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Abstract. Selecting the number of upper order statistics to use in extremal inference or selecting 
the threshold above which we perform the extremal inference is a common step in applications of 
extreme value theory. Not only is the selection itself difficult, but the large part of the sample 
below the threshold may potentially carry useful information. We propose an approach that takes 
an extremal parameter estimator and modifies it to allow for using multiple thresholds instead 
of a single one. We apply this approach to the problem of estimating the extremal index and 
demonstrate its power both on simulated and real data. 

1. Introduction 

Many statistical procedures in extreme value theory depend on a choice of a threshold such that 
only the observations above that threshold are used for the inference. In the classical Hill estimator 
of the exponent of regular variation, this corresponds to choosing the number of the upper statistics 
used to construct the estimator, and in the standard “peaks over threshold” procedures, the term 
“threshold” even appears in the name; see e.g. de Haan and Ferreira (2006) and Resnick (2007). 
The inference results often depend on the threshold in a significant way, so a major effort has been 
invested in choosing the threshold “in the right way”; see e.g. Resnick and Stărică (1997), Drees and 
Kaufmann (1998), Dupuis (1998), Nguyen and Samorodnitsky (2012). A threshold-based extremal 
inference procedure discards the observations below the threshold, which in most cases amounts to 
discarding a larger part of the sample. This counterintuitive step reflects the underlying belief that 
the observations above the threshold carry information about the “tail” of the distribution, while 
those below the threshold carry information about the “center” of the distribution. 
It is reasonable to assume that such a binary rule by necessity neglects a part of the information 

stored in the original sample that is relevant for extremal inference. An alternative to using a 
binary rule would be acknowledging that larger observations carry more information about the 
“extremes” than smaller observations do, but instead of discarding the latter completely, using 
them in the extremal inference, with a smaller weight. This idea can be implemented in a number 
of ways, the most natural of which is to use multiple “thresholds” instead of trying to select the 
“right” threshold. In this case it is more appropriate to talk about “levels” of observations that 
are weighted differently, rather than “thresholds”. In this paper we apply this idea to estimating 
the extremal index (defined below), but the approach is more general than its application to the 
estimation of the extremal index. It can, in principle, be used in any extremal estimation problem, 
though the actual implementation may depend significantly on the problem. 
A number of specific statistical algorithms for extremes have been proposed that avoid the prob-

lem of threshold selection entirely (such as Northrop (2015)), or have the threshold be determined 
by something else (e.g. the block size, see Robert (2009)). Multiple thresholds in extremal in-
ference have been used as well. In Laurini and Tawn (2003) a two-threshold procedure, also for 
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estimating the extremal index, is suggested. The role of the second, lower, threshold is to help 
separating between different exceedance clusters. In Drees (2011), on the other hand, estimates 
of the extremal index based on multiple thresholds were combined together in order to reduce the 
bias of the estimation. 
Our idea is different. Since performing extremal inference based on a small number of observa-

tions tends to result in a high variance of the estimator, we view using multiple levels as a means to 
incorporate more observations into an estimator and to reduce the variance by doing so. However, 
incorporating smaller observations into extremal inference is likely to increase the bias of the result-
ing estimator, so one needs to find a way to cope with this problem. This approach can be applied 
to different extremal estimation problems. As mentioned earlier, in this paper we implement this 
idea in estimating the extremal index, a quantity designed to measure the amount of clustering of 
the extremes in a stationary sequence. Suppose that X1, X2, . . . is a stationary sequence of random 
variables with a marginal distribution function F , and let Mn = max(X1, . . . , Xn), n = 1, 2, . . .. 
Suppose there exists θ ≥ 0 with the following property: for every τ > 0, there is a sequence (vn) 

¯ −θτ ¯such that nF (vn) → τ and P (Mn ≤ vn) → e as n → ∞, where F = 1 − F . Then θ is called 
the extremal index of the sequence X1, X2, . . . ; it is automatically in the range 0 ≤ θ ≤ 1; see 
Leadbetter et al. (1983) or Embrechts et al. (1997). The relation of the extremal index to extremal 
clustering is best observed by considering the exceedances of the stationary sequence over high 

¯thresholds. Let (vn) be a sequence such that nF (vn) → τ as n → ∞ for some τ > 0. Then under 
certain mixing conditions, the point processes of exceedances converge weakly in the space of finite 
point processes on [0, 1] to a compound Poisson process: 

n ∞X 
d X 

(1.1) Nn = δi/n1(Xi > vn) −→ N = ξiδΓi , 
i=1 i=1 

where δx is a point mass at x, the points 0 < Γ1 < Γ2 < . . . constitute a homogeneous Poisson 
process with intensity τθ on [0, 1] which is independent of an independent and identically distributed 
(i.i.d.) positive integer-valued sequence {ξi}; see e.g. Hsing et al. (1988). The latter sequence is 
interpreted as the sequence of the extremal cluster sizes, and the extremal index θ is, under mild 
conditions, equal to the reciprocal of the expected cluster size Eξ. We will assume that the latter 
expectation is finite, and the extremal index is positive. 
The problem of estimating the extremal index parameter is well-known in the literature; ref-

erences include Hsing (1993), Smith and Weissman (1994), Ferro and Segers (2003), Northrop 
(2015), and Berghaus and Bücher (2017). The most common methods of estimation include the 
blocks method, the runs method, and the inter-exceedance method. In this paper we choose the 
blocks method in order to demonstrate an application of our idea for variance reduction using 
multiple levels. 
The blocks method is based on the interpretation of the extremal index as the reciprocal of the 

expected cluster size of extremes. It is based on choosing a block size rn much smaller than n and 
a level (or threshold) un. Split the n observations X1, X2, . . . , Xn into kn = bn/rnc contiguous 
blocks of equal length rn. The blocks estimator is then defined as the reciprocal of average number 
of exceedances of the level un per block among blocks with at least one exceedance. If Mi,j denotes 
max{Xi+1, . . . , Xj } for i < j and Mj = M0,j , then the blocks estimator has the form 

Pkn 
� � 

i=1 1 M(i−1)rn,irn > unb Pknrn 
(1.2) θn = � � . 

i=1 1 Xi > un 
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¯ ¯Assuming that rnF (un) → 0 but nF (un) → ∞ as n → ∞, and certain mixing conditions, this 
estimator has been shown to be consistent and asymptotically normal; see Hsing (1991) and Weiss-
man and Novak (1998). In Section 2 we introduce a version of the blocks estimator using multiple 
thresholds (levels) and list the assumptions used in the paper. Section 3 considers the asymptotic 
behaviour of the various ingredients in our estimator. In Section 4 we prove a central limit theorem 
for the estimator. In Section 5 we both propose a procedure to reduce the bias of the estimator as 
well as present a simulation study and a case study. 

2. The Estimator 

Let X1, . . . , Xn be a stationary sequence of random variables with marginal distribution F , and 
an extremal index θ ∈ (0, 1]. We now present a version of the blocks estimator (1.2) based on 
multiple levels. With a block size rn and the number of blocks kn = bn/rnc as before, we select 

1 m mnow m levels u < · · · < u := un, and we view the highest level u as corresponding to then n n 
ssingle level un in (1.2). The lower levels u , s = 1, . . . ,m − 1 are used to reduce the variance ofn 

the estimator. The levels are chosen in an “asymptotically balanced” way. Specifically, it will be 
assumed that, as n →∞, 

sF̄ (u )n τs
(2.1) → , s = 1, . . . ,m 

F̄ (um) τmn 

for some τ1 > · · · > τm > 0. 
Let f : R+ → R+ be a continuously differentiable positive decreasing function. We will use f as a 

sweight function, and we would like to weigh the exceedances over the level u by f(τs/τm). The fact n 
that f is decreasing reflects our belief that higher exceedances provide more reliable information 
about the extremes. We will not assume that the numbers τ1, . . . , τm are known ahead of time, so 
we will use, in practice, an estimator of the ratio τs/τm. Specifically, we will use Pknrn s 

i=1 1(Xi > u )\ n(2.2) τs/τm = Pknrn 
, s = 1, . . . ,m . 

1(Xi > um)i=1 n 

Then our version of the blocks estimator (1.2) based on multiple levels is P m � �\� ��Pkn 
� � 

s 
s=1 f τs/τm − f 

� 
τs 
\ −1/τm i=1 1 M(i−1)rn,irn > un

(2.3) θb 
n(f) = P m � �\� ��Pknrn 

� � , 
f /τm − f 

� 
τs 
\−1/τm Xi > us 

s=1 τs i=1 1 n �\� 
with the convention that f τ0/τm = 0. Note that when m = 1, (2.3) reduces to (1.2). 

Consistency and asymptotic normality of this estimator depend, as they do for all other related 
estimators, on certain mixing-type assumptions. Different sets of such conditions are available in 
literature. We explain next the conditions that we will use in this paper. These are based on the 

0 j 0setup in Hsing et al. (1988). For 1 ≤ i ≤ j ≤ n, and levels wn, w , let B (wn, w ) denote the σ-fieldn i n 
0generated by the events {Xd ≤ wn} and {Xd ≤ w } for i ≤ d ≤ j. For n ≥ 1 and 1 ≤ l ≤ n − 1n 

define 

0 0 0αn,l(wn, wn) = max(|P (A ∩ B) − P (A)P (B)| : A ∈ B1 
k(wn, wn), B ∈ Bk

n 
+l(wn, w ), 1 ≤ k ≤ n − l)n 

and write αn,l(wn) = αn,l(wn, wn). Similarly, one uses the maximal correlation coefficient 

0 0 0ρn,l(wn, wn) = max(corr(X, Y ) : X ∈ L2(B1 
k(wn, wn)), Y ∈ L2(Bk

n 
+l(wn, w )), 1 ≤ k ≤ n − l) ,n 
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where L2(F ) denotes the space of F -measurable square-integrable random variables. Again, we 
write ρn,l(wn) = ρn,l(wn, wn). Trivially, 

0 0) ≥ 4αn,l(wn, w ).ρn,l(wn, wn n 

The sequence {Xi} is said to satisfy the condition Δ({wn}) if αn,ln (wn) → 0 as n →∞ for some 
sequence {ln} with ln = o(n). If {pn} is a sequence of integers and αpn,ln (wn) → 0 as n → ∞ for 
some sequence {ln} with ln = o(pn), then we will say that {Xi} satisfies the condition Δ{pn}({wn}). 

¯ ¯As mentioned earlier, the condition that rnF (un) → 0 but nF (un) → ∞ as n → ∞ is usually 
required for asymptotic consistency results. This implicitly uses the traditional assumption that 
rn = o(n) as n → ∞. It will be convenient to introduce a specific sequence of the integers {pn}, 
which is an intermediate growth sequence between the sequence of the block size {rn} and the 
sequence of the sample sizes {n}. Specifically, let 

s¯(2.4) pnF (u ) → τs, s = 1, . . . , m. n 

According to (2.1) one such sequence is pn = dτm(F̄ (un))−1e, n = 1, 2, . . .. 
The following assumptions on the stationary sequence {Xi} will used throughout this paper, 

not necessarily all in the same place. Some of the assumptions form stronger versions of other 
assumptions. 

= o(rn 
−1 sAssumption Δ0 There is a sequence ln ) such that pnrn αn,ln (un) → 0 as n →∞ for each 

s = 1, . . . ,m. 
Assumption C1 For each s = 1, . . . ,m, 

nX 
sρn,l(un) = o(rn) 

l=1 

−1 sas n → ∞, and there is a sequence ln = o(rn) such that pnrn ρn,ln (un) → 0 as n → ∞ for each 
s = 1, . . . ,m. 
Assumption C0 For each s = 1, . . . ,m,1 

nX 
s 1/2ρn,l(un) = o(rn ) 

l=1 

sas n → ∞, and there is a sequence ln = o(rn) such that pnrn 
−1ρn,ln (un) → 0 as n → ∞ for each 

s = 1, . . . ,m. 
Assumption C2 For each s, t = 1, . . . ,m, 

nX 
s tρn,l(un, un) = o(rn) 

l=1 

tas n →∞, and there is a sequence ln = o(rn) such that pnrn 
−1ρn,ln (u

s
n, un) → 0 as n →∞ for each 

s, t = 1, . . . ,m. 
Assumption C0 For each s, t = 1, . . . ,m,2 

nX 
s t 1/2ρn,l(un, un) = o(rn ) 

l=1 

−1 s tas n →∞, and there is a sequence ln = o(rn) such that pnr (u , u ) → 0 as n →∞ for each n ρn,ln n n 
s, t = 1, . . . ,m. 
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(u)
The next group of assumptions deals with convergence of certain counting processes. Let Npn 

be the point process on [0, 1] with points (j/pn : 1 ≤ j ≤ pn, Xj > un). Furthermore, for w > 0Pk we write Nk(w) = i=1 1(Xi > w). 
(u)

Assumption P Npn converges weakly in the space of finite point processes on [0, 1]. 
Assumption D1 There exists a probability distribution (πj )j≥1 on the positive integers such that 
for all 1 ≤ s ≤ m, 

s sP (Nrn (u ) = j|Mrn > un) → πj , j ≥ 1,n 
∞X 

s sE[Nr 
2 
n 
(un)|Mrn > un] → j2πj < ∞. 

j=1 

Assumption D2 There exist probability distributions ($s,t(i, j))i≥1,j≥0 on Z+ × Z≥0 such that 
for all 1 ≤ s < t ≤ m, 

s t sP (Nrn (u ) = i, Nrn (un) = j|Mrn > un) → $s,t(i, j), i ≥ j ≥ 0, i ≥ 1,n 

∞ i� � XX 
s t sE Nrn (un)Nrn (u )|Mrn > un → ij$s,t(i, j) < ∞.n 

i=1 j=0 

Remark 2.1. It is clear that Assumption Δ0 is implied by Assumption C1 which is, in turn, 
implied both by Assumption C 0 and by Assumption C2. Further, it follows by Theorem 4.1 of1 
Hsing et al. (1988) that the first part of Assumption D1 is implied by Assumptions Δ0 and P . Note 
that Assumptions C1, C2 and D1 are identical to those posed Robert et al. (2009). 

Remark 2.2. The mixing conditions Δ0 , C1, C1 
0 , C2, C2 

0 are conditions relating the rate of decay of 
mixing and correlation coefficients and the size of the blocks rn, which must be “large enough”. In 
many models the mixing and correlation coefficients decay very fast (e.g. m-dependent sequences, 
or geometrically mixing sequences), and so there is a great latitude in choosing the block sizes. 

If Assumption Δ0 holds, then it follows from Theorem 5.1 and Lemma 2.3 of Hsing et al. (1988) 
that 

s(2.5) P (Mrn > u ) ∼ τsθrn/pnn 

as n →∞ for s = 1, . . . ,m. If we denote P m spn (f(τs/τm) − f(τs−1/τm))P (Mrn > u )s=1 n(2.6) θn(f) = θn(τ1, . . . , τm, f) = · P ,m rn s=1(f(τs/τm) − f(τs−1/τm))τs 

then θn(f) → θ as n →∞. 
Another immediate conclusion from (2.5) is that if Assumptions Δ0 , D1 and D2 hold, then for 

1 ≤ s < t ≤ m, � �τss tP (Nrn (un) = i|Mrn > un) → πi − $s,t(i, 0) , i ≥ 1,
τt 

∞� � X � �τss t(2.7) E Nrn (u )|Mrn > un → ψs,t := i πi − $s,t(i, 0) .n τt i=1 

3. Preliminary results 

The estimator (2.3) is composed of several extremal statistics. In this section we will take a close 
look at these and related statistics and derive their asymptotic variances and covariances. The 
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derivations are similar to those in Robert et al. (2009). Let mn → ∞ be a sequence of positive 
sintegers such that mnrn ≤ n for all n. For each level u , s = 1, . . . ,m n 

mnX 
s s(3.1) Mc 

n,mn (un) = 1(M(i−1)rn,irn > un) 
i=1 

and 
mnrnX 

s s(3.2) τbn,mn (un) = 1(Xi > un) . 
i=1 

Note that the estimator (2.3) uses these statistics with mn = kn. 
sWe first consider the asymptotic variance of Mc 

n,mn (un). 

Proposition 3.1. Let {Xi} be a stationary sequence with extremal index θ. Let (pn) be as in (2.4), 
and suppose that Assumption C1 holds. Then for 1 ≤ s ≤ m, as n →∞, 

s(3.3) 
pn 

var(Mc 
n,mn (un)) → τsθ. 

mnrn 

Proof. Fix 1 ≤ s ≤ m and write out the variance: 
mnX 

s svar(Mc 
n,mn (un)) = var(1(M(i−1)rn,irn > un)) 

i=1 X 
s s+ 2 cov(1(M(i−1)rn,irn > u ), 1(M(j−1)rn,jrn > u ))n n 

1≤i<j≤mn 

s s> u )(1 − P (Mrn > u ))=mnP (Mrn n n� � 
s s s+ 2(mn − 1) P (Mrn > u ,Mrn,2rn > u ) − (P (Mrn > u ))2 
n n n 

mXn−1 
s s+ 2 (mn − v)cov(1(Mrn > un), 1(Mvrn,(v+1)rn > un)) 

v=2 

:=I1,n + I2,n + I3,n . 

It follows from (2.5) that 
pn 

I1,n → τsθ 
mnrn 

as n →∞. Furthermore, 
mXn−1 

pn pn s sI3,n ≤2 var(1(Mrn > un)) ρn,(v−1)rn (un) mnrn rn v=2 
nXpn 1s s≤2 var(1(Mrn > un)) ρn,l(un) → 0 

rn rn 
l=1 

by (2.5) and Assumption C1, so it remains to consider I2,n. By (2.5) we only need to show that 
−1 s s pnr P (Mrn > u ,Mrn,2rn > u ) → 0.n n n 

Note that 
s s s s sP (Mrn > u ,Mrn,2rn > u ) ≤P (Mrn−ln > u ,Mrn,2rn > u ) + P (Mln > u )n n n n n 

s s s s≤P (Mrn−ln > u )P (Mrn > u ) + αn,ln (u ) + P (Mln > u )n n n n 
s s s≤P (Mrn > un)
2 + αn,ln (un) + P (Mln > un). 
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−1 sSince ln = o(rn), and pnrn αn,ln (un) → 0, there is an intermediate sequence ln 
0 with ln = o(ln 

0 ) and 
sl0 = o(rn), such that pn(l0 )−1αn,ln (u ) → 0. Then as in (2.5),n n n 

s pn(ln 
0 )−1P (Mln 

0 > un) → τsθ, 

so we have both 
−1 s −1 s> u (l0 )−1(l0 r > u ) → 0n n n n n npnr P (Mln ) ≤pn )P (Mln 

0 

and 
−1 s pnr αn,ln (u ) → 0 .n n 

Therefore, the result follows. � 

s tThe asymptotic covariance of Mc 
n,mn (un) and Mc 

n,mn (un) for s 6= t can be obtained in an identical 
way (with a slightly different assumption). The proof is omitted. 

Proposition 3.2. Let {Xi} be a stationary sequence with extremal index θ. Let (pn) be as in (2.4), 
and suppose that Assumption C2 holds. Then for 1 ≤ s < t ≤ m, as n →∞, 

s c t(3.4) 
pn 

cov(Mc 
n,mn (u ),Mn,mn (u )) → τtθ. n n mnrn 

s tNow we find the variance and covariance of τbn,mn (u ) and τbn,mn (u ) for 1 ≤ s < t ≤ m. We n n 
start with the variance. 

Proposition 3.3. Let {Xi} be a stationary sequence with extremal index θ. Suppose that Assump-
tions C1 and D1 hold. Then as n →∞, for 1 ≤ s ≤ m, 

∞X 
s(3.5) 

pn 
var(τbn,mn (u )) → τsθ j2πj .n mnrn j=1 P 

Proof. We proceed as in Proposition 3.1. Using the notation Na,b(w) = 1(Xi > w) fora<i≤b 
integers 0 ≤ a < b, we obtain for a fixed 1 ≤ s ≤ m, 

s svar(τbn,mn (u )) =var(Nmnrn (u ))n n 
mnX � � 

s = var N(i−1)rn,irn (un) 
i=1 X � � 
+ 2 cov N(i−1)rn,irn , N(j−1)rn,jrn 

1≤i<j≤mn � � 
=mnvar(Nrn ) + 2(mn − 1)cov Nrn , Nrn,2rn 

mXn−1 � � 
+ 2 (mn − v)cov Nrn Nvrn,(v+1)rn 

v=2 

:=I1,n + I2,n + I3,n . 

It follows from (2.5) and Assumption D1 that 
pn pn s s sI1,n ∼ P (Mrn > u )E[N2 (u )|Mrn > u ]n rn n n mnrn rn 

pn � �2� �2s s s− P (Mrn > un) E[Nrn (un)|Mrn > un] rn 
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∞X 
→ τsθ j2πj 

j=1 

as n →∞. Furthermore, 
mXn−1 

pn pn sI3,n ≤2 var(Nrn ) ρn,(v−1)rn (un) mnrn rn v=2 
nXpn 1s s s s≤2 P (Mrn > u )E[N2 (u )|Mrn > u ] ρn,l(u ) → 0n rn n n n rn rn 

l=1 

by Assumptions C1 and D1. As far as I2,n is concerned, we only need to show that � �−1 pnr E Nrn Nrn,2rn → 0.n 

However, � � � � � � 
E Nrn Nrn,2rn =E Nrn−ln Nrn,2rn + E Nrn−ln,rn Nrn,2rn� � 

s≤(ENrn )
2 + E(Nrn )

2ρn,ln (un) + E Nrn−ln,rn Nrn,2rn . 

sBy Assumptions C1 and D1 and the above calculation, both kn(ENrn )
2 → 0 and knE(Nrn )

2ρn,ln (u ) →n 
0 as n →∞. Furthermore, by stationarity it is clear that 

)2E(Nrn ≥ brn/lnc → ∞ 
E(Nln )

2 

as n →∞. Therefore, � � � �1/2 � �1/2 
knE Nrn−ln,rn Nrn,2rn ≤kn E(Nln )

2 E(Nrn )
2 � �1/2

)2E(Nln≤knE(Nrn )
2 → 0 

E(Nrn )
2 

as n →∞. This completes the proof. � 

s tThe asymptotic covariance between τbn,mn (u ) and τbn,mn (u ) for 1 ≤ s < t ≤ m can be found inn n 
the same way. Once again, we omit the proof. 

Proposition 3.4. Let {Xi} be a stationary sequence with extremal index θ. Suppose that Assump-
tions C2 and D2 hold. Then as n →∞, for 1 ≤ s < t ≤ m, 

X 
s t(3.6) 

pn 
cov(b (u ), b (u )) → τsθ 

X∞ i 

ij$s,t(i, j).τn,mn n τn,mn n mnrn i=1 j=0 

We now address the asymptotic covariances between τb and Mc. We start with the “diagonal” 
case. 

Proposition 3.5. Let {Xi} be a stationary sequence with extremal index θ. Suppose that Assump-
tion C1 

0 holds. Then as n →∞, for 1 ≤ s ≤ m, 

s s(3.7) 
pn 

cov(Mc 
n,mn (un), τbn,mn (un)) → τs. 

mnrn 
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Proof. Fix 1 ≤ s ≤ m, we have 
mn mnrnX X 

s s s scov(Mc 
n,mn (un), τbn,mn (un)) = cov(1(M(i−1)rn,irn ≤ un), 1(Xj ≤ un)). 

i=1 j=1 

We split the sum into two pieces, I1,n + I2,n, depending on whether (i − 1)rn < j ≤ irn or not. 
By stationarity, 

rnXpn pn s sI1,n ∼ cov(1(Mrn ≤ un), 1(Xi ≤ un)) mnrn rn i=1 
s s∼pnP (X1 > u )P (Mrn ≤ u ) → τsn n 

by (2.4) and (2.5). 
Furthermore, we can bound I2,n as follows: 

np X 
s|I2,n| ≤2mn var(1(Mrn ≤ us ))var(1(X1 ≤ us )) ρn,l(u ),n n n 

l=1 

and the fact that (pn/(mnrn))I2,n → 0 as n →∞ follows from (2.4), (2.5) and Assumption C1 
0 . � 

s tThe asymptotic behaviour of cov(Mc 
n,mn (u ), τbn,mn (u )) with 1 ≤ s < t ≤ m is similar to then n 

“diagonal” case. The proof of the next proposition is similar to the argument in Proposition 3.5 
(once we use the appropriate assumption), and is omitted. 

Proposition 3.6. Let {Xi} be a stationary sequence with extremal index θ. Suppose that Assump-
tion C 0 holds. Then as n →∞, for 1 ≤ s < t ≤ m,2 

s t(3.8) 
pn 

cov(Mc 
n,mn (un), τbn,mn (un)) → τt. 

mnrn 

t sFinally, we consider the asymptotic behaviour of cov(Mc 
n,mn (u ), τbn,mn (u )) with 1 ≤ s < t ≤ m.n n 

Proposition 3.7. Let {Xi} be a stationary sequence with extremal index θ. Suppose that Assump-
tions Δ0 , D1 and D2 hold. Then as n →∞, for 1 ≤ s < t ≤ m, 

t s(3.9) 
pn 

cov(Mc 
n,mn (u ), τbn,mn (u )) → τtθψs,t,n n mnrn 

where ψs,t is defined in (2.7). 

Proof. As before, 
mn mnrnX X � � 

t s t scov(Mc 
n,mn (u ), τbn,mn (u )) = cov 1(M(i−1)rn,irn > u ), 1(Xj > u ) .n n n n 

i=1 j=1 

Once again we split the sum into two pieces, I1,n + I2,n , depending on whether (i − 1)rn < j ≤ irn 

or not. By stationarity, 
rnXpn pn t sI1,n ∼ cov(1(Mrn > un), 1(Xi > un)) mnrn rn i=1 
rnXpn t s t s = P (Mrn > u , Xi > u ) − pnP (Mrn > u )P (X1 > u )n n n n rn i=1 

pn s t t t s = E[Nrn (un)|Mrn > un]P (Mrn > un) − pnP (Mrn > un)P (X1 > un) rn 
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→τtθψs,t 

as n → ∞ by (2.4), (2.5) and (2.7). Since I2,n → 0 as before, the proof of the proposition is 
complete. � 

4. A Central Limit Theorem for the Multilevel Estimator 

In this section we establish the asymptotic normality of our multilevel estimator (2.3). We start 
by checking the consistency of the estimator. For notational convenience we restate definitions 
(3.1) and (3.2), with mn = kn: 

knX 
s s s(4.1) Mc 

n(un) = Mcn,kn (u ) = 1(M(i−1)rn,irn > u )n n 
i=1 

and 
knrnX 

s s s(4.2) τbn(u ) = τbn,kn (un) = 1(Xi > u ) .n n 
i=1 

Proposition 4.1. Let {Xi} be a stationary sequence with extremal index θ. Suppose that Assump-
tions C1 and D1 hold. Then as n →∞, b(4.3) θn(f) →P θ. 

Proof. Note that for 1 ≤ s ≤ m, by (2.5), � � pn knpns sE Mc 
n(u ) = P (Mrn > u ) → τsθn n n n � � 

s sas n →∞. Since var (pn/n)Mc 
n(un) → 0 by Proposition 3.1, it follows that (pn/n)Mc 

n(un) →P τsθ 
as n →∞. 

sSimilarly, by (2.4) and Proposition 3.3 we have (pn/n)τbn(u ) →P τs as n → ∞ for 1 ≤ s ≤ m.n 
In particular, 

\τs/τm →P τs/τm for 1 ≤ s ≤ m, 

and the result follows. � 

The next theorem is the main result of this section. It establishes asymptotic normality of the 
estimator (2.3). It requires an assumption on the rate of convergence in (2.5). We assume that, as 
n →∞, p � � 

s(4.4) n/pn (pn/rn)P (Mrn > u ) − τsθ → 0, 1 ≤ s ≤ m.n 

Such an assumption is sometimes associated with a sufficiently large block size rn; see e.g. Robert 
et al. (2009). 
Under the notation of Assumptions D1 and D2 we denote 

∞X 
µ2 := j2πj , 

j=1 X∞ iX 
µs,t := ij$s,t(i, j), 1 ≤ s < t ≤ m. 

i=1 j=0 
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Theorem 4.2. Let {Xi} be a stationary sequence with extremal index θ. Assume that Assumptions 
C1 
0 , C2, C2 

0 , D1 and D2 hold. Assume further (4.4). Then as n →∞, �� 
θb 
n 

p
→d N (0, σ2),(f) − θ(4.5) n/pn 

where σ2 = hT Σh, with a (2m) × (2m) covariance matrix Σ and a 2m-dimensional vector h defined 
as follows: for 1 ≤ s ≤ t ≤ m, 

σs,t = τtθ, 
σm+s,m+t = τsθµs,t, 
σs,m+t = τt, 
σt,m+s = τtθψs,t , 

where µs,s is taken to be µ2 for each s, while ψs,t is defined by (2.7) for s < t and taken to be 1/θ 
if s = t. Furthermore, �� 

f τs/τm − f τs−1/τm 
m f τt/τm − f τt−1/τm 

� �� , 1 ≤ s ≤ m, 
τt�� 

Phs = 
t=1 � 

τs/τm − f� m f τt/τm − f τt−1/τm τtt=1 

f θ�� 

� 
τ /τ−1s m 

= −P , 1 ≤ s ≤ m,hm+s 

where we set τ0 = ∞ and f(∞) = 0. 

� c � 

Proof. The argument is similar to that used in Theorem 4.2 of Robert et al. (2009). Notice that 

θn Mn 
1 /n)Mn cb m 1 m), (pn/n)τbn(u ), . . . , (pn/n)τbn(un n(f) = h (pn/n) (u ), . . . , (pn (u ) ,n n 

θ = h τ1θ, . . . , τmθ, τ1, . . . , τm , 

PP 

where h : [0, ∞)m × (0, ∞)m → [0, ∞) is defined by 
m � 

) − f(ys−1/ym �s=1 f(ys xs 
m f(ys/ym) − f(ys−1/ym) yss=1 

/ym )
h(x1, . . . , xm, y1, . . . , ym) = . 

= ∞ and f(∞) = 0. Since � 
Here and for the remainder of the proof we use the convention y0 

rh τ1θ, . . . , τmθ, τ1, . . . , τm = h , 

c 
⎛ 

by the delta method we only need to prove that 

(pn/n)Mn 

⎞ 
1 ) − τ1θn(u ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. . . p cMn 
1(pn/n)τbn(u ) − τ1n 

. . . 
m(pn/n)τbn(u ) − τmn 

m) − τmn(pn/n) (u θ →d N (0, ΣΣ) .(4.6) n/pn 

c �⎛ 
We will, actually, prove the statement 

(pn/n) Mn 

⎞� 
1 1) − knP (Mrn > un(u )n⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. . .� �p cMn 
1(pn/n)τbn(u ) − τ1n 

. . . 
m(pn/n)τbn(u ) − τmn 

(pn/n) (um m 
n ) − knP (Mrn > u )(4.7) n/pn →d N (0, ΣΣ) .n 
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By (4.4) this will imply (4.6). 
We present an argument for the case m = 2. The argument for larger values of m is only 

notationally different. Denote by Zn,i, i = 1, 2, 3, 4 the 4 entries in the vector in the left hand side 
of (4.7). By the Cramér-Wold device it suffices to show that for any a = (a1, a2, a3, a4)T ∈ R4 , as 
n →∞, 

(4.8) a1Zn,1 + a2Zn,2 + a3Zn,3 + a4Zn,4 →d N (0, a T Σa). 

Denote mn = bn/pnc and let hn = bkn/mnc and write r rhn hnX Xpn pn1 2¯ ¯Zn,1 = Ii(un) + op(1), Zn,2 = Ii(un) + op(1) 
n n 

i=1 i=1 r rhn hnX Xpn pn1 2¯ ¯Zn,3 = Ji(un) + op(1), Zn,4 = Ji(un) + op(1), 
n n 

i=1 i=1 

where 
imXn−1 � �

1 1 1Īi(u ) = 1(M(j−1)rn,jrn > u ) − P (Mrn > u ) ,n n n 
j=(i−1)mn 

imXn−1 � �
2 2 2Īi(un) = 1(M(j−1)rn,jrn > un) − P (Mrn > un) , 

j=(i−1)mn 

imnrn−1X � �
1 1J̄i(u ) = 1(Xj > u ) − τ1/pn ,n n 

j=(i−1)mnrn 

imnrn−1X � �
2 2J̄i(u ) = 1(Xj > u ) − τ2/pn .n n 

j=(i−1)mnrn � � 
Let h∗ → ∞ be a sequence of integers with (h∗ )2 = o(hn), hn = o (h∗ )3 . Partition the setn n n 
{1, . . . , hn} into subsets of length h∗ of consecutive integers, with two adjacent such subsets sep-n 
arated by a singleton. The number of subsets of length h∗ is then qn = b(hn + 1)/(h∗ + 1)c. Wen n 
have r hn r qn j(hn 

∗ +1)−1X X Xpn pn¯ ¯(4.9) Ii(u 1 ) = Ii(u 1 )n n n n 
i=1 j=1 i=(j−1)(h∗ +1)+1n r qXn−1 r hnXpn pn1 1¯ ¯ + Ij(h∗ +1)(u ) + Ii(u ).n n n n n 

j=1 i=qn(h∗ +1)n 

The variance of the second term is bounded by 

2pnqn 1 n 1 1 var(Ī  
1(un)) + 

pnq
ρn,h∗ rn (un)var(Ī

 
1(un)) . n n n 

By Proposition 3.1 the first entry above does not exceed a constant multiple of 

pnqn mnrn 1 ∼ → 0 
n h∗ pn n 
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since h∗ →∞. Since Assumption C1 is in force,n 
n � �X1 1 11 1 1ρn,h∗ rn (un) = hn 

∗ rnρn,h∗ rn (un) ≤ ρn,l(un) = o . 
n nh∗ h∗ h∗ 

nrn nrn nl=1 

Therefore, the second entry above does not exceed a constant multiple of 

pnq
2 1 mnrn hnn ∼ → 0 

n h∗ pn (h∗ )3 
n n 

by the choice of h∗ . Hence it follows that the variance of the second term in (4.9) converges to zero.n 
Further, the variance of the third term in (4.9) is, apart from a multiplicative constant, bounded 
by 

pn(h
∗ )2 pn(h

∗ )2 mnrn (h∗ )2 
n 1 n nvar(Ī  

1(u )) ∼ ∼ → 0,n n n pn hn 

once again by the choice of h∗ . Therefore, we can writen⎛ ⎞ 
qn r j(hn 

∗ +1)−1 qnX X X1 pnqn 1 1 
Zn,1 =√ ⎝ Ī  

i(un)⎠ + op(1) =: √ ξn,j,1 + op(1). 
qn n qnj=1 i=(j−1)(h∗ +1)+1 j=1 n 

Similarly, ⎛ ⎞ 
qn r j(hn 

∗ +1)−1 qnX X X1 pnqn 2 1¯Zn,2 =√ ⎝ Ii(u )⎠ + op(1) =: √ ξn,j,2 + op(1),n qn n qnj=1 i=(j−1)(h∗ +1)+1 j=1 ⎛ 
n ⎞ 

qn r j(hn 
∗ +1)−1 qnX X X1 qn 11Zn,3 = √ ⎝ J̄  

i(un)⎠ + op(1) =: √ ξn,j,3 + op(1), 
qn hn qnj=1 i=(j−1)(h∗ +1)+1 j=1 ⎛ n ⎞ 

qn r j(hn 
∗ +1)−1 qnX X X1 qn 2 1 

Zn,4 = √ ⎝ J̄  
i(u )⎠ + op(1) =: √ ξn,j,4 + op(1).n qn hn qnj=1 i=(j−1)(h∗ +1)+1 j=1 n 

Writing ξn,j = a1ξn,j,1 + a2ξn,j,2 + a3ξn,j,3 + a4ξn,j,4, we conclude that 
qnX1 

a1Zn,1 + a2Zn,2 + a3Zn,3 + a4Zn,4 = √ ξn,j + op(1). 
qn j=1 

Notice that for fixed n the elements of the stationary sequence defining each pair of ξn,i and ξn,j , 
i 6= j, are separated by at least h∗ 

nrn entries. Furthermore, by Assumptions C1 and C2, 

ρn,h∗ 
nrn (un 

1 , un 
2 ) = o(1/hn) = o(1/qn) . 

Since for any real θ⎧ ⎫ � �⎨ qn ⎬ qnX Y1 1 
E exp iθ √ ξn,j − E exp iθ √ ξn,j⎩ qn ⎭ qnj=1 j=1⎧ ⎫ ⎧ ⎫ 

qn ⎨ qn−k+1 ⎬ ⎨ qn−k ⎬ � �X X X1 1 1 ≤ E exp iθ √ ξn,j − E exp iθ √ ξn,j E exp iθ √ ξn,qn−k+1⎩ qn ⎭ ⎩ qn ⎭ qn
k=1 j=1 j=1 

1 2≤ qnρn,h∗ rn (un, un)n 
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up to a multiplicative constant, the statement (4.8) will follow once we prove that 
qnX1 

(4.10) √ Yn,j →d N (0, a T Σa) , 
qn j=1 

where for each n, Yn,j , j = 1, . . . , qn are i.i.d. random variables with the same law as ξn,1. Since 
Propositions 3.1 - 3.7 tell us that var(ξn,1) → aT Σa as n → ∞, by the Lindeberg-Feller central 
limit theorem the convergence in (4.10) will follow once we check that for any ε > 0, � � 

E ξn, 
2
11(|ξn,1| > εqn 

1/2) → 0 

as n →∞, which reduces to showing that � � 
ξ2(4.11) E n,1,i1(|ξn,1,j | > εqn 

1/2) → 0 

for each ε > 0 and each pair i, j = 1, 2, 3, 4. We will check (4.11) for i = j = 1. All other 
1combinations of i, j can be treated in a similar way. If Mc∗(u ) is defined by (3.1) with mn replacedn n 

by mnh
∗ , then we have to check thatn � � p �� pnqn 1 1E (Mc∗ (un))

2
1 |Mc∗ (un)| > ε n/pn → 0 .n n n 

1While proving Proposition 3.1 we decomposed the variance of Mc∗(u ) into a sum of two terms, then n 
second of which is of a smaller order than the first one. Therefore, we only need to prove that " 

mnh∗ Xn � �2 
1 1pnqn 

E 1(M(i−1)rn,irn > un) − P (Mrn > un) n 
i=1 ⎛ ⎞# 

mnh∗ 
n 

1 1
1 ⎝ 

X � 
1(M(i−1)rn,irn > un) − P (Mrn > u ) 

� 
> ε

p
n/pn ⎠ → 0n 

j=1 

and , since n/pn →∞, by changing ε > 0 to a smaller positive number, we only need to show that ⎛ ⎞ 
mnh∗ Xn X ppnqn 

P ⎝M(i−1)rn,irn > u 1 
n, 

� 
1(M(i−1)rn,irn > u 1 

n) − P (Mrn > u 1 
n) 
� 
> ε n/pn ⎠ → 0 . 

n 
i=1 |j−i|≥2 

Note that the expression in the left hand side above can be bounded by⎛ ⎞ 
mnh∗ X � � X � � p

1 1 1pnqn 
n 

P M(i−1)rn,irn > un P ⎝ 1(M(i−1)rn,irn > un) − P (Mrn > un) > ε n/pn ⎠ 
n 

i=1 |j−i|≥2 

pnqn 1+ mnh ∗ 
nαn,rn (un) . n 

The first term above converges to zero as n → ∞ by Proposition 3.1, while the second term 
converges to zero as n → ∞ by Assumption C1. Therefore, the convergence in (4.10) has been 
established. � 

Remark 4.3. Note that without the assumption (4.4) what Theorem 4.2 proves is that p �b � 
n/pn θn(f) − θn(f) →d N (0, σ2). 

The difference θn(f) − θ is then responsible for the bias of our estimator. 
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5. Testing the estimator 

This section is devoted to testing the effect of using multiple thresholds in the blocks estimator 

s
n 

as in (2.3), both on simulated data and real data. As in many cases of extremal inference, we should 
address the question of the bias of the estimator; see, in particular, Remark 4.3. One approach of 
tackling the bias is to build a simple model for it and then estimate it from the data. Following 
Drees (2011), and to further account for the effect of block size rn, we assume that the main terms 

τbn(u ) � \τ /τ−1s m 

cMn )/τbn 
s
n 

s
nin the bias of (u (u ) as an estimator of θ are linear in τs/kn and 1/rn, s = 1, . . . ,m. 

Since we estimate τs by a scaled version of the statistics τbn(usn), it is natural to use the following 
bias-corrected version of the multilevel estimator: P � �\� �� 

τs/τm − f 
� 
τs 
\ −1/τm 

)2 

) 

τbn(u 

τbn 

) − βb1 − βb2 
s
n 

kn
(Mc 

n 
m s

nf (u )s=1bbθn 
rn(5.1) (f) = � �\� 

f τs/τm 
��P , 

m − f (usns=1 

where βb1, βb2 are coefficients estimated from the data. We simply use linear regression as follows. 
m
n 

s
n 

1 1 lUse the m levels and l values of block sizes to compute the values ofu , . . . , u 
) and θb 

n 

r , . . . , rn n n 
i
n 

i
n 

i
n 

cMn(u
s , rn 

i
n)/τbn(usn, rin 

cMn ), τbn 
s
n 

s
n(u (u 

(u 
(u ) = ) for s = 1, . . . ,m, i = 1, . . . , l, where, r , r , r 

i
n 

i
n 

cMn ) respectively denote the quantities Mc 
n), τbn ) and τbn 

s
n 

s
n 

s
n (usn) evaluated using block(u (u, r , r 

Now fit a regression plane to the response variables θb 
n�i i 

n 
s
n, rsize r (u ) using the predictor variables.n 

i
n 

i
n 

i
n 

i
nτbn 

nb i
n 

squares coefficients �b b b �T 
= (XT X)−1XT b(5.2) β0, β1, β2 θn , 

where � �T 

s
n(u )/k , 1/r 1, . . . ,m, i = 1, . . . , l, where k c. Specifically, we use the least, r , s = = 

r 

b b 1 1 bθn = θn θn(u mn , r 
l 
n)(u ), r . . . ,n n 

nnn 

and ⎛ ⎞ 
1 1 . . . 1 
)/k1 )/k1 )/kl 

T ⎝ ⎠1 1 2 1 lτbn τbn τbn 
m
n(u (u (uX = , r , r , r. . . ,n n n n n 

nnn1/r1 1/r1 1/rl 

where bθn is a vector of length ml and X is a matrix of dimension ml × 3. We use βb1, βb2 in (5.2) as 
desired coefficients in (5.1). Alternatively, one could estimate the coefficients using levels different 

. . . 

1 , . . . , umn .from the collection un 

b
nRemark 5.1. A limiting theory for the bias-corrected estimator b 

requires a number of additional assumptions and a fairly long argument. The main idea is similar 
to that in Drees (2011), and it relies on concentrating on the “leading terms” in the bias. In order 
to keep the paper readable we have chosen not to include this theory here. It can be found in Sun 
(2018). 

Remark 5.2. Note that βb0 in (5.2) is itself an estimator for θ. We have not studied its statistical 
properties, but it performs well on simulated data. 

In the sequel we test the blocks estimator with multiple thresholds (2.3) and its bias-corrected 
version (5.1) on simulated data and on S&P 500 Daily Log Returns. As it is invariably done 
in practice, we use random thresholds given by different order statistics of the observations. In 
a similar situation, it was shown in Corollary 2.4 of Drees (2011) that, under certain continuity 
assumptions, this has no effect on the asymptotic distribution of the estimator. 

θ (f) can be developed, but it 
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5.1. Simulation Study. We have drawn samples from ARMAX processes. Specifically, we use 
the ARMAX(1) process (Xi) is defined as follows. Let Z1, Z2, . . . be a sequence of i.i.d. unit 
Fréchet random variables with shape 1. For 0 < θ ≤ 1 a stationary sequence is obtained by letting 
X1 = Z1/θ, and 

(5.3) Xi = max((1 − θ)Xi−1, Zi), i ≥ 2 . 

It can be shown that the extremal index of such a sequence is θ; see e.g. Chapter 10 of Beirlant 
et al. (2006). 
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Figure 1. Bias (left column), standard error (center column), and root mean 
squared error (right column) for the blocks estimator (1.2) (dot-dash line), the mul-
tilevel estimator θb(f) (dotted line) and the bias-corrected multilevel estimator θbb(f) 
(solid line) plotted against the choice of m, number of levels used in the estimators. 
Data are simulated from ARMAX models with θ = 0.25, 0.5, 0.75 (top to bottom). 

We first test the performance of the estimators (2.3) and (5.1) on the ARMAX model using values 
of θ = 0.25, 0.5, 0.75, and a sample of length n = 10000. For the estimator, we have chosen a block 
size of rn = 200, and a weight function of f(x) = e−x . We run the experiments for m = 1, . . . , 20, 

sand for each fixed m we choose u to be equal to the (101 + 2(m − s))-th largest order statisticn 
of the sequence, 1 ≤ s ≤ m. That is, each level incorporates 2 more observations above it than 
the level immediately above it does. When computing coefficients for the bias-reduced estimator 
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0 s(5.1), we use m = 12, with ū being the (91 + 5(m0 − s))-th largest order statistic of the sequence,n 
1 ≤ s ≤ m0 , and l = 25, with ri = 10i, 1 ≤ i ≤ l.n 

We compare the estimators θb(f), θbb(f) and the plain blocks estimator on the basis of their bias, 
standard error, and root mean squared error. The results computed from 5000 simulated sequences 
are displayed in Figure 1. Looking from the top row to the bottom row along the varying values 
of θ = 0.25, 0.5, 0.75, we see that the plots tell a similar story. As expected for the multilevel 
estimator θb(f), the magnitude of the bias increases while the standard error decreases as more 
levels of observations are incorporated into the estimator. The bias of the bias-corrected version 
of the estimator, θbb(f), seems to be largely insensitive to the choice of m, with a decreasing trend 
both in the standard error and in the root mean squared error. Overall, θbb(f) achieves a much 
better root mean squared error compared to θb(f), for all levels m considered. It also outperforms 
the plain blocks estimator in the sense of an improved root mean squared error. 
We have performed the same analysis for other models, for different values of the highest threshold 

and for different block sizes. We have also analyzed the non-clustering case θ = 1. Invariably, the 
qualitative structure seen on Figure 1 remained the same. In the remaining experiments in this 
section we will, therefore, focus on the best performing bias-corrected estimator θbb(f) that uses the 
largest amount of data (m = 20 levels). 
Our next experiment addresses the effect of the choice of block size rn on the performance of the 

estimator θbb(f). We again use the ARMAX model with θ = 0.25, 0.5, 0.75 as before. We test the 
performance of θbb(f) using block sizes of rn = 40, 50, . . . , 200. The root mean squared errors from 
5000 simulated sequences are displayed in Figure 2. We see that the choice of the block size does 
not have a major effect on the root mean squared error. We have also looked at the effect of the 
block size on the bias and standard error separately (not shown). Once again, the standard error 
is largely insensitive to the choice of the block size. The bias does vary with the block size, but 
remains invariably small in the absolute value, leading to the root mean squared errors displayed 
in Figure 2. 

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0.04

0.06

0.08

0.10

0.12

0.14

Figure 2. Root mean squared error for the estimator θbb(f) for true values of θ 
being 0.25 (dotted line), 0.5 (dot-dash line), and 0.75 (dash line) plotted against the 
choice of rn, the size of the blocks used in the estimator. Data are simulated from 
ARMAX models with θ = 0.25, 0.5, 0.75. 

In the next experiment we fix the the block size to rn = 200 and study the effect of the choice 
of the weight function. In the setting of the previous experiments we use a second weight function, 
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f1(x) = 1/x
20 along with the original weight function f . In the relevant range f1 decreases at a 

much faster rate than f . We compare the performance of the estimators θbb(f) and θbb(f1). The 
results are presented in Figure 3. 
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Figure 3. Bias (left), standard error (center) and root mean squared error (right) 
for the bias corrected multilevel estimators θbb(f) (solid line) and θbb(f1) (dotted line) 
plotted against the choice of m, number of levels used in the estimators. Data are 
simulated from an ARMAX model with θ = 0.5. 

As in Figure 1 the magnitude of the bias, the standard error, and the root mean squared error 
of the estimators are all decreasing when m, the number of levels used in the estimator, increases. 
The phenomenon displayed in Figure 3 demonstrates that the faster decay of the weight function f1 

compared to f leads to smaller contributions from additional levels to the efficiency of the estimator. 
However, the exact overall effect of the weight function on the estimator is a topic not studied in 
detail in this paper. It warrants further investigation. 
In the previous experiments we have used samples of size n = 10000. Sometimes extremal 

inference has to be performed on data sets of a smaller size, so we have repeated our experiment 
leading to Figure 1 for samples of size n = 5000. We only display the results for the ARMAX model 
with θ = 0.5. We use rn = 100, and f(x) = e−x . Once again, we experiment with m = 1, . . . , 20 

slevels, and for each fixed m we choose u to be equal to the (51 + m − s)-th largest order statistic n 
of the sequence, 1 ≤ s ≤ m. When computing coefficients for the bias-reduced estimator, we use 
0 s 0m = 12, with ū being the (41 + 3(m0 − s))-th largest order statistic of the sequence, 1 ≤ s ≤ m ,n 

iand l = 15, with r = 10i, 1 ≤ i ≤ l. The results from 5000 simulated sequences are displayed, n 
in Figure 4. As expected, the smaller sample size leads to some deterioration in the quality of the 
estimation in comparison with the large sample size used in Figure 1, but the comparison of the 
estimators and the lessons derived from both figures remain the same. 
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Figure 4. Bias (left), standard error (center), and root mean squared error (right) 
for the naive blocks estimator (1.2) (dot-dash line), the multilevel estimator θb(f) 
(dotted line) and the bias-corrected multilevel estimator θbb(f) (solid line) plotted 
against the choice of m, number of levels used in the estimators. Data are simulated 
from an ARMAX model with θ = 0.5. 

Finally, we experiment with constructing a multiple threshold version of an estimator different 
from the plain blocks estimator. We have chosen the sliding blocks estimator of Robert et al. 
(2009). We use the ARMAX models with θ = 0.25, 0.5, 0.75. For each simulated sequence, we first 
compute the optimal threshold as described in Robert et al. (2009), then choose m = 1, . . . , 20, 
where u 
corresponding to u 

m
n corresponds to the level of the optimal threshold, and for each 1 ≤ s ≤ m, the level 

s
n incorporates 10 more observations than the level immediately above it. The 

results from 5000 simulated sequences are displayed in Figure 5. Once again we see that the root 
mean squared error is almost invariably decreasing with increasing number of levels m. 

5.2. S&P 500 Daily Log Returns. We now use the estimators developed in this paper to esti-
mate the extremal index of the losses among the daily log returns for S&P 500 during the ten-year 
period between 1 January 1990 and 31 December 1999. The log returns themselves are plotted in 
Figure 6. 
There are n = 5055 returns in this data set, and the negative of their values form our sample. 

We choose m = 1, . . . , 20 and u 
We choose the block size rn 

s
n to be the 51 + (m − s)-th largest order statistic, 1 ≤ s ≤ m. 

= 40, resulting in kn = 126 blocks. For the weight function we use 
f(x) = e−x . When computing the bias-corrected estimator we use (5.2) with m0 = 12 levels, ūsn 

0being the 41 + 3(m0 − s)-th largest order statistic in the sample, 1 ≤ s ≤ m , and set l = 15, with 
rin = 10i, 1 ≤ i ≤ l. 



20 JULIAN SUN AND GENNADY SAMORODNITSKY 

0 5 10 15 20

0.
01

8
0.

01
8

0.
01

8

0 5 10 15 20
0.

03
9

0.
04

1
0.

04
2

0 5 10 15 200.
04

2
0.

04
4

0.
04

5

0 5 10 15 20

0.
02

6
0.

02
6

0.
02

6

0 5 10 15 20

0.
06

3
0.

06
6

0.
06

9

0 5 10 15 20

0.
06

9
0.

07
2

0 5 10 15 20

0.
03

3
0.

03
5

0 5 10 15 20

0.
08

0
0.

08
5

0 5 10 15 20

0.
08

8
0.

09
2

Figure 5. Bias (left column), standard error (center column), and root mean 
squared error (right column) for the sliding blocks estimator (dot-dash line), the 
multilevel sliding blocks estimator (solid line) plotted against the choice of m, num-
ber of levels used in the estimators. Data are simulated from ARMAX models with 
θ = 0.25, 0.5, 0.75 (top to bottom). 
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Figure 6. Daily Log Returns for S&P 500 from 1980 - 1999 
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Figure 7. The values of the multilevel estimator θb(f) (‘x’ marker) and the bias-
corrected multilevel estimator θbb(f) (diamond marker) plotted against the choice of 
m, number of levels used in the estimators, for the negative daily log returns of S&P 
500. 

The plots of the two estimators are shown above as a function of the number of levels m. We 
have also evaluated the variability of the estimators by performing a block-level bootstrap. We 
have not presented the resulting pointwise 1-standard error confidence intervals on Figure 7 since 
this makes the structure of the pointwise estimators harder to see, but the order of magnitude of 
these intervals is [0.5, 0.8]. 
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	(i−1)r
	n
	,ir
	n 
	1
	(j−1)r
	n
	,jr
	n 
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	nn n 
	mn−1 ss
	X

	+2 (mn − v)cov((Mr>u), (M>u)) v=2 
	1
	n 
	n
	1
	vr
	n
	,(v+1)r
	n 
	n

	:=I,n + I,n + I,n . 
	1
	2
	3

	It follows from (2.5) that 
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	“diagonal” case. The proof of the next proposition is similar to the argument in Proposition 3.5 (once we use the appropriate assumption), and is omitted. 
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	stt ts 
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	4. A Central Limit Theorem for the Multilevel Estimator 
	In this section we establish the asymptotic normality of our multilevel estimator (2.3). We start by checking the consistency of the estimator. For notational convenience we restate deﬁnitions 
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	The next theorem is the main result of this section. It establishes asymptotic normality of the estimator (2.3). It requires an assumption on the rate of convergence in (2.5). We assume that, as n →∞, 
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	Let h→∞ be a sequence of integers with (h)= o(hn), hn = o (h). Partition the set
	∗ 
	∗ 
	2 
	∗ 
	3 

	n nn 
	{1,...,hn} into subsets of length hof consecutive integers, with two adjacent such subsets sep
	∗ 
	-

	n arated by a singleton. The number of subsets of length his then qn = b(hn + 1)/(h+ 1)c. We
	∗ 
	∗ 

	nn 
	have 
	r hn r qn j(hn +1)−1
	∗ 

	X XX
	pn pn
	pn pn

	¯¯
	(4.9) Ii(u )= Ii(u )
	1 
	1 

	nn 
	nn 
	i=1 j=1 i=(j−1)(h+1)+1
	∗ 

	n r q−1 r 
	X
	n
	h
	n

	X
	pn pn
	pn pn

	11
	¯¯ 
	+ j(h+1)i
	I
	∗ 
	(u )+ I
	(u ).

	nn 
	n n 
	n 

	j=1 i=qn(h+1)
	∗ 

	n 
	The variance of the second term is bounded by 
	21 11 
	p
	n
	q
	n 
	n 

	var(I(u)) + ρn,h∗ r(u)var(I(u)) . 
	¯ 
	1
	n
	p
	n
	q
	n 
	n
	¯ 
	1
	n

	nn 
	n 

	By Proposition 3.1 the ﬁrst entry above does not exceed a constant multiple of 
	pnqn mnrn 1 
	∼→ 0 
	n
	h
	∗ 

	nn 
	p

	since h→∞. Since Assumption Cis in force,
	∗ 
	1 

	n n ..
	X
	1 11
	1 11
	ρn,h∗ r(u)= hrnρn,h∗ r(u) ≤ ρn,l(u)=o . 
	n 
	n
	n 
	∗ 
	n 
	n
	n

	nn
	h∗ h∗ 
	h∗ 

	nnnnn
	r
	r

	l=1 
	Therefore, the second entry above does not exceed a constant multiple of 
	pnq1 mnrn hn
	2 

	n 
	n 

	∼→ 0 
	npn (h)
	h
	∗ 
	∗ 
	3 

	nn 
	by the choice of h. Hence it follows that the variance of the second term in (4.9) converges to zero.
	∗ 

	n 
	Further, the variance of the third term in (4.9) is, apart from a multiplicative constant, bounded by 
	mnrn 
	pn(h
	∗ 
	)
	2 
	pn(h
	∗ 
	)
	2 
	(h
	∗ 
	)
	2 

	1 
	n 
	nn

	var(I(u )) ∼ ∼→ 0,
	¯ 
	1

	n 
	n npn hn once again by the choice of h. Therefore, we can write
	∗ 

	n
	⎛⎞ 
	qn r j(hn +1)−1 qn
	∗ 

	XX X
	1 pnqn 1 
	1 

	Zn,1 =√ Ii(u)+ op(1) =: √ ξn,j,1 + op(1). 
	⎝ 
	¯ 
	n
	⎠ 

	n
	qn 
	qn

	j=1 i=(j−1)(h+1)+1 j=1 
	∗ 

	n 
	Similarly, 
	⎛⎞ 
	qn r j(hn +1)−1 qn
	∗ 

	XX X
	1 pnqn 1
	2 

	¯
	Zn,2 =√ Ii(u )+ op(1) =: √ ξn,j,2 + op(1),
	⎝ 
	⎠ 

	n 
	n
	qn 
	qn

	j=1 i=(j−1)(h+1)+1 j=1 
	∗ 

	⎛ ⎞ qn r j(hn +1)−1 qn
	n 
	∗ 

	XX X
	1 qn 1
	1
	Zn,3 = √ Ji(u)+ op(1) =: √ ξn,j,3 + op(1), hn 
	⎝ 
	¯ 
	n
	⎠ 
	qn 
	qn

	j=1 i=(j−1)(h+1)+1 j=1 
	∗ 

	⎛ ⎞ 
	n 

	qn r j(hn +1)−1 qn
	∗ 

	XX X
	1 qn 1 
	2 

	Zn,4 = √ Ji(u )+ op(1) =: √ ξn,j,4 + op(1).
	⎝ 
	¯ 
	⎠ 

	n 
	hn 
	qn 
	qn

	j=1 i=(j−1)(h+1)+1 j=1 
	∗ 

	n 
	Writing ξn,j = aξn,j,1 + aξn,j,2 + aξn,j,3 + aξn,j,4, we conclude that 
	1
	2
	3
	4

	qn
	X
	1 
	aZn,1 + aZn,2 + aZn,3 + aZn,4 = √ ξn,j + op(1). 
	1
	2
	3
	4
	qn 

	j=1 
	Notice that for ﬁxed n the elements of the stationary sequence deﬁning each pair of ξn,i and ξn,j , i 6= j, are separated by at least hrn entries. Furthermore, by Assumptions Cand C, 
	∗ 
	n
	1 
	2

	ρn,h∗ r(u,u)= o(1/hn)= o(1/qn) . 
	n
	n 
	n 
	1 
	n 
	2 

	Since for any real θ
	⎧⎫ 
	..
	..
	⎨ qn ⎬ qn

	XY
	11 
	E exp iθ √ ξn,j − E exp iθ √ ξn,j
	⎩ ⎭ 
	qn 
	qn

	j=1 j=1
	⎧ ⎫⎧⎫ 
	qn ⎨ qn−k+1 ⎬⎨ qn−k ⎬. .
	XX X
	1 11 
	≤ E exp iθ √ ξn,j − E exp iθ √ ξn,j E exp iθ √ ξn,q−k+1
	n

	⎩ ⎭⎩ ⎭ 
	qn 
	qn 
	qn

	k=1 j=1 j=1 
	12
	≤ qnρn,h∗ r(u,u)
	n 
	n
	n

	n 
	up to a multiplicative constant, the statement (4.8) will follow once we prove that 
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	n The ﬁrst term above converges to zero as n →∞ by Proposition 3.1, while the second term converges to zero as n →∞ by Assumption C. Therefore, the convergence in (4.10) has been established. . 
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	Remark 4.3. Note that without the assumption (4.4) what Theorem 4.2 proves is that 
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	n/pn θn(f) − θn(f) →d N (0,σ). 
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	The diﬀerence θn(f) − θ is then responsible for the bias of our estimator. 
	5. Testing the estimator This section is devoted to testing the eﬀect of using multiple thresholds in the blocks estimator 
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	as in (2.3), both on simulated data and real data. As in many cases of extremal inference, we should address the question of the bias of the estimator; see, in particular, Remark 4.3. One approach of tackling the bias is to build a simple model for it and then estimate it from the data. Following Drees (2011), and to further account for the eﬀect of block size rn, we assume that the main terms 
	τbn(u ) 
	� /τ
	\
	τ
	−
	1
	s
	m 

	c
	Mn 
	Mn 
	)/τbn 

	sn 
	sn 
	sn

	in the bias of 
	(u 
	(u 
	) as an estimator of θ are linear in τs/kn and 1/rn, s =1,...,m. 
	Since we estimate τs by a scaled version of the statistics τbn(u
	sn
	), it is natural to use the following 
	bias-corrected version of the multilevel estimator: 
	P. 
	P. 
	Ł. .. 
	\


	τs/τm − f τs −1/τm 
	Ł 
	\ 

	)
	2 

	) 
	τbn(u τbn 
	) − βb
	1 

	− βb
	2 

	sn 
	kn
	(Mc 
	n 

	m
	m
	sn

	f 
	(u 
	)
	s=1
	bn 
	b
	θ

	rn
	(5.1) 
	(f)= 
	.Ł. 
	\

	fτs/τm 
	..
	P 
	, 
	m
	− f 
	(u
	sn
	s=1 
	where β, βare coeﬃcients estimated from the data. We simply use linear regression as follows. 
	b
	1
	b
	2 

	mn 
	mn 
	sn 

	1 
	1
	l
	Use the m levels 
	and l values of block sizes 
	to compute the values of
	u 
	,...,u ) and θn 
	b 

	r 
	,...,r
	n
	n
	n
	n 

	in 
	in 
	in 
	in 

	c
	Mn
	(u
	,
	,
	s 
	r
	n 

	in

	)/τbn
	(u
	sn
	,r
	in 
	c
	Mn 
	), τbn 
	sn 
	sn
	(u 
	(u (u 
	(u 
	)= 
	) for s =1,...,m, i =1,...,l, where
	,r 
	,r 
	,r 
	in 
	in 
	c
	Mn 
	) respectively denote the quantities Mn
	) respectively denote the quantities Mn
	c 

	), τbn 
	) and τbn 

	sn 
	sn 
	sn 
	sn

	(u
	sn
	) evaluated using block
	(u 
	(u
	,r 
	,r 
	Now ﬁt a regression plane to the response variables θn
	b 

	.
	i
	i 
	n 
	sn
	,r
	size r 
	(u 
	) using the predictor variables
	.
	n 
	n 
	in 

	in 
	in 
	in 
	in

	τbn 
	n
	n
	b
	i
	n 

	squares coeﬃcients 
	bbT −1T b
	Ł
	b 
	.
	T 
	=(X
	X)
	X

	(5.2) β,β,βθn , where 
	0
	1
	2 

	..
	T 

	sn
	(u 
	)/k 
	, 1/r 
	1,...,m, i =1,...,l, where k 
	c. Speciﬁcally, we use the least
	,r 
	, s = 
	= 
	r 
	bb 11 b
	θn = θn θn
	(u 
	mn
	,r 
	l 
	n
	)
	(u 
	)
	,r 
	... 
	,
	n
	n
	n 

	n
	n
	n 
	and 
	⎛⎞ 
	11 ... 1 )/k)/k)/k
	1 
	1 
	l 

	T 
	⎝ 
	⎠
	11 
	11 
	21

	l
	τbn 
	τbn 
	τbn 
	τbn 

	mn
	(u 
	(u 
	(u
	X = 
	,r 
	,r 
	,r
	... 
	,
	n
	n
	n
	n
	n
	n 

	n
	n
	n
	1/r1/r1/r
	1 
	1 
	l 
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	Remark 5.1. A limiting theory for the bias-corrected estimator requires a number of additional assumptions and a fairly long argument. The main idea is similar to that in Drees (2011), and it relies on concentrating on the “leading terms” in the bias. In order to keep the paper readable we have chosen not to include this theory here. It can be found in Sun (2018). 
	b 

	Remark 5.2. Note that βin (5.2) is itself an estimator for θ. We have not studied its statistical properties, but it performs well on simulated data. 
	b
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	In the sequel we test the blocks estimator with multiple thresholds (2.3) and its bias-corrected version (5.1) on simulated data and on S&P 500 Daily Log Returns. As it is invariably done in practice, we use random thresholds given by diﬀerent order statistics of the observations. In a similar situation, it was shown in Corollary 2.4 of Drees (2011) that, under certain continuity assumptions, this has no eﬀect on the asymptotic distribution of the estimator. 
	θ 
	(f) can be developed, but it 
	5.1. Simulation Study. We have drawn samples from ARMAX processes. Speciﬁcally, we use the ARMAX(1) process (Xi) is deﬁned as follows. Let Z,Z,... be a sequence of i.i.d. unit Fr´echet random variables with shape 1. For 0 <θ ≤ 1 a stationary sequence is obtained by letting X= Z/θ, and 
	1
	2
	1 
	1

	(5.3) Xi = max((1 − θ)Xi−1,Zi),i ≥ 2 . 
	It can be shown that the extremal index of such a sequence is θ; see e.g. Chapter 10 of Beirlant et al. (2006). 
	Figure
	Figure 1. Bias (left column), standard error (center column), and root mean squared error (right column) for the blocks estimator (1.2) (dot-dash line), the multilevel estimator θ(f) (dotted line) and the bias-corrected multilevel estimator θ(f) (solid line) plotted against the choice of m, number of levels used in the estimators. Data are simulated from ARMAX models with θ =0.25, 0.5, 0.75 (top to bottom). 
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	We ﬁrst test the performance of the estimators (2.3) and (5.1) on the ARMAX model using values of θ =0.25, 0.5, 0.75, and a sample of length n = 10000. For the estimator, we have chosen a block size of rn = 200, and a weight function of f(x)= e. We run the experiments for m =1,..., 20, 
	−x 

	s
	and for each ﬁxed m we choose u to be equal to the (101 + 2(m − s))-th largest order statistic
	n 
	of the sequence, 1 ≤ s ≤ m. That is, each level incorporates 2 more observations above it than the level immediately above it does. When computing coeﬃcients for the bias-reduced estimator 
	0 s
	(5.1), we use m = 12, with u¯ being the (91 + 5(m− s))-th largest order statistic of the sequence,
	0 

	n 
	1 ≤ s ≤ m, and l = 25, with r= 10i,1 ≤ i ≤ l.
	0 
	i 

	n 
	We compare the estimators θ(f), θ(f) and the plain blocks estimator on the basis of their bias, standard error, and root mean squared error. The results computed from 5000 simulated sequences are displayed in Figure 1. Looking from the top row to the bottom row along the varying values of θ =0.25, 0.5, 0.75, we see that the plots tell a similar story. As expected for the multilevel estimator θ(f), the magnitude of the bias increases while the standard error decreases as more levels of observations are incor
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	We have performed the same analysis for other models, for diﬀerent values of the highest threshold and for diﬀerent block sizes. We have also analyzed the non-clustering case θ = 1. Invariably, the qualitative structure seen on Figure 1 remained the same. In the remaining experiments in this section we will, therefore, focus on the best performing bias-corrected estimator θ(f) that uses the largest amount of data (m = 20 levels). 
	b
	b

	Our next experiment addresses the eﬀect of the choice of block size rn on the performance of the estimator θ(f). We again use the ARMAX model with θ =0.25, 0.5, 0.75 as before. We test the performance of θ(f) using block sizes of rn = 40, 50,..., 200. The root mean squared errors from 5000 simulated sequences are displayed in Figure 2. We see that the choice of the block size does not have a major eﬀect on the root mean squared error. We have also looked at the eﬀect of the block size on the bias and standa
	b
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	Figure
	Figure 2. Root mean squared error for the estimator θ(f) for true values of θ being 0.25 (dotted line), 0.5 (dot-dash line), and 0.75 (dash line) plotted against the choice of rn, the size of the blocks used in the estimator. Data are simulated from ARMAX models with θ =0.25, 0.5, 0.75. 
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	In the next experiment we ﬁx the the block size to rn = 200 and study the eﬀect of the choice of the weight function. In the setting of the previous experiments we use a second weight function, 
	f(x)=1/xalong with the original weight function f. In the relevant range fdecreases at a much faster rate than f. We compare the performance of the estimators θ(f) and θ(f). The results are presented in Figure 3. 
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	Figure
	Figure 3. Bias (left), standard error (center) and root mean squared error (right) for the bias corrected multilevel estimators θ(f) (solid line) and θ(f) (dotted line) plotted against the choice of m, number of levels used in the estimators. Data are simulated from an ARMAX model with θ =0.5. 
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	As in Figure 1 the magnitude of the bias, the standard error, and the root mean squared error of the estimators are all decreasing when m, the number of levels used in the estimator, increases. The phenomenon displayed in Figure 3 demonstrates that the faster decay of the weight function fcompared to f leads to smaller contributions from additional levels to the eﬃciency of the estimator. However, the exact overall eﬀect of the weight function on the estimator is a topic not studied in detail in this paper.
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	In the previous experiments we have used samples of size n = 10000. Sometimes extremal inference has to be performed on data sets of a smaller size, so we have repeated our experiment leading to Figure 1 for samples of size n = 5000. We only display the results for the ARMAX model with θ =0.5. We use rn = 100, and f(x)= e. Once again, we experiment with m =1,..., 20 
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	levels, and for each ﬁxed m we choose u to be equal to the (51 + m − s)-th largest order statistic 
	n 
	of the sequence, 1 ≤ s ≤ m. When computing coeﬃcients for the bias-reduced estimator, we use 
	0 s 0
	m = 12, with u¯ being the (41 + 3(m− s))-th largest order statistic of the sequence, 1 ≤ s ≤ m ,
	0 

	n 
	i
	and l = 15, with r = 10i,1 ≤ i ≤ l. The results from 5000 simulated sequences are displayed, 
	n 
	in Figure 4. As expected, the smaller sample size leads to some deterioration in the quality of the estimation in comparison with the large sample size used in Figure 1, but the comparison of the estimators and the lessons derived from both ﬁgures remain the same. 
	Figure
	Figure 4. Bias (left), standard error (center), and root mean squared error (right) for the naive blocks estimator (1.2) (dot-dash line), the multilevel estimator θ(f) (dotted line) and the bias-corrected multilevel estimator θ(f) (solid line) plotted 
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	against the choice of m, number of levels used in the estimators. Data are simulated from an ARMAX model with θ =0.5. 
	Finally, we experiment with constructing a multiple threshold version of an estimator diﬀerent from the plain blocks estimator. We have chosen the sliding blocks estimator of Robert et al. (2009). We use the ARMAX models with θ =0.25, 0.5, 0.75. For each simulated sequence, we ﬁrst compute the optimal threshold as described in Robert et al. (2009), then choose m =1,..., 20, 
	where u corresponding to u 
	mn
	corresponds to the level of the optimal threshold, and for each 1 ≤ s ≤ m, the level 
	sn
	incorporates 10 more observations than the level immediately above it. The 
	results from 5000 simulated sequences are displayed in Figure 5. Once again we see that the root mean squared error is almost invariably decreasing with increasing number of levels m. 
	5.2. S&P 500 Daily Log Returns. We now use the estimators developed in this paper to estimate the extremal index of the losses among the daily log returns for S&P 500 during the ten-year period between 1 January 1990 and 31 December 1999. The log returns themselves are plotted in Figure 6. 
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	There are n = 5055 returns in this data set, and the negative of their values form our sample. 
	We choose m =1,..., 20 and u We choose the block size rn 
	sn
	to be the 51+(m − s)-th largest order statistic, 1 ≤ s ≤ m. 
	= 40, resulting in kn = 126 blocks. For the weight function we use 
	f(x)= e. When computing the bias-corrected estimator we use (5.2) with m= 12 levels, u¯
	−x 
	0 
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	being the 41 + 3(m− s)-th largest order statistic in the sample, 1 ≤ s ≤ m , and set l = 15, with 
	0 

	r
	in 
	= 10i,1 ≤ i ≤ l. 
	Figure
	Figure 5. Bias (left column), standard error (center column), and root mean squared error (right column) for the sliding blocks estimator (dot-dash line), the multilevel sliding blocks estimator (solid line) plotted against the choice of m, number of levels used in the estimators. Data are simulated from ARMAX models with θ =0.25, 0.5, 0.75 (top to bottom). 
	-

	Figure
	Figure 6. Daily Log Returns for S&P 500 from 1980 -1999 
	Figure
	Figure 7. The values of the multilevel estimator θ(f) (‘x’ marker) and the bias-corrected multilevel estimator θ(f) (diamond marker) plotted against the choice of m, number of levels used in the estimators, for the negative daily log returns of S&P 500. 
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	The plots of the two estimators are shown above as a function of the number of levels m. We have also evaluated the variability of the estimators by performing a block-level bootstrap. We have not presented the resulting pointwise 1-standard error conﬁdence intervals on Figure 7 since this makes the structure of the pointwise estimators harder to see, but the order of magnitude of these intervals is [0.5, 0.8]. 
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