σ-field corresponding to the topology of vague convergence, P0 is 
the law of the unit rate Poisson point process on R and ( 

ω0([0, t]) t ≥ 0 
N 0(t)(ω0) := 

ω0([t, 0)) t < 0. 

In this way, we now define Z 
Uα,β := 1{N 0(tr)(ω0) odd}Mα,β (dr, dω

0), t ∈ R.t 
R+ ×Ω0 

This definition extends (6). 

Proposition 2. The increment process of Uα,β defined as 

Xt := Uα,β (t + 1) − Uα,β (t), t ∈ R, 

is stationary and driven by a positive flow. 

Proof. Let mβ denote the measure βr−β−1dr on R+. It follows from the stochastic integral 
representation of Uα,β that, !Z 

f.d.d. � � 
(9) (Xt)t∈R = 1{N 0((t+1)r)(ω0) odd} − 1{N 0(tr)(ω0 ) odd} Mα,β (dr, dω

0) , 
R+×Ω0 t∈R 

where Mα,β is the SαS random measure described above. 
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Let θt be the standard left shift on the space of Radon measures on R, t ∈ R, and define 
a group of measurable operators on R+ × Ω0 by 

Tt(r, ω
0) := (r, θtr(ω

0)), t ∈ R . 

If ν is a probability measure on R+ equivalent to mβ then the probability measure µ = ν ×P0 
on R+ × Ω0 is preserved by the operators (Tt)t∈R. Denote h = dmβ /dν and define 

f(r, ω0) = h(r)1/α1{N 0(r)(ω0 ) odd}, 

and 
ct(r, ω

0) = 1{N 0 (tr)(ω0) even} − 1{N 0 (tr)(ω0) odd}, (r, ω
0) ∈ R+ × Ω0 . 

If Mα is an SαS random measure on R+ × Ω0 with control measure µ, then, in law, (9) is 
the same as !Z 

f.d.d. 
(Xt)t∈R = ct(r, ω

0)f ◦ Tt(r, ω
0)Mα(dr, dω

0) . 
R+×Ω0 t∈R 

Since (ct)t∈R is, clearly, a ±1-valued cocycle, this will establish both stationarity of the 
increment process and the fact that it is driven by a positive flow once we check that the 
function f ∈ Lα(µ). However, Z Z 

|f |αdµ = 1{N 0(r)(ω0) odd}mβ (dr)P0(dω0) Z ∞ 

= βr−β−1P0 (N 0(r) odd) dr Z0 
∞ � �−2r = βr−β−1 1 1 − e dr = Γ(1 − β)2β−1 < ∞. 

20 

� 

3. The multiparameter even/odd-occupancy process 

Throughout, for d ∈ N, t = (t1, . . . , td) ∈ [0, 1]d , we write 

bntc = (bnt1c , . . . , bntdc) = (n1, . . . , nd) 

and denote 
Λd = {0, 1}d \ {(0, . . . , 0)}. 

Let δ ∈ Λd and consider the multiparameter even/odd-occupancy process 

∞ dXY 
Mb 

δ 
ntc := 1{Ynj ,k =δj mod 2}, n ∈ N, t ∈ [0, 1]d . 

k=1 j=1 

Let Mδ = (Mδ
t )t∈[0,1]d be a centered Gaussian random field with covariance function Z ∞ � � 

Cov(Mδ
t , Ms

δ) = Cov 1{N~ (rt)=δ mod 2}, 1{N~ (rs)=δ mod 2} βr−β−1dr, 
0 

where N is a standard Poisson process on R+ and n o 
~(10) N(nt) = δ mod 2 ≡ {N(ntj ) = δj mod 2 for all j = 1, . . . , d} . 

The next result is a limit theorem for Mδ . It uses the normalization dn = bα = nβ L(n),bntc n 

where bn is as in Theorem 1. We use the new notation to emphasize the fact that the 
normalization in Theorem 2 does not depend on α. 
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Theorem 2. Under the assumption (1), for all d ∈ N, t ∈ [0, 1]d , δ ∈ Λd, 

Mδ 
bntc δlim = mt 

n→∞ dn 

in probability, where ZEMδ ∞ � � 
bntcδ ~ m := lim = P N(rt) = δ mod 2 βr−β−1dr .t 

n→∞ dn 0 

Moreover, ! 
Mδ − EMδ � �bntc bntc√ ⇒ Mt

δ 
t∈[0,1]ddn 

t∈[0,1]d 

in D([0, 1]d) with respect to the J1-topology, and the limiting random field has a version with 
continuous sample paths. 

Remark 1. For the weak convergence in Theorem 2 (and in Proposition 3 below), we shall 
prove that it holds with respect to any topology generated by a complete separable metric 
on D([0, 1]d) weaker than the uniform metric. 

Only the first part of Theorem 2 is needed for Theorem 1. However, the Gaussian random 
field Mδ is of interest on its own. In fact, it was shown in [8, Theorem 2.3] that, when d = 1,t 
the process M1 (which is simply the odd-occupancy process) satisfies the weak convergence n 
in Theorem 2 with the limiting process M1 being, up to a multiplicative constant, the bi-
fractional Brownian motion [12, 15] with parameters H = 1/2,K = β. This is a centered 
Gaussian process with covariance function � � 

Cov(M1 
t , M1) = Γ(1 − β)2β−2 (s + t)β − |s − t|β , s, t ≥ 0.s 

Therefore, the limit obtained in Theorem 2 can be viewed as a random field generalization 
of the bi-fractional Brownian motion. 
In order to analyze the multiparameter even/odd-occupancy process Mδ , we introduce bntc 

a Poissonization of the underlying urn sampling sequence (Yn)n∈N. Let N be a standard 
Poisson process independent of (Yn)n∈N and (εn)n∈N. Set 

NX(t) 
Nk(t) := 1{Yi =k}, k ∈ N, t ≥ 0. 

i=1 

Clearly (Nk)k∈N are independent Poisson processes with respective parameters (pk)k∈N. We 
use the notation {N~ 

k(t) = δ mod 2} whose meaning is analogous to (10), and the Poissonized 
version of the multiparameter even/odd-occupancy process is 

∞X 
Mfδ t ∈ Rd:= ~ +. 

k=1 
t 1{Nk (t)=δ mod 2}, 

Lemma 1. Under the assumption (1), for all d ∈ N, t ∈ [0, 1]d , δ ∈ Λd, 

Mfδ 
nt δlim = m in L2 .t 

n→∞ dn 
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Proof. Consider a Radon measure ν on R+ defined by ν := δ1/pk 

. By the assump-k=1 

tion (1), we have ν(x) := ν([0, x]) = xβ L(x), for all x > 0. Observe that 

∞ ∞ � �X X 
EMfδ = E1{Nk (nt)=δ mod 2} = P N~ (npkt) = δ mod 2nt ~ 

k=1 k=1Z ∞ � � Z ∞ � � n ~ = P N(nt/x) = δ mod 2 ν(dx) = ϕt ν(dx) 
x0 0 

with ϕt(s) := P(N~ (st) = δ mod 2). It is easy to see that ϕt is differentiable and vanishes 
at zero. Integrating by parts gives us � �Z ∞ � � Z ∞ n 1 1 

ϕt ν(dx) = ϕ0 ν(nx)dx.t 
0 x 0 x2 x 

Assume, without loss of generality, that t1 < · · · < td and δ1 = 1. We have the following 
explicit expression for ϕt, 

dY 
ϕt(s) = P(N(st1) odd) P(N(s(tk − tk−1)) = |δk − δk−1| mod 2) 

k=2 

−2st1 
d h iY1 − e −2s(tk −tk+1)=

2d 
1 + (−1)|δk −δk−1|e , 

k=2 

from which we can easily deduce that for t fixed, ϕ0 (s) is bounded and there exist T > 0t 
and C > 0 such that |ϕ0 (s)| ≤ Ce−sT for all s > 0. A standard argument using the Potter t 
bounds ([23, Corollary 10.5.8]) tells us that Z �Z ∞ � � ∞ � 

1 n 1 1 ν(nx)
ϕ0lim ϕt ν(dx) = t lim dx 

n→∞ ν(n) x x2 x n→∞ ν(n)0 0Z ∞ � � Z ∞ � � 
= ϕ0 

1 
x β−2dx = ϕt 

1 
βxβ−1dxt Z0 x 0 x � � 

~ = P N (tr) = δ mod 2 βr−β−1dr. 
0 

Since 

∞ � � ∞ � �X X 
Mδ ~ MδVar( f nt) = Var 1{N~ 

k(nt)=δ mod 2} ≤ P Nk(nt) = δ mod 2 = E f nt, 
k=1 k=1 

the L2 convergence follows. � 

Proposition 3. Under the assumption (1), for all d ∈ N, δ ∈ Λd, ! 
Mfδ − EMfδ � � 

nt nt√ ⇒ Mδ 
t t∈[0,1]ddn 

t∈[0,1]d 

in D([0, 1]d) with respect to the J1-topology, and the limiting random field has a version with 
continuous sample paths. 
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Proof. We continue to use the notation in the proof of Lemma 1. For s, t ∈ [0, 1]d , 
∞ � �X 

Mδ MfδCov( f nt, ns) = Cov 1{N~ 
k (nt)=δ mod 2}, 1{N~ 

k (ns)=δ mod 2}
k=1Z ∞ � � 

= Cov ν(dx).1{N~ (nt/x)=δ mod 2}, 1{N~ (ns/x)=δ mod 2}
0 

Since dn = ν(n), we can use the same argument as in the proof of Lemma 1 to show that 

∞ � �Cov(Mf n 
δ
t,M
fδ ) 

Z 
nslim = Cov 1 βr−β−1dr{N~ (rt)=δ mod 2}, 1{N~ (rs)=δ mod 2}n→∞ dn 0 

= Cov(Mδ
t , Mδ).s 

Write 
δ 

M = Mfδ − EMfδ 
nt nt nt. 

δ 
For each n, M is the sum of independent random variables that are centered and uniformly nt √ 
bounded (by 2). Further, dn →∞ as n →∞. Therefore, the Lindeberg–Feller condition 
holds. Together with the Cramér–Wold’s device, this shows the convergence of the finite-
dimensional distributions in the statement of the proposition. 
It remains to prove the tightness. Letting� � 

0Aη := (t, t0) ∈ [0, 1]d × [0, 1]d : max |tj − tj | ≤ η , 
j=1,...,d 

it is enough to prove that for all � > 0, !
δ δ |M − Mnt0 |nt(11) lim lim sup P sup √ > � = 0. 

η↓0 n→∞ (t,t0)∈Aη dn 

It is easy to see that it suffices to show (11) with Aη replaced by � 
A(i) 0 0:= (t, t0) ∈ [0, 1]d × [0, 1]d : 0 ≤ ti ≤ ti ≤ ti + η, tj = tj , j 6= i ,η 

(1)
for all i = 1, . . . , d, and we prove (11) for Aη . By [8, Lemma 3.7] which is due to a chaining 

(1)
argument, it suffices to establish the following: for all (t, t0) ∈ Aη , 

δ δ 
(12) M − M ≤ N(n(t1 + η)) − N(nt1) + nη almost surely, nt nt0 

(1)
and for all p ∈ N and γ ∈ (0, β), there exists Cp,γ > 0 such that for all (t, t0) ∈ Aη , 

2pδ δ 0 0(13) E Mnt − Mnt0 ≤ Cp,γ (|t1 − t1|γpν(n)p + |t1 − t1|γ ν(n)) . 

(1)
Fix (t, t0) ∈ Aη and to simplify the notation introduce Bk = {Nk(nt) = δ mod 2} and 
B0 = {Nk(nt

0) = δ mod 2}. We have k 

0BkΔBk 
0 ⊂ {Nk(nt1) − Nk(nt1) =6 0} . 

To show (12), it suffices to observe that 

∞ ∞ ∞X X Xδ δ � � 
M − Mnt0 = 1Bk − 1B0 − P(Bk) + P(Bk 

0 ) ≤ 1BkΔB0 + P(BkΔBk 
0 )nt k k 

k=1 k=1 k=1 
0 0 0≤ N(nt1) − N(nt1) + EN(n(t1 − t1)) ≤ N(nt1) − N(nt1) + nη. 
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To show (13), by Rosenthal’s inequality [20], for some constant C depending on p ∈ N only, 

2p 
E M 

δ − M 
δ 

nt nt " !p# ∞ ∞X 2p X 2 
≤ C E 1Bk − 1B0 − P(Bk) + P(Bk 

0 ) + E 1Bk − 1B0 − P(Bk) + P(Bk 
0 ) . 

k k 

k=1 k=1 

Since 

E|1A − 1B − P(A) + P(B)|2p ≤ 22p−1 Var(1A − 1B ) ≤ 22p−1P(AΔB) , 

the above expression does not exceed " !p# ∞ ∞X X 
0 0C P (BkΔBk 

0 ) + P (BkΔBk 
0 ) ≤ C [V (n(t1 − t1)) + V (n(t1 − t1))

p] 
k=1 k=1 

with 
∞ ∞X X� �−pk tV (t) = P(Nk(t) =6 0) = 1 − e . 
k=1 k=1 

By [8, Lemma 3.1], for each γ ∈ (0, β), there exists Cγ such that 

V (nt) ≤ Cγ t
γ ν(n) for all t ∈ [0, 1], n ∈ N. 

Therefore, (13) follows. Therefore, we have proved (11), which also implies that the limit 
process has a version with continuous sample path [26, Theorem 5.6]. This completes the 
proof. � 

Proof of Theorem 2. We will prove the second part of the theorem using a multivariate 
version of the change-of-time lemma from [6, p. 151] (the proof of which is the same as that 
of the univariate version). Since the limiting random field is continuous, the first part will 
then follow. 
Let (τn)n∈N0 be the arrival times of the Poisson process N (with τ0 = 0). For t ∈ Rd 

+, 
set τ bntc = (τbnt1 c, . . . , τbntdc) ∈ R+ 

d . By the strong law of large numbers and monotonicity, �τ bntc � 
λn ≡ ∧ 2 → id almost surely, 

n t∈[0,2]d 

as n → ∞, where id is the identity function from [0, 2]d to [0, 2]d . By the multivariate 
change-of-time lemma, ⎛ ⎞ 

δ 
n((τ bntc/n)∧2) � �⎝M 
√ ⎠ ⇒ Mδ .t t∈[0,2]ddn 

t∈[0,2]d 

In particular, the convergence also holds if the random fields are restricted to t ∈ [0, 1]d . 
Since ⎛ ⎞! δ 

Mδ − EMδ Mbntc bntc n(τ bntc/n)⎝ ⎠√ = √ , 
dn dn 

t∈[0,1]d 
t∈[0,1]d 

and �� ���τ bntc �τ bntc
lim P ∧ 2 = = 1, 
n→∞ n t∈[0,1]d n t∈[0,1]d 

the desired result follows. � 



������
������ 

 

������
 

  
 

11 INFINITE URN SCHEMES AND SSSI STABLE PROCESSES 

4. Proof of Theorem 1 

Proof of convergence of finite-dimensional distributions. Let d ≥ 1 and fix t = (t1, . . . , td) ∈ 
[0, 1]d and a = (a1, . . . , ad) ∈ Rd . Note that 

(14) ⎛⎝i 
d 

j=1 

X 
aj Uα,β 

tj 

⎞⎠ ⎛⎝ α 

mβ (dr) P0(dω0) 

⎞⎠ Z d 

− aj 1{N 0(rtj ) odd}
R+×Ω0 

X 
E exp = exp 

j=1 !XZ 
α 
1{N 0(rt)=δ mod 2}βr

−β−1dr dP0 ~ = exp − |ha, δi|
R+×Ω0 δ∈Λd !X 

δ = exp − |ha, δi|α 
m .t 

δ∈Λd 

= bntj c, Xd ∞X ⎛⎝ 
Similarly, with the notation nj 

d 
Unj 

⎞⎠X ⎛⎝ ⎞⎠ajE exp = E exp 

YX 
εk1{Ynj ,k 

∞ d 

i iaj odd}bn bnj=1 j=1 k=1 ⎛⎝ ⎞⎠X ha, δi 
= E exp 1{Ynj ,k 

i εk .=δj mod 2}
bn 

k=1 j=1δ∈Λd 

Let Y denote the σ-algebra generated by (Yi)i∈N. Then, the above expression becomes 

E 

⎧⎨ ⎩ 
Mδ Xbntc 

ε` 

⎞⎠ Y 

⎤⎦ ⎫⎬ ⎭ = E 
Y 

E 

⎛⎝ ⎡⎣exp i 
ha, δi 
bn 

!� �Mδ 
bntcY ha, δi 

φ ,
bn

δ∈Λd `=1 δ∈Λd 

⎞⎠ 
with φ(θ) = E exp(iθε1) being the characteristic function of ε1. Xd �Mδ 

bntc 

⎛⎝ 
Therefore, ! �!� �Y XUnj ha, δi ha, δi 

Mb 
δ 
ntc log φ 

bn 
E exp = E = E expi φaj 

bn bnj=1 δ∈Λd δ∈Λd !X 
δ∈Λd 

M δ 
bntc α log φ(cn)

σε
α |ha, δi|= E exp −(15) ,

bα 
n −σε

α|cn|α 

with cn := ha, δi /bn. Recall that assumption (5) implies that (see e.g. [7, Theorem 8.1.10]) 

log φ(θ) ∼ φ(θ) − 1 ∼ −σε
α|θ|α as θ → 0. 

By Theorem 2 and dominated convergence theorem the expression in (15) converges to the 
characteristic function in (14). � 

In the remainder of this section we consider the case α ∈ (0, 1) and prove the tightness of 
the sequence of processes (Ubntc/bn)t∈[0,1], n ≥ 1 in the J1-topology on the space D([0, 1]). 

= U+,κ + U−,κFor κ > 0 we decompose Un n n with X 
X 

U +,κ 
n = εk1{|εk |>κbn }1{Yn,k odd}

k≥1 

Un 
−,κ = εk1{|εk |≤κbn }1{Yn,k odd}. 

k≥1 
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We start by showing that for any α ∈ (0, 2) and any κ > 0, the sequence of the laws of 
the processes (U+,κ /bn)t∈[0,1], n ≥ 1, is tight in the J1-topology. To this end definebntc 

T (κ)(n) = {i ∈ {1, . . . , n} : Yi = k for k such that |εk| > κbn} . 

Lemma 2. For any κ > 0, � � 
lim lim sup P ∃ i1, i2 ∈ T (κ)(n) such that |i1 − i2| < nδ = 0. 
δ↓0 n→∞ P 

Proof. Fix κ > 0 and let � > 0. Let Θn = k≥1 1{|εk|>κbn}pk, n ≥ 1. We first prove that 

(16) ∃ C = C(�, κ) < +∞ such that lim sup P(Θn > C/n) ≤ �. 
n→∞ 

β L(x) (c)
To see this, choose c > 0. Recalling the notation ν(x) = x we consider Θn =P 

k>ν(cn) 1{|εk |>κbn}pk. Note that by (5), 

P(Θ(c) =6 Θn) ≤ P(∃ k ≤ ν(cn) such that |εk| > κbn)n 

−c Cε κ
−α 

= 1 − (1 − P(|ε1| > κbn))
[ν(cn)] → 1 − e 

β 

, as n →∞, 

and so we can choose c = c(�, κ) such that 

(17) lim sup P(Θ(c) 6= Θn) ≤ �/2.n 
n→∞ 

Further, ZX X 1 β 
pk = pk1{pk <1/cn} = ν(dx) ∼ (cn)β−1L(n), as n →∞, 

x 1 − β(cn,∞)k>ν(cn) k≥1 

where the equivalence is due to integration by parts and an application of a Karamata 
Theorem (see [10, Theorem 1 p. 281]). Thus, 

β β −1EΘ(c) ∼ (cn)β−1L(n)P(|ε1| > κbn) ∼ c β−1Cεκ
−α n , as n →∞.n 1 − β 1 − β 

Now (16) follows from the Markov inequality and (17). By (16), � � 
lim sup P ∃ i1, i2 ∈ T (κ)(n) such that |i1 − i2| < nδ 
n→∞ � � 

≤ lim sup P ∃ i1, i2 ∈ T (κ)(n) such that |i1 − i2| < nδ Θn ≤ C/n + �. 
n→∞ 

(n)
Letting (B )i∈N be i.i.d. Bernoulli random variables with parameter C/n, we can bound i 
the first term above by � � 

(n) (n)
lim sup P ∃ i1, i2 ∈ {1, . . . , n} such that |i1 − i2| < nδ and B = B = 1 .i1 i2 
n→∞ 

The latter probability has a limit, equal to the probability that a Poisson point process with 
intensity C over [0, 1] has two points less than δ apart. This probability goes to zero as 
δ ↓ 0. This completes the proof. � 

Proposition 4. For all α ∈ (0, 2), κ > 0, the sequence of processes (U+,κ(bntc)/bn)t∈[0,1], 
n ≥ 1, is tight in the J1-topology on D([0, 1]). 
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− U+,κProof. Since sups∈[r,t] |Ub 
+ 
nr
,κ 
c bnsc| = 0 as soon as T (κ)(bntc) \ T (κ)(bnrc) = ∅, from the 

preceding lemma we infer that for all η > 0,⎛ ⎞ ⎜ 
U+,κ − U+,κ U+,κ − U+,κ ⎟

lim lim sup P ⎝ sup ∧ > η⎠ = 0,bnrc bnsc bnsc bntcδ↓0 n→∞ 0≤r≤s≤t≤1 
|r−t|<δ 

which yields the tightness of (U+,κ )n≥1 (see [6]). �bn·c � � 
Proof of tightness of (Ubntc/bn)t∈[0,1] when α ∈ (0, 1). Let α ∈ (0, 1). In view of Proposi-
tion 4, it is sufficient to show that for any η > 0, !−,κUbntc
(18) lim lim sup P sup > η = 0. 

κ→0 n→∞ bnt∈[0,1] 

Note that ⎛ ⎞! 
U−,κ Xbntc εk⎝ ⎠P sup > η ≤ P 1{|εk |≤κbn}1{Yn,k >0} > η 

t∈[0,1] bn bn
k≥1 ! 
KnX εk≤ P 1{|εk |≤κbn} > η ,

bn
k=1 

where Kn is the number of nonempty boxes at time n in the infinite urn scheme. Since for 
large n, ! � �KnX εk ε1E 1{|εk|≤κbn} = E(Kn)E 1{|ε1 |≤κbn}bn bn

k=1 

b−1≤ Cbα κbnP (|ε1| > κbn) → CCεκ
1−α 

n n 

(for a finite constant C) by [11, Proposition 2] and Karamata’s theorem, (18) follows by 
Markov’s inequality. � 

Remark 2. Whether or not the full weak convergence in Theorem 1 holds when α ∈ [1, 2) 
remains an open question. In this case, it is not even clear to us whether Uα,β has a càdlàg 
modification: sufficient conditions are given, for example, in [4, Theorem 4.3], but they are 
not satisfied here. 

5. Discussions 

There are a few limit theorems for other statistics in [8] that we have not addressed yet. 
We provide a brief discussions here focusing on other processes that appear in the limit. As 
for the proofs, they do not require new ideas (if one ignores the tightness issues). 
For the odd-occupancy process Un in (2), one can write, for β < α, X X X∞ ∞ � � ∞ 

Un = εk1{Yn,k odd} = εk 1{Yn,k odd} − P(Yn,k odd) + εkP(Yn,k odd) 
k=1 k=1 k=1 

=: U (1) + U (2),n n 

and one could eventually prove that � � � �1 (1) (2) f.d.d. Uα,β , Uα,β,(1) 
, Uα,β,(2)

(19) Ubntc, Ubntc, U → σε t tbntc tbn t∈[0,1] 
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as n →∞, with Z � � 
Uα,β,(1) 

= 1{N 0(tr)(ω0) odd} − P0(N 0(tr) odd) Mα,β (dr, dω
0)t 

R+×Ω0 Z 
Uα,β,(2) 

= P0(N 0(tr) odd)Mα,β (dr, dω
0),t 

R+×Ω0 

where here and below Mα,β and N 0 are as before. We need the constraint β < α so that 
(1) (2) 

, Uα,β,(1) 
and Uα,β,(2)

Un , Un are well defined. Such a weak convergence, for the originalt t 
randomized Karlin model (εk ∈ {±1} and α = 2), has been proved in [8]. An appealing 
feature is that the corresponding decomposition of 

U2,β = U2,β,(1) + U2,β,(2) t t t 

recovers a decomposition of fractional Brownian motion by a bi-fractional Brownian motion 
and another smooth self-similar Gaussian process discovered in [15], and in particular, in this 
case the two processes are independent. For α ∈ (0, 2), the convergence of finite-dimensional 
distributions to the decomposition still holds, although Uα,β,(1) and Uα,β,(2) are no longer 
independent. The convergence in (19) could be established by computing characteristic 
functions and applying the same conditioning trick. 
Another statistics considered in [8, 13] is the occupancy process 

∞X 
Zn := εk1{Yn,k >0}. 

k=1 

Correspondingly, the limit process isZ 
Zα,β = 1{N 0(tr)>0}Mα,β (dr, dω

0), t ≥ 0.t 
R+×Ω0 

At the same time, this is nothing but a time-changed SαS Lévy process, as one can verify 
by computing the characteristic functions that � � � �f.d.d. Zα,β = Zα(tβ ) ,t t≥0t≥0 

iθZα(1) −|θ|α 
where (Zα(t))t≥0 is an SαS Lévy process (Ee = e , θ ∈ R). A similar decom-
position for Zα,β , and the corresponding limit theorem as in (19) can also be established, 
again by computing characteristic functions. The corresponding results for the Gaussian 
case (α = 2) have already been investigated in [8, Theorem 2.1]. 
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