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FUNCTIONAL CENTRAL LIMIT THEOREM FOR A CLASS OF
NEGATIVELY DEPENDENT HEAVY-TAILED STATIONARY
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BY PAUL JUNG∗,§ TAKASHI OWADA†,¶ AND GENNADY SAMORODNITSKY‡,‖

University of Alabama§, Technion - Israel Institute of Technology¶ and Cornell
University‖

We prove a functional central limit theorem for partial sums of sym-
metric stationary long-range dependent heavy tailed infinitely divisible pro-
cesses. The limiting stable process is particularly interesting due to its long
memory which is quantified by a Mittag-Leffler process induced by an asso-
ciated Harris chain, at the discrete-time level. Previous results in Owada and
Samorodnitsky (2015) dealt with positive dependence in the increment pro-
cess, whereas this paper derives the functional limit theorems under negative
dependence. The negative dependence is due to cancellations arising from
Gaussian-type fluctuations of functionals of the associated Harris chain. The
new types of limiting processes involve stable random measures, due to heavy
tails, Mittag-Leffler processes, due to long memory, and Brownian motions,
due to the Gaussian second order cancellations. Along the way, we prove a
function central limit theorem for fluctuations of functionals of Harris chains
which is of independent interest as it extends a result of Chen (2000).

1. Introduction. Let X = (X1, X2, . . .) be a discrete time stationary stochas-
tic process; depending on notational convenience we will sometimes allow the
time index to extend to the entirety of Z. Assume that X is symmetric (i.e. that
X

d
= −X) and that the marginal law of X1 is in the domain of attraction of an

α-stable law, 0 < α < 2. That is,

(1) P
(
|X1| > ·

)
∈ RV−α at infinity;

see [14] or [31]. Here and elsewhere in this paper we use the notation RVp for the
set of functions of regular variation with exponent p ∈ R. If the process satisfies a
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functional central limit theorem, then a statement of the type

(2)

 1

cn

bntc∑
k=1

Xk, 0 ≤ t ≤ 1

⇒ (
Y (t), 0 ≤ t ≤ 1

)

holds, with (cn) a positive sequence growing to infinity, and Y =
(
Y (t), 0 ≤ t ≤

1
)

a non-degenerate (non-deterministic) process. The convergence is either weak
convergence in the appropriate topology on D[0, 1] or just convergence in finite
dimensional distributions. The heavy tails in (1) will necessarily affect the order of
magnitude of the normalizing sequence (cn) and the nature of the limiting process
Y. The latter process is, under mild assumptions, self-similar, with stationary in-
crements; see [22] and [13]. If the discrete-time stationary process X is long range
dependent, then both the sequence (cn) and the limiting process Y may be affected
by the length of the memory as well.

A new class of central limit theorems for long range dependent stationary pro-
cesses with heavy tails was introduced in [29]. In that paper the process X was a
stationary infinitely divisible process given in the form

(3) Xn =

∫
E
f ◦ Tn(s) dM(s), n = 1, 2, . . . ,

where M is a symmetric homogeneous infinitely divisible random measure on a
measurable space (E, E), without a Gaussian component, with control measure
µ, f : E → R is a measurable function, and T : E → E a measurable map,
preserving the measure µ; precise definitions of these and following notions are
below. The regularly varying tails, in the sense of (1), of the process X are due to
the random measure M , while the long memory is due to the ergodic-theoretical
properties of the map T , assumed to be conservative and ergodic.

Conservativity of the map T is a basic notion in ergodic theory and is defined
by the following “recurrence” property:

∞∑
n=1

1A ◦ Tn =∞ a.e. on A

for every A ∈ E with µ(A) > 0. The crucial motivation for our choice of the
model is that the property of conservativity, surprisingly, produces long range de-
pendence in the infinitely divisible process X. A natural example of the process X
in (3) is given in Example 5.5 of [29] for which the law of the process X is deter-
mined by a trajectory (Tnx) of a certain recurrent Markov chain. The present work
takes over the same setup based on a recurrent Markov chain to quantify the long



FUNCTIONAL CENTRAL LIMIT THEOREM 3

memory of the process and proves a functional central limit theorem for which the
recurrence of the Markov chain is somehow carried over to the weak limit. Other
types of limit theorems for the process whose underlying flow (Tn) is determined
by a recurrent Markov chain can be found, for example, in [25], [33], and [4]. The
recurrent Markov chain (in the sense of Harris) involved in the construction of the
process X in (3) of the present paper takes values in a space more general than Z
(the papers mentioned above treated only Z-valued chains). The setup of our Harris
chain is basically the same as that given in [11].

In the model considered in [29] the length of the memory could be quantified by
a single parameter 0 ≤ β ≤ 1 (the larger β is, the longer the memory). Under the
crucial assumption that

(4) µ(f) :=

∫
E
f(s)µ(ds) 6= 0

(with the integral assumed to be well defined, and, in the Markov chain example,E
being the path space of the chain), it turns out that the normalizing sequence (cn)
is regularly varying with exponentH = β+(1−β)/α, and the limiting process Y
is, up to a multiplicative factor of µ(f), the β-Mittag-Leffler fractional symmetric
α-stable (SαS) motion defined by

(5) Yα,β(t) =

∫
Ω′×[0,∞)

Mβ

(
(t− s)+, ω

′)dZα,β(ω′, s), t ≥ 0,

where Zα,β is a SαS random measure on Ω′×[0,∞) with control measure P′×νβ .
Here νβ is a measure on [0,∞) given by νβ(dx) = (1 − β)x−β dx, x > 0, and
Mβ is a Mittag-Leffler process defined on a probability space (Ω′,F ′,P′) (all the
notions will be defined momentarily). The random measure Zα,β and the process
Yα,β , are defined on some probability space (Ω,F ,P).

The β-Mittag-Leffler fractional SαS motion is a self-similar process with Hurst
exponent H as above. Note that

H ∈


(1, 1/α] if 0 < α < 1,
{1} if α = 1,
(1/α, 1) if 1 < α < 2,

which is the top part of the feasible region

H ∈


(0, 1/α] if 0 < α < 1,
(0, 1] if α = 1,
(0, 1) if 1 < α < 2

for the Hurst exponent of a self-similar SαS process with stationary increments; see
[38]. This is usually associated with positive dependence both in the increments
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of the process Y itself and the original process X in the functional central limit
theorem (2); the best-known example is that of the Fractional Brownian motion,
the Gaussian self-similar process with stationary increments. For the latter process
the range of H is the interval (0, 1), and positive dependence corresponds to the
range H ∈ (1/2, 1).

In the Gaussian case of the Fractional Brownian motion, negative dependence
(0 < H < 1/2) is often related to “cancellations” between the observations; the
statement

∞∑
n=−∞

Cov(X0, Xn) = 0

is trivially true if the process X is the increment process of the Fractional Brownian
motion with H < 1/2, and the same is true in most of the situations in (2), when
the limit process is the Fractional Brownian motion with H < 1/2.

In the infinite variance case considered in [29], “cancellations” appear when the
integral µ(f) in (4) vanishes. It is the purpose of the present paper to take a first step
towards understanding this case, when the long memory due to the map T interacts
with the negative dependence due to the cancellations. In this case the cancellations
are between the values of the function f evaluated at shifted trajectories of the
Markov chain. We use the cautious formulation above because with the integral
µ(f) vanishing, the second order behaviour of f becomes crucial, and in this paper
we only consider a Gaussian type of second order behaviour. Furthermore, even
in this case our assumptions on the space E and map T in (3) are more restrictive
than those in [29]. Nonetheless, we still obtain an entirely new class of functional
limit theorems and limiting fractional SαS motions.

This paper is organized as follows. In Section 2 we provide the necessary back-
ground on infinitely divisible and stable processes and integrals, and related no-
tions, used in this paper. In Section 3 we describe a new class of self-similar SαS
processes with stationary increments, some of which will appear as limits in the
functional central limit theorem proved later. Certain facts on general state space
Markov chains which were studied by [10], [9], and [11] and are needed to treat the
model considered in the paper, are collected in Section 4. New results are estab-
lished as well. The key new result in that section is a functional version of Theorem
1.3 in [11], and it is of independent interest. This result is used in Section 5, which
contains the main result of the paper. Section 6 contains two concrete examples of
the setup for the main result. Finally, Section 7 is an appendix containing bounds
on fractional moments of infinitely divisible random variables needed elsewhere in
the paper.

We will use several common abbreviations throughout the paper: ss for “self-
similar”, sssi for “self-similar, with stationary increments”, and SαS for “symmet-
ric α-stable”.
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2. Background. In this paper we will work with symmetric infinitely divis-
ible processes defined as integrals of deterministic functions with respect to ho-
mogeneous symmetric infinitely divisible random measures, the symmetric stable
processes and measures forming a special case. Let (E, E) be a measurable space.
Let µ be a σ-finite measure on E, it will be assumed to be infinite in most of the
paper, but at the moment it is not important. Let ρ be a one-dimensional symmetric
Lévy measure, i.e. a σ-finite measure on R \ {0} such that∫

R
min(1, x2) ρ(dx) <∞ .

If E0 =
{
A ∈ E : µ(A) <∞}, then a homogeneous symmetric infinitely divisible

random measure M on (E, E) with control measure µ and local Lévy measure ρ is
a stochastic process

(
M(A), A ∈ E0

)
such that

EeiuM(A) = exp

{
−µ(A)

∫
R

(
1− cos(ux)

)
ρ(dx)

}
u ∈ R

for every A ∈ E0. The random measure M is independently scattered and σ-
additive in the usual sense of random measures; see [30]. The random measure
is symmetric α-stable (SαS), 0 < α < 2, if

ρ(dx) = α|x|−(α+1) dx .

If M has a control measure µ and a local Lévy measure ρ, and g : E → R is a
measurable function such that

(6)
∫
E

∫
R

min
(
1, x2g(s)2

)
ρ(dx)µ(ds) <∞ ,

then the integral
∫
E g dM is well defined and is a symmetric infinitely divisible

random variable. In the α-stable case the integral is a SαS random variable and the
integrability condition (6) reduces to the Lα condition

(7)
∫
E
|g(s)|α µ(ds) <∞ .

We remark that in the α-stable case it is common to use the α-stable version of the
control measure; it is just a scaled version Cα µ of the control measure µ, with Cα
being the α-stable tail constant given by

Cα =

(∫ ∞
0

x−α sinx dx

)−1

=

{
(1− α)/

(
Γ(2− α) cos(πα/2)

)
if α 6= 1,

2/π if α = 1 .
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See [30] for this and the subsequent properties of infinitely divisible processes and
integrals.

We will consider symmetric infinitely divisible stochastic processes (without a
Gaussian component) X given in the form

X(t) =

∫
E
g(t, s)M(ds) , t ∈ T ,

where T is a parameter space, and g(t, ·) is, for each t ∈ T , a measurable function
satisfying (6). The (function level) Lévy measure of the process X is given by

(8) κX = (ρ× µ) ◦K−1 ,

with K : R× E → RT given by K(x, s) = x
(
g(t, s), t ∈ T

)
, s ∈ E, x ∈ R.

An important special case for us is that of T = N and

(9) g(n, s) = f ◦ Tn(s), n = 1, 2, . . . ,

where f : E → R is a measurable function satisfying (6), and T : E → E
a measurable map, preserving the control measure µ. In this case we obtain the
process exhibited in (3). It is elementary to check that in this case the Lévy measure
κX in (8) is invariant under the left shift θ on RN,

θ(x1, x2, x3, . . .) = (x2, x3, . . .) .

In particular, the process X is, automatically, stationary. There is a close relation
between certain ergodic-theoretical properties of the shift operator θ with respect
to the Lévy measure κX (or of the map T with respect to the control measure µ)
and certain distributional properties of the stationary process X; we will discuss
these below.

Switching gears a bit, we now recall a crucial notion needed for the main result
of this paper as well as for the presentation of the new class of fractional SαS
noises in the next section. For 0 < β < 1, let (Sβ(t)) be a β-stable subordinator,
a Lévy process with increasing sample paths, satisfying Ee−θSβ(t) = exp{−tθβ}
for θ ≥ 0 and t ≥ 0. The Mittag-Leffler process is its inverse process given by

(10) Mβ(t) := S←β (t) = inf
{
u ≥ 0 : Sβ(u) ≥ t

}
, t ≥ 0 .

It is a continuous process with nondecreasing sample paths. Its marginal distribu-
tions are the Mittag-Leffler distributions, whose Laplace transform is finite for all
real values of the argument and is given by

(11) E exp{θMβ(t)} =
∞∑
n=0

(θtβ)n

Γ(1 + nβ)
, θ ∈ R;
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see Proposition 1(a) in [8]. Using (11), the definition of the Mittag-Leffler process
can be naturally extended to the boundary cases β = 0 and β = 1. We do this
by setting M0(0) = 0 and M0(t) = Est, t > 0, with Est a standard exponential
random variable, and M1(t) = t, t ≥ 0.

The Mittag-Leffler process is self-similar with exponent β. It has neither sta-
tionary nor independent increments (apart from the degenerate case β = 1).

3. A new class of self-similar SαS processes with stationary increments.
In this section we introduce a new class of self-similar SαS processes with sta-
tionary increments. A subclass of these processes will appear as a weak limit in
the functional central limit theorem in Section 5, but the entire class has intrinsic
interest. Furthermore, we anticipate that other members of the class will appear in
other limit theorems. The processes in this class are defined, up to a scale factor,
by 3 parameters, α, β and γ:

0 < α < γ ≤ 2, 0 ≤ β ≤ 1 .

We proceed with a setup similar to the one in (5). Define a σ-finite measure on
[0,∞) by

νβ(dx) =

{
(1− β)x−β dx, 0 ≤ β < 1,
δ0(dx), β = 1

(δ0 being the point mass at zero). Let (Ω′,F ′,P′) be a probability space, and let
(Sγ(t, ω′)) be a SγS Lévy motion and (Mβ(t, ω′)) be an independent β-Mittag-
Leffler process, both defined on (Ω′,F ′,P′). We define

(12) Yα,β,γ(t) :=

∫
Ω′×[0,∞)

Sγ(Mβ((t− x)+, ω
′), ω′) dZα,β(ω′, x), t ≥ 0 ,

where Zα,β is a SαS random measure on Ω′×[0,∞) with control measure P′×νβ;
we use the α-stable version of the control measure (see the remark following (7)).

REMARK 3.1. The boundary cases β = 0 and β = 1 are somewhat special. In
the case β = 0 we interpret the process in (12) as

Yα,0,γ(t) =

∫
Ω′×[0,∞)

Sγ(Est(ω
′), ω′)1(x < t) dZα,0(ω′, x), t ≥ 0 ,

where Est is a standard exponential random variable defined on (Ω′,F ′,P′), inde-
pendent of (Sγ(t, ω′)), while Zα,0 is a SαS random measure on Ω′ × [0,∞) with
control measure P′ × Leb. It is elementary to see that this process is a SαS Lévy
motion itself, and the dependence on γ is only through a multiplicative constant,
equal to (

E′|Sγ(1)|αE′(Eα/γst )
)1/α

.
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In the second boundary case β = 1 the variable x in the integral becomes re-
dundant, and we interpret the process in (12) as

Yα,1,γ(t) =

∫
Ω′
Sγ(t, ω′) dZα,1(ω′), t ≥ 0 ,

where Zα,1 is a SαS random measure on Ω′ with control measure P′. This process
is, distributionally, sub-stable, with an alternative representation

Yα,1,γ(t) = W 1/γSγ(t), t ≥ 0 ,

withW a positive strictly α/γ-stable random variable independent of the SγS Lévy
motion (Sγ), both of which are now defined on (Ω,F ,P); see Section 3.8 in [38].

PROPOSITION 3.2. (Yα,β,γ(t)) is a well defined H-sssi SαS process with

(13) H =
β

γ
+

1− β
α

.

PROOF. The boundary cases β = 0 and β = 1 are discussed in Remark 3.1, so
we will consider now the case 0 < β < 1.

The argument is similar to that of Theorem 3.1 in [29]. To see that (Yα,β,γ(t)) is
well defined, notice that for t > 0, by self-similarity of (Sγ),

E′
∫ ∞

0
|Sγ(Mβ((t− x)+))|α(1− β)x−βdx

= E′|Sγ(1)|αE′
∫ ∞

0
Mβ((t− x)+)α/γ(1− β)x−βdx

≤ E′|Sγ(1)|αE′Mβ(t)α/γt1−β <∞ ;

the finiteness of E′|Sγ(1)|α follows since α < γ. Next, let c > 0, t1, . . . , tk > 0,
and θ1, . . . , θk ∈ R. We have

E′ exp

i
k∑
j=1

θjYα,β,γ(ctj)


= exp

−
∫ ∞

0
E′

∣∣∣∣∣∣
k∑
j=1

θjSγ(Mβ((ctj − x)+))

∣∣∣∣∣∣
α

(1− β)x−βdx


= exp

−c1−β
∫ ∞

0
E′

∣∣∣∣∣∣
k∑
j=1

θjSγ(Mβ(c(tj − y)+)

∣∣∣∣∣∣
α

(1− β)y−βdy

 ,
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where we substituted x = cy in the last step. Because of the self-similarity of (Mβ)
and (Sγ), the above equals

exp

−c1−β
∫ ∞

0
E′

∣∣∣∣∣∣
k∑
j=1

θjc
β/γSγ(Mβ((tj − y)+))

∣∣∣∣∣∣
α

(1− β)y−βdy


= exp

−cαH
∫ ∞

0
E′

∣∣∣∣∣∣
k∑
j=1

θjSγ(Mβ((tj − y)+))

∣∣∣∣∣∣
α

(1− β)y−βdy


= exp

i
k∑
j=1

θjc
HYα,β,γ(tj)

 .

This shows that Yα,β,γ is H-ss with H given by (13).
Finally, we check stationarity of the increments of Yα,β,γ . We must check that

for any s > 0, t1, . . . , tk > 0, and θ1, . . . , θk ∈ R,

∫ ∞
0

E′

∣∣∣∣∣∣
k∑
j=1

θj
[
Sγ(Mβ((tj + s− x)+))− Sγ(Mβ((s− x)+))

]∣∣∣∣∣∣
α

x−βdx

=

∫ ∞
0

E′

∣∣∣∣∣∣
k∑
j=1

θjSγ(Mβ((tj − x)+))

∣∣∣∣∣∣
α

x−βdx.

Split the integral in the left-hand side according to the sign of s − x and use the
substitutions r = s− x and −r = s− x to get

∫ s

0
E′

∣∣∣∣∣∣
k∑
j=1

θj
[
Sγ(Mβ(tj + r))− Sγ(Mβ(r))

]∣∣∣∣∣∣
α

(s− r)−βdr

+

∫ ∞
0

E′

∣∣∣∣∣∣
k∑
j=1

θjSγ(Mβ((tj − r)+))

∣∣∣∣∣∣
α

(s+ r)−βdr.

Rearranging terms, we are left to check

∫ s

0
E′

∣∣∣∣∣∣
k∑
j=1

θj
[
Sγ(Mβ(tj + r))− Sγ(Mβ(r))

]∣∣∣∣∣∣
α

(s− r)−βdr(14)

=

∫ ∞
0

E′

∣∣∣∣∣∣
k∑
j=1

θjSγ(Mβ((tj − x)+))

∣∣∣∣∣∣
α (

x−β − (s+ x)−β
)
dx.
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However, by the stationarity of the increments of (Sγ), the left-hand side of (14)
reduces to ∫ s

0
E′

∣∣∣∣∣∣
k∑
j=1

θjSγ
(
Mβ(tj + r)−Mβ(r)

)∣∣∣∣∣∣
α

(s− r)−βdr.

Let δr = Sβ (Mβ(r)) − r be the overshoot of the level r > 0 by the β-stable
subordinator (Sβ(t)) related to (Mβ(t)) by (10). The law of δr is given by

P (δr ∈ dx) =
sinβπ

π
rβ(r + x)−1x−β dx, x > 0 ;

see Exercise 5.6 in [21]. Further, by the strong Markov property of the stable sub-
ordinator we have

(Mβ(t+ r)−Mβ(r), t ≥ 0)
d
= (Mβ((t− δr)+), t ≥ 0) ,

with the understanding that Mβ and δr in the right-hand side are independent. We
conclude that

(15)
∫ s

0
E′

∣∣∣∣∣∣
k∑
j=1

θjSγ
(
Mβ(tj + r)−Mβ(r)

)∣∣∣∣∣∣
α

(s− r)−βdr

=
sinβπ

π

∫ ∞
0

∫ s

0
E′

∣∣∣∣∣∣
k∑
j=1

θjSγ
(
Mβ((tj − x)+)

)∣∣∣∣∣∣
α

rβ(r+x)−1x−β(s−r)−βdrdx.

Using the integration formula∫ 1

0

(
t

1− t

)β 1

t+ y
dt =

π

sinβπ

[
1−

(
y

1 + y

)β]
, y > 0 ,

given on p. 338 in [16], shows that (15) is equivalent to (14).

REMARK 3.3. The increment process

V (α,β,γ)
n = Yα,β,γ(n+ 1)− Yα,β,γ(n), n = 0, 1, 2, . . . ,

is a stationary SαS process. The argument in Theorem 3.5 in [29] can be used to
check that, in the case 0 < β < 1, this process corresponds to a conservative null
operator T in the sense of (9). Furthermore, this process is mixing. See [35] and
[37] for details. On the other hand, in the case β = 0, the increment process is an
i.i.d. sequence and, hence, corresponds to a dissipative operator T ; recall Remark
3.1. Furthermore, in the case β = 1, the increment process is sub-stable, hence
corresponds to a positive operator T . In particular, it is not even an ergodic process.
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4. Some Markov chain theory. The class of stationary infinitely divisible
processes for which we will prove a functional central limit theorem, is based on a
dynamical system related to Example 5.5 in [29]. In the present paper we allow the
Markov chains involved in the construction to take values in a space more general
than Z.

We follow the setup of [11] and prove additional auxiliary results we will need
in the sequel. Let (Zn) be an irreducible Harris recurrent Markov chain (or sim-
ply Harris chain in the sequel) on state space (X,X ) with transition probability
P (x,A) and invariant measure π(A). Our general reference for such processes is
[24]. As usually, we assume that the σ-field X is countably generated. We denote
by Pν the probability law of (Zn) with initial distribution ν, and by Eν the expec-
tation with respect to Pν .

The collections of sets of finite, and of finite and positive π-measure are denoted
by

X+ := {A ∈ X such that π(A) > 0}, X+
0 := {A ∈ X such that 0 < π(A) <∞} .

Since the Markov chain is Harris, for any set A ∈ X+ and any initial distribution
ν, on an event of full probability with respect to Pν , the sequence of return times
to A defined by τA(0) = 0 and

(16) τA(k) = inf{n > τA(k − 1) : Zn ∈ A} for k ≥ 1,

is a well defined finite sequence. An alternative name for τA(1) is simply τA.
For a set A ∈ X+

0 we denote by

(17) an(ν,A) = π(A)−1
n∑
k=1

∫
X
P k(x,A)ν(dx) , n ≥ 1

the mean number of visits to the set starting from initial distribution ν, up to time
n, relative to its π-measure. When needed, we extend the domain of an to [1,∞)
by rounding the argument down to the nearest integer.

An atom a of the Markov chain is a subset of X such that P (x, ·) = P (y, ·) for
all x, y ∈ a. For an atom the notation Pa and Ea makes an obvious sense. A finite
union of atoms is a set of the form

(18) D =

q⋃
i=1

ai , q <∞ ,

where aj ∈ X+
0 , j = 1, . . . , q are atoms. Any such set is a special set, otherwise

known as a D-set, see Definition 5.4 in [27] and [28], p. 29. The importance of this
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fact is that for any two special sets (and, hence, for any two finite unions of atoms)
D1 and D2,

(19) lim
n→∞

an(ν1, D1)

an(ν2, D2)
= 1

for any two initial distributions ν1 and ν2; see Theorem 2 in Chapter 2 of [28]
or Theorem 7.3 in [27] (without the assumption of “speciality” there might be π-
small exceptional sets of initial states). This fact allows us to use the notation at :=
at(ν,D) for any arbitrary fixed special set D and initial distribution ν when only
the limiting behaviour as t → ∞ of this function is important. For concreteness,
we fix a special set D and use ν(dx) = π(D)−11D(x)π(dx).

A Harris chain is said to be β-regular, 0 ≤ β ≤ 1, if the function (at) is regularly
varying at infinity with exponent β, i.e.

lim
t→∞

act/at = cβ for any c > 0.

Let f : X→ R be a measurable function. For a set A ∈ X+
0 the sequence

ξk(A) =

τA(k)∑
j=τA(k−1)+1

f(Zj), k = 1, 2, . . .

is a well defined sequence of random variables under any law Pν . It is a sequence
of i.i.d. random variables under Pν if A is an atom and ν is concentrated on A.

The following two conditions on a function f will be imposed throughout the
paper.

(20) f ∈ L1(π) ∩ L2(π) and
∫
X
f(x)π(dx) = 0 ,

(21)
∞∑
k=1

f(·)P kf(·) converges in L1(X,X , π).

It follows that

(22) σ2
f :=

∫
X
f2(x)π(dx) + 2

∞∑
k=1

∫
X
f(x)P kf(x)π(dx) <∞ .

We refer the reader to [10] and [11] for a discussion and examples of functions f
satisfying conditions (20) and (21). An important implication of the above assump-
tions is the following result, proven in Lemma 2.3 of [10]: if a ∈ X+

0 is an atom
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such that infx∈a |f(x)| > 0 (i.e. an f -atom), then

(23) Ea

(
ξ1(a)

)2
=

1

π(a)
σ2
f .

We prove next a functional version of Theorem 1.3 in [11]. In infinite ergodic
theory related results are known as Darling-Kac theorems; see [1], [39], and [29].
The result below can be viewed as a mean-zero functional Darling-Kac theorem
for Harris chains.

THEOREM 4.1. Suppose that (Zn) is a β-regular Harris recurrent chain with
0 < β ≤ 1, and suppose f satisfies conditions (20) and (21). Set for nt ∈ N

Snt(f) =

nt∑
k=1

f(Zk),

and for all other t > 0 define Snt(f) by linear interpolation. Then for any initial
distribution ν, under Pν ,

(24)
(

1
√
an
Snt(f), t ≥ 0

)
n→∞
=⇒

(
(Γ(β + 1))1/2σfB(Mβ(t)), t ≥ 0

)
,

weakly in C[0,∞), where B is a standard Brownian motion, which is independent
of the Mittag-Leffler process Mβ . If β = 0, then the same convergence holds in
finite dimensional distributions.

As in [11], the proof of Theorem 4.1 proceeds in three steps: regeneration, the
split chain method of [26], and finally the use of a geometrically sampled approxi-
mation, also known as a resolvent approximation (see Chapter 5 in [24]).

In the first step we derive a functional version of a part of Lemma 2.3 in [11],
assuming existence of an atom a ∈ X+

0 . For a related result see Theorem 5.1 in
[20].

We define the discrete local time at a by

`a(n) := max{k ≥ 0 : τa(k) ≤ n}

Then the sequence

(25)
((
ξk(a), τa(k)− τa(k − 1)

)
, k = 1, 2, . . .

)
is i.i.d under Pa.

LEMMA 4.2. The convergence (24) holds under the assumptions of Theorem
4.1, with the additional assumption that (Zn) has an f -atom a.
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PROOF. Unless stated otherwise, all the distributional statements below are un-
derstood to be under Pν , for an arbitrary fixed initial distribution ν. Let

φ(n) =
n∑
k=1

P k(a, a), n = 1, 2, . . . ,

and note that by (19),

(26) lim
n→∞

φ(n)/an = π(a) .

Let φ−1 denote an asymptotic inverse of φ. By Lemma 3.4 in [9], as n → ∞,
the stochastic process

Tn(t) := τa(bntc)/φ−1(n), t ≥ 0

converges weakly in the J1-topology on D[0,∞) to a β-stable subordinator with
the Laplace transform exp{−tθβ/Γ(β+1)} for 0 < β < 1, and to a line with slope
one when β = 1 (we will deal with β = 0 in a moment). Setting

(27) Wn(t) = n−1/2
nt∑
k=1

ξk(a), t ≥ 0

(defined for fractional values of nt by linear interpolation), the laws of
{(

(Wn(t), t ≥
0), (Tn(t), t ≥ 0)

)}
n∈N are tight in C[0,∞) × D[0,∞) since the marginal laws

converge weakly in the corresponding spaces as n → ∞. By (25) every subse-
quential limit is a bivariate Lévy process, with one marginal process a Brownian
motion, and the other marginal process a subordinator. By the Lévy-Itô decom-
position, the Brownian and subordinator components must be independent, so all
subsequential limits coincide, and the entire bivariate sequence converges weakly
in C[0,∞)×D[0,∞) to a bivariate Lévy process with independent marginals.

If 0 < β < 1, weak convergence of (Tn(t)) is easily seen to imply, by inversion,
finite dimensional convergence, as n → ∞, of the sequence (`a(nt)/φ(n)) (de-
fined for fractional nt by linear interpolation) to Γ(β + 1)Mβ . Since the paths are
increasing, and the limit is continuous, this guarantees convergence in D[0,∞);
see [8] and [40]. Similarly, we obtain weak convergence to a line with slope one
for β = 1.

In the case β = 0, by Theorem 2.3 of [9] and (26), we see that the sequence
of processes (`a(nt)/φ(n)) converges in finite-dimensional distributions to a limit,
equal to zero at t = 0 and consisting of the same standard exponential random
variable repeated for all t > 0. Moreover, by Lemma 2.3 in [11], the exponential
random variable is independent of the limiting Brownian motion in (27), when
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we perform a subsequential limit scheme for the bivariate process
{(

(Wn(t), t ≥
0), (`a(nt)/φ(n))

)}
n∈N, similarly to the above. This time the convergence is in

finite-dimensional distributions.
Suppose now that 0 < β ≤ 1. If D+[0,∞) denotes the subset of D[0,∞)

consisting of nonnegative functions, then the composition map (x, y) −→ x ◦
y from C[0,∞) × D+[0,∞) to D[0,∞) is continuous at a point (x, y) if y is
continuous. It follows, therefore, by the continuous mapping theorem that
(28) 1√

φ(n)

`a(bntc)∑
k=1

ξk(a), t ≥ 0

 n→∞
=⇒

((
Γ(β + 1)Eaξ1(a)2

)1/2
B(Mβ(t)), t ≥ 0

)
inD[0,∞), with (Mβ(t)) independent of (B(t)) in the right hand side. By (26) we
obtain 1
√
an

`a(bntc)∑
k=1

ξk(a), t ≥ 0

 n→∞
=⇒

(
(π(a)Γ(β + 1)Eaξ1(a)2)1/2B(Mβ(t)), t ≥ 0

)
.

Recalling (23), we have shown that

(29)

 1
√
an

`a(bntc)∑
k=1

ξk(a), t ≥ 0

 n→∞
=⇒

(
(Γ(β + 1))1/2σfB(Mβ(t)), t ≥ 0

)
in D[0,∞).

We now proceed to relate (29) to the statement of the lemma. First of all, Corol-
lary 3 in [41] allows us to simplify the situation and assume that the chain starts at
the f -atom a. We can write

(30)

(
1
√
an

nt∑
k=1

f(Zk), t ≥ 0

)
=

 1
√
an

`a(bntc)∑
k=1

ξk(a)

+
1− nt+ bntc
√
an

bntc∑
k=

τa(`a(bntc))+1

f(Zk) +
nt− bntc
√
an

bntc+1∑
k=

τa(`a(bntc))+1

f(Zk), t ≥ 0

 .

Since the convergence in (29) occurs in the J1 topology on D[0,∞) and the limit
is continuous (recall that we are considering the case 0 < β ≤ 1), in order to prove
convergence of the processes in (30) in C[0,∞), we need only show that the second
and the third terms in the right hand side of (30) are negligible in C[0,∞). We
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treat in details the second term; the third term can be treated similarly. Restricting
ourselves to C[0, 1], we will prove that

1
√
an

sup
0≤t≤1

∣∣∣∣∣∣∣∣
bntc∑
k=

τa(`a(bntc))+1

f(Zk)

∣∣∣∣∣∣∣∣
n→∞−→ 0

in probability. To this end we rewrite this expression as

1
√
an

max
m=0,...,n

∣∣∣∣∣∣∣∣
m∑
k=

τa(`a(m))+1

f(Zk)

∣∣∣∣∣∣∣∣
≤ 1
√
an

max
j=0,...,`a(n)

max
m=

τa(j)+1,...,τa(j+1)

∣∣∣∣∣∣∣∣
m∑
k=

τa(j)+1

f(Zk)

∣∣∣∣∣∣∣∣ .
Letting Wj denote the inner maximum, we must show that for any ε > 0, choosing
n large enough implies

Pa

(
max

j=0,...,`a(n)
Wj > ε

√
an

)
< ε.

Since the sequence
(
`a(n)/an

)
converges weakly, it is tight, and there exists Mε

such that for all n, Pa (`a(n) > Mεan) < ε/2. Thus we need only check that for n
large enough

Pa

(
max

0≤j≤Mεan
Wj > ε

√
an

)
= 1−Pa

(
max

0≤j≤Mεan
Wj ≤ ε

√
an

)(31)

= 1−
(
1−Pa

(
W 2

1 > ε2an
))bMεanc+1

< ε/2.

To see this we use Lemma 2.1 in [11] which states that under our assumptions we
have EaW

2
1 <∞. Thus,

Pa

(
W 2

1 > ε2an
)

= o
(
a−1
n

)
as n→∞ ,

which verifies (31). This proves the lemma in the case 0 < β ≤ 1.
If β = 0, then the same argument starting with (28) works. The argument is

easier in this case since we only need to prove convergence in finite-dimensional
distributions. We omit the details.
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We are now ready to prove Theorem 4.1 in general.

PROOF OF THEOREM 4.1. As before, the distributional statements below are
understood to be under Pν , for an arbitrary fixed initial distribution ν. The split
chain method of [26] allows us to extend the result from the situation in Lemma
4.2, where we assumed the existence of an f -atom, to the case where we only
assume that there exists a C ∈ X+

0 such that

(32) inf
x∈C
|f(x)| > 0 and P (x,A) ≥ b1C(x)πC(A) x ∈ X, A ∈ X

for some 0 < b ≤ 1 where πC(·) := π(C)−1π(C ∩ ·).
A very brief outline of the split chain method is as follows (see [26] or Chapter

5 in [24] for more details). One can enlarge the probability space in order to obtain
an extra sequence of Bernoulli random variables (Yn). The (Yn) are chosen so that
the split chain (Zn, Yn) is a Harris chain on X × {0, 1} and such that C × {1} is
an f -atom (where f is extended to X × {0, 1} in the natural way). Moreover, this
can be done so that conditions (20) and (21) continue to hold for the split chain,
and also (22) holds for P̃ and π̃ (the transition kernel and invariant measure for the
split chain.) Then an application of Lemma 4.2 to the split chain proves the claim
of the theorem under the assumption (32).

The final step is to get rid of assumption (32), so we no longer assume that (32)
holds to start with. We follow the usual procedure which, for (a small) p > 0 uses
the renewal process

N(t) := max{n ≥ 1 : Γn ≤ t}, t ≥ 0 ,

with i.i.d. renewal intervals (Γn+1 − Γn), which have the geometric distribution

(33) P(Γ1 = k) := (1− p)pk−1, k = 1, 2, . . . .

The idea is to approximate the original chain (Zn) by its resolvent chain (ZΓk),
where (Γk) are as in (33), and independent of (Zn). We then let p→ 0.

The resolvent chain is just (Zn) observed at the negative binomial renewal times
(Γk) (this chain is also called a geometrically sampled chain). Its transition kernel
is

Pp(x,A) := (1− p)
∞∑
k=1

pk−1P k(x,A),

and, clearly, π is still an invariant measure. For the resolvent chain, the assumptions
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(20) and (21) allow one to define, similarly to (22),

σ2
p,f :=

∫
X
f2(x)π(dx) + 2

∞∑
k=1

∫
X
f(x)P kp f(x)π(dx)

=

∫
X
f2(x)π(dx) + 2(1− p)

∞∑
k=1

∫
X
f(x)P kf(x)π(dx).

Furthermore, the resolvent chain is β-regular if the original chain is, and the se-
quence (a

(p)
n corresponding to the resolvent chain (see the discussion following

(19)) satisfies
a(p)
n ∼ (1− p)1−βan, n→∞ ;

see (4.26) in [11]. The latter paper also shows that the resolvent chain (ZΓk) satis-
fies (32) (see also Theorem 5.2.1 in [24]).

Suppose that 0 < β ≤ 1. Since we have already proved the theorem under the
assumption (32), we can use Theorem 2.15(c) in [18], and the “converging together
lemma” in Proposition 3.1 of [32] to obtain[(

1
√
an

nt∑
k=1

f(ZΓk), t ≥ 0

)
,

(
1

n
N(nt), t ≥ 0

)]
n→∞
=⇒

[(√
(1− p)1−β Γ(β + 1)σp,fB(Mβ(t)), t ≥ 0

)
,
(
(1− p)t, t ≥ 0

)]
in C[0,∞)×D[0,∞). As before, it is legitimate to apply the continuous mapping
theorem, to obtain 1

√
an

N(nt)∑
k=1

f(ZΓk), t ≥ 0

(34)

n→∞
=⇒

(√
(1− p)1−β Γ(β + 1)σp,fB (Mβ((1− p)t)) , t ≥ 0

)
inD[0,∞). Repeating the same argument with the continuous version of the count-
ing process (N(t)), given by

Nc(t) = N(t) +
t− Γn

Γn+1 − Γn
for Γn ≤ t ≤ Γn+1, n = 0, 1, . . .,
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leads to 1
√
an

Nc(nt)∑
k=1

f(ZΓk), t ≥ 0

(35)

n→∞
=⇒

(√
(1− p)1−β Γ(β + 1)σp,fB (Mβ((1− p)t)) , t ≥ 0

)
,

this time in C[0,∞). We now show that the convergence statement in (35) is suf-
ficiently close to the required convergence statement in (24), and for this purpose
the D[0,∞) version in (34) will be useful.

We will restrict ourselves to the interval [0, 1]. Since√
1− p σp,f −→ σf as p→ 0 ,

the second converging together theorem (see Theorem 3.5 in [32]), says that (24)
will follow once we check that for any ε > 0,

(36) lim
p→0

lim sup
n→∞

Pν

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
Nc(nt)∑
k=1

f(ZΓk)−
nt∑
k=1

f(Zk)

∣∣∣∣∣∣ > ε

 = 0 .

To this end we bound the probability in the left hand side of (36) by a sum of 3
probabilities:

Pν

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
Nc(nt)∑
k=1

f(ZΓk)−
N(nt)∑
k=1

f(ZΓk)

∣∣∣∣∣∣ > ε

3

(37)

+ Pν

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
N(nt)∑
k=1

f(ZΓk)−
bntc∑
k=1

f(Zk)

∣∣∣∣∣∣ > ε

3


+ Pν

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
bntc∑
k=1

f(Zk)−
nt∑
k=1

f(Zk)

∣∣∣∣∣∣ > ε

3

 .

Keep for a moment 0 < p < 1/2 fixed. Note that

lim sup
n→∞

Pν

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
Nc(nt)∑
k=1

f(ZΓk)−
N(nt)∑
k=1

f(ZΓk)

∣∣∣∣∣∣ > ε

3


≤ lim sup

n→∞
Pν

(
1
√
an

max
k≤2n

|f(Zk)| >
ε

3

)
= 0
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because, eventually, Nc(n) ≤ 2n and the convergence in (34) is to a continuous
limit. A similar argument shows that for a fixed 0 < p < 1/2,

lim sup
n→∞

Pν

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
bntc∑
k=1

f(Zk)−
nt∑
k=1

f(Zk)

∣∣∣∣∣∣ > ε

3

 = 0 .

It remains to handle the middle probability in (37). Let δk = 1 at the renewal times
and 0 otherwise. By the self-similarity of the Brownian motion and the Mittag-
Leffler process, the convergence statement in (34) can be rewritten as 1
√
an

bntc∑
k=1

δkf(Zk), t ≥ 0

 n→∞
=⇒

(√
(1− p) Γ(β + 1)σp,fB(Mβ(t)), t ≥ 0

)
.

Replacing p by 1− p and, hence, each δk by 1− δk, gives us also 1
√
an

bntc∑
k=1

(1− δk)f(Zk), t ≥ 0

 n→∞
=⇒

(√
pΓ(β + 1)σ1−p,fB(Mβ(t)), t ≥ 0

)
.

Both of these weak convergence statements take place in the J1 topology onD[0,∞).
Therefore,

P

 sup
0≤t≤1

1
√
an

∣∣∣∣∣∣
N(nt)∑
k=1

f(ZΓk)−
bntc∑
k=1

δkf(Zk)

∣∣∣∣∣∣ > ε

3


n→∞−→ P

(
sup

0≤t≤1

√
pΓ(β + 1)σ1−p,f |B(Mβ(t))| > ε

3

)
,

which goes to 0 as p → 0. This completes the proof in the case 0 < β ≤ 1.
Once again, the case β = 0 is similar but easier, since we are only claiming finite-
dimensional weak convergence.

REMARK 4.3. If in Theorem 4.1 the function f is supported by a finite union
of atoms D, then we also have

(38) sup
n≥1

Eν sup
0≤t≤L

(
1
√
an

Snt(f)

)2

<∞

for the initial distribution ν(dx) = π(D)−11D(x)π(dx) and any 0 < L < ∞.
To see this, it is enough to consider the case where the initial distribution ν is
given, instead, by ν(dx) = π(a)−11a(x)π(dx), where a is a single atom of positive
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measure, forming a part of D. We use the notation in Lemma 4.2. It is elementary
to check that for each n ≥ 1,

ˆ̀
a(n) := min{k ≥ 0 : τa(k) > n} = `a(n) + 1

is a stopping time with respect to the discrete time filtration

Fk = σ
(
ξj(a), τa(j), j = 1, . . . , k

)
, k = 1, 2, . . . ,

while the process
k∑
j=1

ξj(a), k = 1, 2, . . .

is a martingale with respect to the same filtration. Increasing L, if necessary, to
make it an integer, we see that

Ea sup
0≤t≤L

(
1
√
an

Snt(f)

)2

≤ 2

an
Ea max

m=1,...,ˆ̀a(bnLc)

 m∑
j=1

ξj(a)

2

.

By Doob’s inequality and the optional stopping theorem, this can be further bounded
by

8

an
Ea

ˆ̀
a(bnLc)∑
j=1

ξj(a)

2

= 8Ea(ξ1(a))2 Ea
ˆ̀
a(bnLc)
an

.

Since

Ea(ξ1(a))2 <∞ and sup
n≥1

Ea
ˆ̀
a(n)

an
<∞

by the assumption and the discussion at the beginning of the proof of Lemma 4.2,
the claim (38) follows.

We will also need a version of Theorem 4.1, in which the initial distribution is
not fixed but, rather, diffuses, with n, over the set {τD ≤ n}. We will only consider
the case of a finite union of atoms D =

⋃q
i=1 ai ∈ X

+
0 .

We first reformulate our Markovian setup in the language of standard infinite
ergodic theory. Let E = XN be the path space corresponding to the Markov chain.
We equip E with the usual cylindrical σ-field E = XN. Let T be the left shift
operator on the path space E, i.e. T (x) = (x2, x3, . . .) for x = (x1, x2, . . .) ∈ E.
Note that T preserves the measure µ on E defined by

(39) µ(A) :=

∫
X
Px(A)π(dx), for events A ∈ E
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(as usually, the notation Px refers to the initial distribution ν = δx, x ∈ X.) Notice
that the measure µ is infinite if the invariant measure π is. This is, of course, always
the case if 0 ≤ β < 1. In the sequel we will usually assume that π is infinite even
when β = 1.

We will need certain ergodic-theoretical properties of the quadruple (E, E , µ, T ).
As shown in [3], T is conservative and ergodic; this implies that

∞∑
n=1

1A ◦ Tn =∞ µ-a.e. on E

for every A ∈ E with µ(A) > 0. For a finite union of atoms D ∈ X+
0 as in (18), let

(40) D̃ := {x ∈ E : x1 ∈ D}

be the set of paths which start in D. The first return time to D as defined in (16)
can then be viewed as a function on the product space E via

τD(x) = inf{n ≥ 0 : Tnx ∈ D̃} = inf{n ≥ 0 : xn ∈ D} , x = (x1, x2, . . . ) ∈ E .

The wandering rate sequence (corresponding to the set D̃) is the sequence µ(τD ≤
n), n = 1, 2, . . .. Since T is measure-preserving, this is a finite sequence. Since the
Markov chain is β-regular, this sequence turns out to be regularly varying as well,
as we show below. For the ergodic-theoretical notions used in the proof see [2] and
[42].

LEMMA 4.4. Suppose that (Zn) is a β-regular Harris recurrent chain with
0 ≤ β ≤ 1, with an infinite invariant measure π. Let D be a finite union of atoms.
Then the wandering rate µ(τD ≤ n) is a regularly varying sequence of exponent
1− β. More precisely,

µ(τD ≤ n) ∼ 1

Γ(1 + β)Γ(2− β)

n

an
as n→∞.

PROOF. Let Q be a Markov semigroup on X which is dual to P with respect
to the measure π. That is, for every k = 1, 2, . . . and every bounded measurable
function f : Xk → R,∫

X
π(dx1)

∫
X
P (x1, dx2) . . .

∫
X
P (xk−1, dxk)f(x1, . . . , xk)

=

∫
X
π(dxk)

∫
X
Q(xk, dxk−1) . . .

∫
X
Q(x2, dx1)f(x1, . . . , xk) .
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Since π is an invariant measure for P , it is also invariant for Q. Define a σ-finite
measure on (E, E) analogous to µ in (39), but using Q instead of P , i.e.

µ̂(A) :=

∫
X
Qx(A)π(dx), for events A ∈ E .

We claim that the set D̃ given in (40) is a Darling-Kac set for the shift operator
T on the space (E, E , µ̂). According to the definition of a Darling-Kac set (see
Chapter 3 in [2]), it is enough to show that

(41)
1

an

n∑
k=1

T̂ kQ1D̃(x)→ µ̂(D̃) = π(D) uniformly µ̂-a.e. on D̃,

where T̂Q : L1(µ̂)→ L1(µ̂) is the dual operator defined by

T̂Qg(x) :=
d(µ̂g ◦ T−1)

dµ̂
(x)

with
µ̂g(A) :=

∫
A
g(x) µ̂(dx), A ∈ E

a signed measure on (E, E), absolutely continuous with respect to µ̂. Note that the
dual operator T̂Q satisfies T̂ kQ1D̃(x) = P k(x1, D); see Example 2 in [1]. Since
we may choose an as in (17) with A = D (recall that a finite union of atoms is
a special set), it is elementary to check that (41) holds, and the uniformity of the
convergence stems from the fact that the left side in (41) takes at most q different
values on D̃. Applying Proposition 3.8.7 in [2], we obtain

µ̂(τD ≤ n) ∼ 1

Γ(1 + β)Γ(2− β)

n

an
.

However, by duality,
µ(τD ≤ n) = µ̂(τD ≤ n) .

Since (an) is regularly varying with exponent β, the exponent of regular variation
of the wandering sequence is, obviously, 1− β.

REMARK 4.5. Referring to the proof of Lemma 4.4, it should be noted that
using in (40) a set D ∈ X+

0 different from a finite union of atoms, may still define
a set D̃ that is a Darling-Kac set. For example, suppose that (Zk) is a random walk
on R with standard Gaussian steps; that is,

P (x,B) = P(G ∈ B − x), x ∈ R, B Borel.
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Here G ∼ N(0, 1). In this case the Lebesgue measure π on R is an invariant
measure. It is not hard to see thatD = [0, 1] is a special set that is not a finite union
of atoms. Further, an ∼

√
n/2π as n → ∞. We claim that the set D̃ of paths

starting in [0, 1], is a Darling-Kac set for the conservative measure-preserving shift
operator on E. To see this note that, in this case, there is no difference between the
semigroup P and the dual semigroup Q, and, hence,

1√
n

n∑
k=1

T̂ k1D̃ =
1√
n

n∑
k=1

P k1[0,1] →
1√
2π

uniformly on [0, 1].

We can view the sums Sn(f) as being defined on the path space E by setting
h(x) := f(x1), x = (x1, x2, . . . ) ∈ E, and then writing

Ŝn(f)(x) =
n∑
k=1

h ◦ T k(x) =
n∑
k=1

f(xk) .

This defines the notation used in Theorem 4.6 below. Define a sequence of proba-
bility measures (µn) on E by

µn(A) :=
µ(A ∩ {τD ≤ n})

µ(τD ≤ n)
, A ∈ E .

THEOREM 4.6. Suppose that, in addition to the hypotheses of Theorem 4.1, f
is supported by a finite union of atoms D =

⋃q
i=1 ai ∈ X

+
0 . Then for every L > 0,

under the measures µnL,(
1
√
an
Ŝnt(f), 0 ≤ t ≤ L

)
n→∞
=⇒

(
(Γ(β + 1))1/2σfB(Mβ(t− TL∞)), 0 ≤ t ≤ L

)
,

where TL∞ is independent of the process B(Mβ(t)) and P(TL∞ ≤ x) = (x/L)1−β

for x ∈ [0, L] (in particular, TL∞ = 0 a.s. if β = 1). The convergence is weak
convergence in C[0, L] for 0 < β ≤ 1 and convergence in finite-dimensional dis-
tributions if β = 0. Furthermore, for all 0 ≤ β ≤ 1,

(42) sup
n≥1

∫
E

(
Ŝn(f)
√
an

)2

dµn <∞ .

REMARK 4.7. By the similar argument to that in Remark 4.3, it is not hard to
check that, under the assumptions of Theorem 4.6, if for some p > 2, Ea

∣∣ξ1(D)
∣∣p <

∞ for any atom a constituting D, then we, correspondingly, have

sup
n≥1

∫
E

(
|Ŝn(f)|
√
an

)p
dµn <∞ .
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PROOF. We prove convergence of the finite-dimensional distributions first. For
typographical convenience we will only consider one-dimensional distributions. In
the case of more than one dimension, the argument is similar, but the notation is
more cumbersome. During this proof we may and will modify the definition of
Snt(f) to have the sum starting at k = 0. Suppose first that L = 1.

Set for m = 1, 2 . . ., x ∈ X and i = 1, . . . , q

pm(x, i) := Px(ZτD = ai|τD = m) .

Then for λ ∈ R and a large K = 1, 2, . . .,

µn

(
Ŝnt(f)
√
an

> λ

)(43)

=
n∑

m=0

1

µ(τD ≤ n)

∫
X
Px

(
Snt(f)
√
an

> λ, τD = m

)
π(dx)

=

n∑
m=0

∫
X

Px(τD = m)

µ(τD ≤ n)

q∑
i=1

pm(x, i)Pai

(
S(nt−m)+(f)
√
an

> λ

)
π(dx)

=
K∑
k=1

bkn/Kc−1∑
m=b(k−1)n/Kc

q∑
i=1

Pai

(
S(nt−m)+(f)
√
an

> λ

)∫
X

Px(τD = m)

µ(τD ≤ n)
pm(x, i)π(dx).

The second equality uses the fact that f is supported on D and the strong Markov
property. In the last equality, we merely partition {0, . . . , n− 1} into K parts .

Suppose first that 0 < β ≤ 1. Working backwards through an argument similar
to (43), we obtain

K∑
k=1

bkn/Kc−1∑
m=b(k−1)n/Kc

q∑
i=1

Pai

(
Sn(t−k/K)+(f)

√
an

> λ

)∫
X

Px(τD = m)

µ(τD ≤ n)
pm(x, i)π(dx)

= µn

(
Ŝ
TK,tn

(f)
√
an

> λ

)
,

(44)

where

TK,tn (x) :=
(
nt−

(
nk/K − τD(x)

))
+

if τD(x) ∈
[
(k − 1)n/K, kn/K

)
.
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Clearly, ∣∣nt− TK,tn (x)
∣∣

n
≤ 1/K .

By Theorem 4.1 and Lemma 4.4, we see that

K∑
k=1

bkn/Kc−1∑
m=b(k−1)n/Kc

q∑
i=1

Pai

(
Sn(t−k/K)+(f)

√
an

> λ

)
(45)

×
∫
X

Px(τD = m)

µ(τD ≤ n)
pm(x, i)π(dx)

∼
K∑
k=1

P
(

(Γ(β + 1))1/2σfB(Mβ(t− k/K)+) > λ
)

×
µ
(
b(k − 1)n/Kc ≤ τD < bkn/Kc − 1

)
µ(τD ≤ n)

→
K∑
k=1

((
k/K

)1−β − ((k − 1)/K
)1−β)

×P
(

(Γ(β + 1))1/2σfB(Mβ(t− k/K)+) > λ
)
.

Combining (45) with (44) implies that

Ŝ
TK,tn

(f)
√
an

=⇒ (Γ(β + 1))1/2σfB(Mβ(t− T̂∞,K)+),

where T̂∞,K is a discrete random variable independent of B and Mβ such that

P
(
T̂∞,K = k/K

)
=
(
k/K

)1−β − ((k − 1)/K
)1−β

, k = 1, . . . ,K .

We claim that for every ε > 0
(46)

lim
K→∞

lim sup
n→∞

µn

(
sup0≤s1,s2≤t, |s1−s2|≤1/K

∣∣Ŝns1(f)− Ŝns2(f)
∣∣

√
an

> ε

)
= 0.

Then, since T̂∞,K ⇒ T 1
∞ asK →∞, once we prove (46), the claim of the theorem

in the case L = 1 will follow from Theorem 3.2 in [7].
To see that (46) is true, repeat the steps in (43) and bound the probabilities

pm(x, i) from above by 1. We conclude that (46) is bounded from above by

lim
K→∞

q∑
i=1

lim sup
n→∞

Pai

(
sup0≤s1,s2≤t, |s1−s2|≤1/K

∣∣Sns1(f)− Sns2(f)
∣∣

√
an

> ε

)
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= lim
K→∞

qP

(
sup

0≤s1,s2≤t, |s1−s2|≤1/K
(Γ(β + 1))1/2

× σf
∣∣B(Mβ(s1))−B(Mβ(s2))

∣∣ > ε

)
,

where at the second step we used Theorem 4.1. Now (46) follows from the sample
continuity of the process (B(Mβ(t)), t ≥ 0).

This proves the required convergence for L = 1. For general L we replace n by
nL, t by t/L and use the regular variation of (an). Using the already considered
case L = 1 we see that

µnL

(
Ŝnt(f)
√
an

> λ

)
→ P

(
(Γ(β + 1))1/2σfL

β/2B(Mβ(t/L− T 1
∞)+) > λ

)
.

Since LT 1
∞

d
= TL∞ and the process B(Mβ) is β/2-self-similar, the claim of the

theorem in the case 0 < β ≤ 1 has been established.
In the case β = 0 and L = 1, we proceed as in (43), but stop before breaking

the sum into K parts. Consider the case λ ≥ 0; the case λ < 0 can be handled in
a similar manner. Fix t > 0 and choose ε > 0 smaller than t. Next, split the sum
over m into two sums; the first over the range m ≤ n(t − ε), and the second over
the range n(t− ε) < m ≤ nt. Denote the first sum

Σn,1(λ) :=
∑

m≤n(t−ε)

∫
X

Px(τD = m)

µ(τD ≤ n)

q∑
i=1

pm(x, i)Pai

(
S(nt−m)+(f)
√
an

> λ

)
π(dx)

and denote the second sum, over the range n(t − ε) < m ≤ nt, by Σn,2(λ). Let
0 < ρ < 1. By the slow variation of the sequence (an) there is nρ such that for all
n > nρ and for all m ≤ n(t − ε), ant−m/an ∈ (1 − ρ, 1 + ρ). By Theorem 4.1
there is n̂ρ such that for all n > n̂ρ,

Pai

(
Sn(f)√
an

> (1± ρ)−1/2λ
)

P
(
σfB(Est) > (1± ρ)−1/2λ

) ∈ (1− ρ, 1 + ρ) ,

for each i = 1, . . . , q, where Est is a standard exponential random variable inde-
pendent of the Brownian motion. For notational simplicity, we identify nρ and n̂ρ.
We see that for n > nρ,

(1− ρ)
µ(τD ≤ n(t− ε))

µ(τD ≤ n)
P
(
σfB(Est) > (1 + ρ)−1/2λ

)
≤ Σn,1(λ)

≤ (1 + ρ)
µ(τD ≤ n(t− ε))

µ(τD ≤ n)
P
(
σfB(Est) > (1− ρ)−1/2λ

)
.
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Furthermore,

Σn,2(λ) ≤ µ(n(t− ε) < τD ≤ nt)
µ(τD ≤ n)

.

Letting first n → ∞, then ε → 0, and, finally, ρ → 0, we conclude, by the
continuity of the law of B(Est) that

µn

(
Ŝnt(f)
√
an

> λ

)
→ tP (σfB(Est) > λ) ,

which is the required limit in the case β = 0 and L = 1. The extension to the case
of a general L > 0 is the same as in the case 0 < β ≤ 1.

It remains to prove tightness in the case 0 < β ≤ 1. We will prove tightness
in C[0, 1]. Since we are dealing with a sequence of processes starting at zero, it is
enough to show that for any ε > 0 there is δ > 0 such that for any n = 1, 2, . . .,

(47) µn

(
sup

0≤s,t≤1, |t−s|≤δ

1
√
an

∣∣Ŝnt(f)− Ŝns(f)
∣∣ > ε

)
≤ ε .

However, by the tightness part of Theorem 4.1, we can choose δ > 0 such that for
every i = 1, . . . , q and n = 1, 2, . . .,

Pai

(
sup

0≤s,t≤1, |t−s|≤δ

1
√
an

∣∣Snt(f)− Sns(f)
∣∣ > ε

)
≤ ε .

Therefore, arguing as in (43), we obtain

µn

(
sup

0≤s,t≤1, |t−s|≤δ

1
√
an

∣∣Ŝnt(f)− Ŝns(f)
∣∣ > ε

)

=

n∑
m=0

∫
X

Px(τD = m)

µ(τD ≤ n)

q∑
i=1

pm(x, i)

×Pai

(
sup

0≤s,t≤1, |t−s|≤δ

1
√
an

∣∣S(nt−m)+(f)− S(ns−m)+(f)
∣∣ > ε

)
π(dx)

≤
n∑

m=0

∫
X

Px(τD = m)

µ(τD ≤ n)

q∑
i=1

pm(x, i)

×Pai

(
sup

0≤s,t≤1, |t−s|≤δ

1
√
an

∣∣Snt(f)− Sns(f)
∣∣ > ε

)
π(dx) ≤ ε ,
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proving (47).
Finally, we prove (42). We have

∫
E

(
Ŝn(f)
√
an

)2

dµn =
1

anµ(τD ≤ n)

∫
E

(Ŝn(f))2 dµ

(48)

=
1

anµ(τD ≤ n)

n ∫
X
f2(x)π(dx) + 2

n−1∑
j=1

n−j∑
k=1

∫
X
f(x)P kf(x)π(dx)

 ,
where in the first step we used that f is supported by D, and in the second step we
used the invariance of the measure π. By Lemma 4.4 and conditions (20) and (21),
the supremum over n ≥ 1 of the right side of (48) is finite.

5. A functional CLT for symmetric heavy-tailed infinitely divisible pro-
cesses. We now define precisely the class of infinitely divisible stochastic pro-
cesses X = (X1, X2, . . .) for which we will prove a functional central limit theo-
rem. Those processes are given in the form (3) of a stochastic integral.

Let (E, E) be the path space of a Markov chain on X, as in Section 4. Let f :
X→ R be a measurable function satisfying (20) and (21). We will assume that f is
supported by a finite union of atoms (18). Let h(x) := f(x1), x = (x1, x2, . . . ) ∈
E be the extension of the function f to the path space E defined above.

Let M be a homogeneous symmetric infinitely divisible random measure M on
(E, E) with control measure µ given by (39). We will assume that the local Lévy
measure ρ of M has a regularly varying tail with index −α, 0 < α < 2:

(49) ρ(·,∞) ∈ RV−α at infinity.

Let

Xk =

∫
E
h ◦ T k(x) dM(x) =

∫
E
f(xk) dM(x), k = 1, 2, . . . ,(50)

where T is the left shift on the path space E. Since the function f is supported by
a set of a finite measure, it is straightforward to check that the integrability condi-
tion (6) is satisfied, so (50) presents a well defined stationary symmetric infinitely
divisible process. Furthermore, we have

P(X1 > λ) ∼
∫
X
|f(x)|α π(dx) ρ(λ,∞), λ→∞ ,

see e.g. [36]. That is, the heaviness of the marginal tail of the process X is deter-
mined by the exponent α of regular variation in (49). On the other hand, we will
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assume that the underlying Markov chain is β-regular, 0 ≤ β ≤ 1, and we will see
that the parameter β determines the length of memory in the process X.

The main result of this work is the following theorem. Its statement uses the tail
constant Cα of an α-stable random variable; see [38]. We also use the inverse of
the tail of the local Lévy measure defined by

ρ←(y) := inf
{
x ≥ 0 : ρ(x,∞) ≤ y

}
, y > 0 .

THEOREM 5.1. Let 0 < α < 2 and 0 ≤ β ≤ 1. Suppose that (Zn) is a β-
regular Harris chain on (X,X ) with an invariant σ-finite measure π. If β = 1,
assume that an = o(n). Let f be a measurable function supported on a finite union
of atoms D = ∪qi=1ai ∈ X

+
0 . We assume that f satisfies (20) and (21). If β = 1,

we assume also that f ∈ L2+ε(π) for some ε > 0. If α ≥ 1, we also assume that
for some ε > 0, Eα1 |f(Zτα2 )|2+ε <∞ for any two atoms, α1, α2, constituting D.

Let X = (X1, X2, . . .) be a stationary symmetric infinitely divisible stochastic
process defined in (50), where the local Lévy measure of the symmetric homoge-
neous infinitely divisible random measureM is assumed to satisfy (49). We assume,
furthermore, that

(51) xp0ρ(x,∞)→ 0 as x ↓ 0

for some p0 ∈ (0, 2). Then the sequence

cn = C−1/α
α a1/2

n ρ←
(
µ( τD ≤ n)−1

)
, n = 1, 2, . . . ,

satisfies

(52) cn ∈ RVβ/2+(1−β)/α .

Let 0 < β ≤ 1. Then

(53)
1

cn

n·∑
k=1

Xk ⇒
(
Γ(β + 1)

)1/2
σfYα,β,2(·) in C[0,∞) ,

where (Yα,β,2(t)) is the process in (12), with the usual understanding that the sum
in the left hand side is defined by linear interpolation.

If β = 0, then (53) holds in the sense of convergence of finite-dimensional dis-
tributions.

PROOF. The fact that (52) holds follows from the assumption of β-regularity
and Lemma 4.4, taking into account that the regular variation of ρ at infinity implies
ρ← ∈ RV−1/α at zero. For later use we also record now that

(54) ρ(cna
−1/2
n ,∞) ∼ Cα µ(τD ≤ n)−1 as n→∞,
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which follows directly from the definition of the inverse and the regular variation
of the tail of ρ in (49).

We start with proving convergence of the finite-dimensional distributions. It is
enough to show that

1

cn

J∑
j=1

θj

ntj∑
k=1

Xk ⇒
(
Γ(β + 1)

)1/2
σf

J∑
j=1

θjYα,β,2(tj)

for all J ≥ 1, 0 ≤ t1 < · · · < tJ , and θ1, . . . , θJ ∈ R. We use an argument similar
to that in [29].

The standard theory of convergence in law of infinitely divisible random vari-
ables (e.g., Theorem 15.14 in [19]), says that we only have to check the following:
in the notation of Theorem 4.6 and of Section 3, for every r > 0,

∫
E

 1

cn

J∑
j=1

θjŜntj (f)

2 rcn|
∑
θj Ŝntj (f)|−1∫
0

vρ(v,∞) dv dµ

(55)

→ r2−αCα
2− α

(
Γ(β + 1)

)α/2
σαf

×
∫

[0,∞)

∫
Ω′

∣∣∣∣∣∣
J∑
j=1

θjB
(
Mβ

(
(tj − x)+, ω

′), ω′)
∣∣∣∣∣∣
α

P′(dω′) νβ(dx)

and

∫
E
ρ

(
rcn

∣∣∣∣ J∑
j=1

θjŜntj (f)

∣∣∣∣−1

,∞
)
dµ

(56)

→ r−αCα
(
Γ(β + 1)

)α/2
σαf

×
∫

[0,∞)

∫
Ω′

∣∣∣∣∣∣
J∑
j=1

θjB
(
Mβ

(
(tj − x)+, ω

′), ω′)
∣∣∣∣∣∣
α

P′(dω′) νβ(dx).

The proof of (56) is very similar to that of (55), so we only prove (55).
We keep r > 0 fixed for the duration of the argument. Fix also an integer L so

that tJ ≤ L and define

ψ(y) := y−2

∫ ry

0
xρ(x,∞)dx, y > 0 ,
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so that the left-hand side in (55) can be expressed as∫
E
ψ

(
cn

|
∑J

j=1 θjŜntj (f)|

)
dµ .

By Theorem 4.6 and the Skorohod embedding theorem, there exists a probability
space (Ω∗,F∗,P∗) and random variables Y, Y1, Y2, . . . defined on (Ω∗,F∗,P∗)
such that

P∗ ◦ Y −1
n = µnL ◦

 1
√
an

J∑
j=1

θjŜntj (f)

−1

, n = 1, 2, . . . ,

P∗ ◦ Y −1 = P′ ◦

(Γ(β + 1)
)1/2

σf

J∑
j=1

θjB
(
Mβ(tj − TL∞)+

)−1

,

Yn → Y, P∗-a.s.

Then∫
E
ψ

(
cn

|
∑J

j=1 θjŜntj (f)|

)
dµ =

∫
Ω∗
µ(τD ≤ nL)ψ

(
cn√
an|Yn|

)
dP∗.

First, we will establish convergence of the quantity inside the integral. By Kara-
mata’s theorem (see e.g. Theorem 0.6 in [31]),

(57) ψ(y) ∼ r2−α

2− α
ρ(y,∞) as y →∞.

Therefore, as n→∞,

µ(τD ≤ nL)ψ

(
cn√
an|Yn|

)
∼ r2−α

2− α
µ(τD ≤ nL) ρ

(
cna
−1/2
n |Yn|−1, ∞

)
∼ r2−α

2− α
|Yn|α µ(τD ≤ nL) ρ

(
cna
−1/2
n , ∞

)
, P∗-a.s.,

where the last line follows from the uniform convergence of regularly varying func-
tions of negative index; see e.g. Proposition 0.5 in [31]. By (54) and the regular
variation of the wandering rate in Lemma 4.4, we conclude that

µ(τD ≤ nL)ψ

(
cn√
an|Yn|

)
→ r2−α

2− α
Cα L

1−β|Y |α, P∗-a.s.
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It is straightforward to check that∫
Ω∗
L1−β|Y |αdP∗ =

(
Γ(β + 1)

)α/2
σαf

×
∫

[0,∞)

∫
Ω′

∣∣∣∣∣∣
J∑
j=1

θjB
(
Mβ

(
(tj − x)+, ω

′), ω′)
∣∣∣∣∣∣
α

P′(dω′)νβ(dx),

so it now remains to show that the convergence discussed so far can be taken under
the integral sign. For this, we will use the Pratt lemma (see Exercise 5.4.2.4 in [31]).
The lemma requires us to find a sequence of measurable functions G0, G1, G2, . . .
defined on (Ω∗,F∗,P∗) such that

µ
(
τD ≤ nL

)
ψ

(
cn√
an|Yn|

)
≤ Gn P∗-a.s.,(58)

Gn → G0 P∗-a.s.,(59)

E∗Gn → E∗G0 ∈ [0,∞).(60)

Throughout the rest of the proof C is a positive constant which may change from
line to line. Note that by (54), µ(τD ≤ nL)ψ(cna

−1/2
n ) tends to a positive finite

constant, therefore

µ
(
τD ≤ nL

)
ψ

(
cn√
an|Yn|

)
≤ C

ψ
(
cna
−1/2
n |Yn|−1

)
ψ
(
cna
−1/2
n

) .

Since ψ ∈ RV−α at infinity, Potter’s bounds (see Proposition 0.8 in [31]) allow us
to write, for 0 < ξ < 2− α:

ψ
(
cna
−1/2
n |Yn|−1

)
ψ
(
cna
−1/2
n

) 1
{
cn ≥

√
an|Yn|

}
≤ C

(
|Yn|α−ξ + |Yn|α+ξ

)
for sufficiently large n. Further, by (51), y2ψ(y)→ 0 as y ↓ 0, which gives us

ψ(y) ≤ C y−2 for all y ∈ [0, 1].

Thus,

ψ
(
cna
−1/2
n |Yn|−1

)
ψ
(
cna
−1/2
n

) 1
{
cn <

√
an|Yn|

}
≤ Canc−2

n

|Yn|2

ψ(cna
−1/2
n )

.
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Summarizing, for sufficiently large n,

µ
(
τD ≤ nL

)
ψ

(
cn√
an|Yn|

)
≤ C

(
|Yn|α−ξ + |Yn|α+ξ + anc

−2
n

|Yn|2

ψ(cna
−1/2
n )

)
.

If we we define Gn to be the right-hand side of the above, then (58) is automatic.
Let G0 := C

(
|Y |α−ξ + |Y |α+ξ

)
. It follows by the definition of cn and Lemma

4.4 that
cna
−1/2
n ≥ Cρ←

(
an/n

)
→∞ as n→∞

because an/n → 0 (this follows from regular variation considerations if β < 1,
and it is assumed to hold if β = 1.) Since y2ψ(y)→∞ as y →∞ by (57) and the
fact that α < 2, we conclude that

anc
−2
n

|Yn|2

ψ(cna
−1/2
n )

→ 0

P∗-a.s., so that (59) holds.
To show (60), recall that by Theorem 4.6, supn≥1 E

∗|Yn|2 < ∞. This implies
uniform integrability of (|Yn|α±ξ, n ≥ 1) (with respect to P∗). Combining these
observations,

E∗Gn = C

(
E∗|Yn|α−ξ + E∗|Yn|α+ξ + anc

−2
n

E∗|Yn|2

ψ(cna
−1/2
n )

)

→ C
(
E∗|Y |α−ξ + E∗|Y |α+ξ

)
= E∗G0 , n→∞ ,

as required. This completes the proof of convergence in finite-dimensional distri-
butions.

It remains to prove tightness in the case 0 < β ≤ 1. We start by decomposing
the process X according to the magnitude of the Lévy jumps. Denote

ρ1(·) := ρ
(
· ∩ {x : |x| > 1}

)
,

ρ2(·) := ρ
(
· ∩ {x : |x| ≤ 1}

)
,

and let Mi, i = 1, 2 denote independent homogeneous symmetric infinitely di-
visible random measures, with the same control measure µ as M , and local Lévy
measures ρi, i = 1, 2. Then(
Xk, k = 1, 2, . . .

) d
=

(∫
E
f(xk) dM1(x) +

∫
E
f(xk) dM2(x), k = 1, 2, . . .

)
:=
(
X

(1)
k +X

(2)
k , k = 1, 2, . . .

)
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in the sense of equality of finite-dimensional distributions. Notice that X(1) and
X(2) are independent. Furthermore, since f ∈ L2(π), we see that

(61) E(X
(2)
k )2 =

∫
X
f2(x)π(dx)

∫ 1

−1
y2 ρ(dy) <∞ .

Fix L > 0. We will begin with proving tightness of the normalized partial sums
of X(2)

k in the space C[0, L]. By Theorem 12.3 of [6], it suffices to show that there
exist γ > 1, ρ ≥ 0 and C > 0 such that

(62) P

(∣∣∣∣∣
nt∑
k=1

X
(2)
k −

ns∑
k=1

X
(2)
k

∣∣∣∣∣ > λcn

)
≤ C

λρ
(t− s)γ

for all 0 ≤ s ≤ t ≤ L, n ≥ 1 and λ > 0.
We dispose of the case n(t − s) < 1 first, and, in the sequel, we will assume

that µ(τD ≤ 1) > 0. If this measure is zero, we will simply replace 1 by a suitable
large constant γ and dispose of the case n(t−s) < γ first. It follows from (61) that

P

(∣∣∣∣∣
nt∑
k=1

X
(2)
k −

ns∑
k=1

X
(2)
k

∣∣∣∣∣ > λcn

)
≤ P

(
max

(
|X(2)

1 |, |X
(2)
2 |
)
>

λcn
n(t− s)

)
≤ Cλ−2c−2

n n2(t− s)2 .

It follows from (52) that

c−2
n n2 ∈ RV2−2(β/2+(1−β)/α) = RV1−(1−β)(2/α−1) .

Suppose first that 0 < β < 1. If (1− β)(2/α− 1) > 1, then n2/c2
n is bounded by

a positive constant, and we are done. In the case of 0 < (1 − β)(2/α − 1) ≤ 1,
since n(t− s) < 1, there is 0 < δ < (1− β)(2/α− 1) such that

c−2
n n2(t− s)2 ≤ C(t− s)1+(1−β)(2/α−1)−δ ,

which is what is needed for (62). If β = 1, a similar argument works if one uses
the stronger integrability assumption on f imposed in the theorem.

Let us assume, therefore, that n(t− s) ≥ 1. By the Lévy-Itô decomposition,

nt∑
k=1

X
(2)
k −

ns∑
k=1

X
(2)
k

d
=

∫
E

(
Ŝnt(f)− Ŝns(f)

)
dM2

d
=

∫∫
|y(Ŝnt(f)−Ŝns(f))|≤λcn

y
(
Ŝnt(f)−Ŝns(f)

)
dN̄2+

∫∫
|y(Ŝnt(f)−Ŝns(f))|>λcn

y
(
Ŝnt(f)−Ŝns(f)

)
dN2 ,
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where N2 is a Poisson random measure on R× E with mean measure ρ2 × µ and
N̄2 := N2 −

(
ρ2 × µ

)
. Therefore,

P

(∣∣∣∣∣
nt∑
k=1

X
(2)
k −

ns∑
k=1

X
(2)
k

∣∣∣∣∣ > λcn

)

≤ P
(∣∣∣ ∫∫
|y(Ŝnt(f)−Ŝns(f))|≤λcn

y
(
Ŝnt(f)− Ŝns(f)

)
dN̄2

∣∣∣ > λcn

)

+ P
(∣∣∣ ∫∫
|y(Ŝnt(f)−Ŝns(f))|>λcn

y
(
Ŝnt(f)− Ŝns(f)

)
dN2

∣∣∣ > 0
)
.

It follows from (51) that,

P
(∣∣∣ ∫∫
|y(Ŝnt(f)−Ŝns(f))|≤λcn

y
(
Ŝnt(f)− Ŝns(f)

)
dN̄2

∣∣∣ > λcn

)

≤ 1

λ2c2
n

E

∣∣∣∣∣∣∣
∫∫

|y(Ŝnt(f)−Ŝns(f))|≤λcn

y
(
Ŝnt(f)− Ŝns(f)

)
dN̄2

∣∣∣∣∣∣∣
2

=
1

λ2c2
n

∫∫
|y(Ŝnt(f)−Ŝns(f))|≤λcn

[
y
(
Ŝnt(f)− Ŝns(f)

)]2
dρ2 dµ

≤ 4

∫
E

(
Ŝnt(f)− Ŝns(f)

λcn

)2
 λcn/|Ŝnt(f)−Ŝns(f)|∫

0

yρ2(y,∞) dy

 dµ

≤ C

λp0
1

cp0n

∫
E
|Ŝnt(f)− Ŝns(f)|p0 dµ .

Similarly,

P
(∣∣∣ ∫∫
|y(Ŝnt(f)−Ŝns(f))|>λcn

y
(
Ŝnt(f)− Ŝns(f)

)
dN2

∣∣∣ > 0
)

≤ P
(
N2

(
{|y(Ŝnt(f)− Ŝns(f))| > λcn}

)
≥ 1
)

≤ EN2

(
{|y(Ŝnt(f)− Ŝns(f))| > λcn}

)
= 2

∫
E
ρ2

(
λcn|Ŝnt(f)− Ŝns(f))|−1,∞

)
dµ

≤ C

λp0
1

cp0n

∫
E
|Ŝnt(f)− Ŝns(f))|p0 dµ .
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Elementary manipulations of the linear interpolation of the sums and (42) show
that

P

(∣∣∣∣∣
nt∑
k=1

X
(2)
k −

ns∑
k=1

X
(2)
k

∣∣∣∣∣ > λcn

)

≤ C

λp0
1

cp0n
max

n(t−s)−1≤m≤n(t−s)+1

∫
E
|Ŝm(f)|p0 dµ

≤ C

λp0
1

cp0n

(
an(t−s)

)p0/2 µ(τD ≤ n(t− s)) ,

where at the last step we have used the assumption n(t− s) ≥ 1, regular variation,
and Theorem 4.6.

Suppose first that 0 < β < 1. Choose ε > 0 so that 2/α − ε − 1 > 0. Note
that, if (51) holds for some p0 ∈ (0, 2), it also holds for all larger p0. Thus, we may
assume that p0 is close enough to 2 so that

(1− β)
(p0

α
− εp0

2
− 1
)
> β

(
1− p0

2

)
.

Since we are assuming that µ(τD ≤ 1) > 0, we see that

1

cp0n

(
an(t−s)

)p0/2 µ(τD ≤ n(t− s))

≤ C

(
anµ(τD ≤ n)2/α−ε

c2
n

)p0/2(
an(t−s)

an

)p0/2(µ(τD ≤ n(t− s)
)

µ(τD ≤ n)

)p0/α−εp0/2

≤ C
(
an(t−s)

an

)p0/2(µ(τD ≤ n(t− s)
)

µ(τD ≤ n)

)p0/α−εp0/2
.

The first inequality above uses the choice of ε and p0, while the second inequality
follows from the definition of cn and regular variation of ρ←. Next, we choose
0 < ξ < min{β, 1− β} such that

(1− β)
(p0

α
− εp0

2
− 1
)
− β

(
1− p0

2

)
− ξ

(p0

2
+
p0

α
− εp0

2

)
> 0 .

By the regular variation of an and µ(τD ≤ n),

µ
(
τD ≤ n(t− s)

)
µ(τD ≤ n)

≤ C (t− s)1−β−ξ ,
an(t−s)

an
≤ C (t− s)β−ξ .

Combining these inequalities together, we have

P

(∣∣∣∣∣
nt∑
k=1

X
(2)
k −

ns∑
k=1

X
(2)
k

∣∣∣∣∣ > λcn

)
≤ C

λp0
(t− s)γ ,
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where γ = (β − ξ) p0/2 + (1 − β − ξ)(p0/α − εp0/2). Due to the constraints
in ε, p0, and ξ, it is easy to check that γ > 1. This establishes tightness for the
normalized partial sums of X(2)

k in the case 0 < β < 1.
If β = 1, then the assumption an = o(n) and a standard modification of Theo-

rem 12.3 of [6] make the same argument go through.
It remains to prove tightness of the normalized partial sums of X(1)

k in the space
C[0, L], for a fixed L > 0. For notational simplicity we take L = 1. We will
consider first the case 0 < α < 1. Let ρ←1 (y) := inf

{
x ≥ 0 : ρ1(x,∞) ≤ y

}
,

y > 0. We will make use of a certain series representation; see [34]:
(63)(

nt∑
k=1

X
(1)
k , 0 ≤ t ≤ 1

)
d
=

 ∞∑
j=1

εjρ
←
1

(
Γj

2µ(τD ≤ n)

)
Ŝnt(f)(V

(n)
j ), 0 ≤ t ≤ 1

 ,

where (εj) is an i.i.d. sequence of Rademacher variables (taking +1,−1 with prob-
ability 1/2), Γj is the jth jump time of a unit rate Poisson process, and (V

(n)
j ) is a

sequence of i.i.d. random variables with common law µn. Further, (εj), (Γj), and
(V

(n)
j ) are taken to be independent with each other.
Fix ξ ∈ (0, 1/α− 1) and for K > 2(1/α+ ξ)− 1, we split the right-hand side

above as follows.

T
(K)
n,1 (t) =

K∑
j=1

εjρ
←
1

(
Γj

2µ(τD ≤ n)

)
Ŝnt(f)(V

(n)
j ) ,

T
(K)
n,2 (t) =

∞∑
j=K+1

εjρ
←
1

(
Γj

2µ(τD ≤ n)

)
Ŝnt(f)(V

(n)
j ) .

We will prove that the sequence (c−1
n T

(K)
n,1 ) is, for every K, tight in C[0, 1], while

(64) lim
K→∞

lim sup
n→∞

P
(

sup
0≤t≤1

|T (K)
n,2 (t)| > εcn

)
= 0 , for every ε > 0 .

Notice that

c−1
n T

(K)
n,1 (t) = C1/α

α

K∑
j=1

εjρ
←
1

(
Γj

2µ(τD ≤ n)

)
/ρ←

(
µ(τD ≤ n)−1

) Ŝnt(f)(V
(n)
j )

√
an

.

Since ρ←1 and ρ← are both regularly varying at zero with exponent −1/α,

ρ←1

(
Γj

2µ(τD ≤ n)

)
/ρ←

(
µ(τD ≤ n)−1

)
→ 21/αΓ

−1/α
j , n→∞ , a.s..
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On the other hand, by Theorem 4.6, each a−1/2
n Ŝnt(f)(V

(n)
j ) weakly converges in

C[0, 1], and thus, by independence, c−1
n T

(K)
n,1 turns out to be tight in C[0, 1].

Next, we will turn to proving (64). The probability in (64) can be estimated from
above by

P

(
C1/α
α

∞∑
j=K+1

ρ←1

(
Γj

2µ(τD ≤ n)

)
/ρ←

(
µ(τD ≤ n)−1

)
× sup

0≤t≤1

∣∣a−1/2
n Ŝnt(f)(V

(n)
j )

∣∣ > ε

)

Appealing to Potter’s bounds and the fact that ρ1 has no mass on {x : |x| ≤ 1},

ρ←1

(
Γj

2µ(τD ≤ n)

)
/ρ←

(
µ(τD ≤ n)−1

)
≤ C max

{
Γ
−1/α+ξ
j ,Γ

−1/α−ξ
j

}
.

Combining this bound, Chebyshev’s inequality, and the Cauchy-Schwarz inequal-
ity, the probability in (64) is bounded from above by

Cε−2E(Bn)2E

 ∞∑
j=K+1

max
{

Γ
−1/α+ξ
j ,Γ

−1/α−ξ
j

}2

,

where Bn = sup0≤t≤1

∣∣a−1/2
n Ŝnt(f)(V

(n)
1 )

∣∣. We know from Remark 4.3 that the
sequence (E(Bn)2) is uniformly bounded in n. Because of the restriction in K,

E

 ∞∑
j=K+1

Γ
−(1/α±ξ)
j

2

≤

 ∞∑
j=K+1

{
EΓ
−2(1/α±ξ)
j

}1/2

2

≤ C

 ∞∑
j=K+1

j−(1/α±ξ)

2

,

where the rightmost term vanishes as K → ∞, so the proof of the tightness has
been completed.

This proves tightness in the case 0 < α < 1, and we proceed now to show
tightness of the normalized partial sums of X(1)

k in the space C[0, 1], for the case
1 ≤ α < 2. Recall that, in this case, we impose a stronger integrability assumption
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on f . We start with the Lévy-Itô decomposition (63) and write, for K > 1,(
nt∑
k=1

X
(1)
k , 0 ≤ t ≤ 1

)
d
=

(
nt∑
k=1

(
X

(1,K)
k +X

(2,K)
k

)
, 0 ≤ t ≤ 1

)

:=

 ∫∫
|y|≤Kcn/

√
an

yŜnt(f) dN1 +

∫∫
|y|>Kcn/

√
an

yŜnt(f) dN1, 0 ≤ t ≤ 1

 .

Note that the probability that the process
(∑nt

k=1X
(2,K)
k

)
does not identically van-

ish on the interval [0, 1] does not exceed

P
(
N1{(x, y) : |y| > Kcn/

√
an, τD(x) ≤ n} ≥ 1

)
≤ EN1{(x, y) : |y| > Kcn/

√
an, τD(x) ≤ n}

= 2ρ1 (Kcn/
√
an,∞)µ(τD ≤ n)

∼ 2Cα
ρ
(
Kcn/

√
an,∞

)
ρ
(
cn/
√
an,∞

) → 2CαK
−α

as n→∞, and this can be made arbitrarily small by choosing K large. Therefore,
we only need to show tightness, for every fixed K, of the normalized partial sums
of the process X(1,K)

k . As in (62), it is enough to prove that there exist γ > 1,
ρ ≥ 0 and C > 0 such that

(65) P

(∣∣∣∣∣
nt∑
k=1

X
(1,K)
k −

ns∑
k=1

X
(1,K)
k

∣∣∣∣∣ > λcn

)
≤ C

λρ
(t− s)γ

for all 0 ≤ s ≤ t ≤ 1, n ≥ 1 and λ > 0. In a manner, similar to the one we
employed while proving (62), we can dispose of the case n(t− s) < 1, so we will
look at the case n(t− s) ≥ 1.

Let 0 < ε < 1 be such that f ∈ L2+ε(π). By Proposition 7.2,

1

c2+ε
n

E

∣∣∣∣∣
nt∑
k=1

X
(1,K)
k −

ns∑
k=1

X
(1,K)
k

∣∣∣∣∣
2+ε

(66)

≤ C

c2+ε
n

∫
R×E

∣∣Ŝnt(f)− Ŝns(f)
∣∣2+ε|y|2+ε1{|y|≤Kcn/

√
an}dρ1dµ

+
C

c2+ε
n

(∫
R×E

∣∣Ŝnt(f)− Ŝns(f)
∣∣2|y|21{|y|≤Kcn/

√
an}dρ1dµ

)1+ε/2

.
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By Karamata’s theorem,∫
R
|y|2+ε1{|y|≤Kcn/

√
an}dρ1 ≤ C

(
cn/
√
an
)2+ε

µ(τD ≤ n)
.

Further, by the fact that f is supported on D, and by the integrability assumption
on f , we know that∫

E

∣∣Ŝnt(f)− Ŝns(f)
∣∣2+ε

dµ ≤ Cµ(τD ≤ n(t− s))(an(t−s))
(2+ε)/2 ;

see Remark 4.7. By Lemma 4.4, µ(τD ≤ n)a
(2+ε)/2
n is regularly varying with

exponent bigger than 1, so the first term in the right hand side of (66) is bounded
from above by C(t− s)γ , for some γ > 1. A similar argument produces the same
bound for second term in the right hand side of (66). Now an appeal to Markov’s
inequality proves (65).

6. Examples of β-regular markov chains. We present two examples of Markov
chains and corresponding functions f for which the setup of Theorem 5.1 applies.
The examples are classical; parts of them are used in [33]. The general structure
is the same. A “random walker” walks on Z and earns random rewards in certain
state(s).

EXAMPLE 6.1. Here X = Z×R, and for i, j ∈ Z, x ∈ R, A a Borel subset of
R, we let

(67) P
(
(i, x), {j} ×A

)
= pijQ(A) ,

where (pij) is the transition matrix of a random walk on Z, and Q is a zero mean
finite variance probability measure on R; Q is the law of the reward (penalty) the
random walker earns. Suppose that the steps of the random walk are balanced reg-
ularly varying with exponent 1 < δ < 2 and have mean zero. Then the random
walk is β-regular with β = 1 − 1/δ (see [15]) and, hence, so is the Markov chain
defined by (67).

Suppose that the function f : X→ R has the form

f
(
(i, x)

)
= x1

(
i = 0

)
.

It is clear that the assumptions we have imposed on f hold.

EXAMPLE 6.2. In the same setup as the previous example, suppose that the
steps of the random walk have a zero mean and a finite variance. Then the random
walk is β-regular with β = 1/2 (see e.g. [12]), and, hence, so is the Markov chain
defined by (67). The same choice of a function f as in Example 6.1 satisfies the
conditions imposed in Theorem 5.1.
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7. Appendix: Fractional moments of infinitely divisible random variable.
In this appendix we present explicit bounds on the fractional moments of certain
infinitely divisible random variables in terms of moments of their Lévy measures.
These estimates are needed for the proof of Theorem 5.1. We have not been able to
find such bounds in the literature. Combinatorial identities for the integer moments
have been known at least since [5]. Fractional moments have been investigated,
using fractional calculus, by [23], but the latter paper does not give general explicit
bounds of the type we need.

We will consider fractional moments of nonnegative infinitely divisible ran-
dom variables and of symmetric infinitely divisible random variables in the ranges
needed in the present paper, but our approach can be extended to moments of all or-
ders. We start with nonnegative infinitely divisible random variables with Laplace
transform of the form

(68) Ee−θX = exp

{
−
∫ ∞

0

(
1− e−θy

)
ν+(dy)

}
:= e−I(θ), θ ≥ 0 ,

with the Lévy measure ν+ satisfying∫ ∞
0

y ν+(dy) <∞ .

PROPOSITION 7.1. Let 1 < p < 2. Then there is cp ∈ (0,∞), depending only
on p, such that for any infinitely divisible random variable X satisfying (68),

(69) EXp ≤ cp
(∫ ∞

0
yp ν+(dy) +

(∫ ∞
0

y ν+(dy)

)p)
.

PROOF. If the pth moment of the Lévy measure,∫ ∞
0

yp ν+(dy) ,

is infinite, then so is the left hand side of (69), and the latter trivially holds. There-
fore, we will assume for the duration of the proof that the pth moment of the Lévy
measure is finite. We reserve the notation cp for a generic finite positive constant
(that may depend only on p), and that may change from line to line. We start with
an elementary observation: there is cp such that for any x > 0,

xp = cp

∫ ∞
0

(
1− e−xy

)2
y−(p+1) dy .

Therefore,

EXp = cp

∫ ∞
0

E
(
1− e−yX

)2
y−(p+1) dy(70)

= cp

∫ ∞
0

(
1− 2e−I(y) + e−I(2y)

)
y−(p+1) dy ,
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where I is defined in (68). Denote

θ+ = sup
{
θ ≥ 0 : I(θ) ≤ 1

}
∈ (0,∞] .

Observe that

(71) θ+ ≥
(∫ ∞

0
y ν+(dy)

)−1

.

To see that, notice that, if θ+ <∞, then

1 = I(θ+) ≤ θ+

∫ ∞
0

y ν+(dy) .

We now split the integral in (70) and write

EXp = cp

∫ θ+

0
·+ cp

∫ ∞
θ+
· := A+B .

Note that by (71),

B ≤ cp
∫ ∞
θ+

y−(p+1) dy ≤ cp
(∫ ∞

0
y ν+(dy)

)p
.

Next, using the inequality 1 − e−2θ ≤ 2(1 − e−θ) for any θ ≥ 0, see that I(θ) ≤
I(2θ) ≤ 2I(θ) for each θ ≥ 0. Note also that for 0 ≤ b ≤ 2a we have

1− 2e−a + e−b ≤ 2a2 + (2a− b) ,

and we conclude that

A ≤ cp
∫ θ+

0

(∫ ∞
0

(
1− e−xy

)
ν+(dx)

)2

y−(p+1) dy

+ cp

∫ θ+

0

(∫ ∞
0

(
1− e−xy

)2
ν+(dx)

)
y−(p+1) dy .

Using the fact that for 0 ≤ y ≤ θ+ we have

I(y) ≤ min

(
1, y

∫ ∞
0

x ν+(dx)

)
,
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it follows that∫ θ+

0

(∫ ∞
0

(
1− e−xy

)
ν+(dx)

)2

y−(p+1) dy

≤
∫ (

∫∞
0 x ν+(dx))

−1

0
y2

(∫ ∞
0

x ν+(dx)

)2

y−(p+1) dy

+

∫ ∞
(
∫∞
0 x ν+(dx))

−1
y−(p+1) dy

≤ cp
(∫ ∞

0
y ν+(dy)

)p
.

Finally,∫ θ+

0

(∫ ∞
0

(
1− e−xy

)2
ν+(dx)

)
y−(p+1) dy

≤
∫ ∞

0

(∫ ∞
0

(
1− e−xy

)2
y−(p+1) dy

)
ν+(dx) = cp

∫ ∞
0

yp ν+(dy) ,

and the proof is complete.

We consider next a symmetric infinitely divisible random variable, with charac-
teristic function of the form

(72) EeiθY = exp

{∫ ∞
−∞

(
eiθy − 1− iθy

)
ν(dy)

}
, θ ∈ R ,

for some symmetric Lévy measure ν, satisfying∫
|y|≥1

y2 ν(dy) <∞ .

PROPOSITION 7.2. Let 2 < p < 4. Then there is cp ∈ (0,∞), depending only
on p, such that for any symmetric infinitely divisible random variable Y satisfying
(72),

(73) E|Y |p ≤ cp

(∫ ∞
−∞
|y|p ν(dy) +

(∫ ∞
−∞

y2 ν(dy)

)p/2)
.

PROOF. Once again, we may and will assume that the moments of the Lévy
measure in the right hand side of (73) are finite. We start with the case when ν(R) <
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∞. If (Wj) is a sequence of i.i.d. random variables with the common law ν/ν(R),
independent of a Poisson random variable N with mean ν(R), then

Y
d
=

N∑
j=1

Wj ,

and so by the Marcinkiewicz-Zygmund inequality (see e.g. (2.2), p. 227 in [17]),

E|Y |p ≤ cpE

 N∑
j=1

W 2
j

p/2

.

The random variable

X =
N∑
j=1

W 2
j

is a nonnegative random variable with Laplace transform of the form (68), with
Lévy measure ν+ given by

ν+(A) = ν{y : y2 ∈ A}, A Borel.

Applying Proposition 7.1 (with p/2), proves (73) in the compound Poisson case
ν(R) < ∞. In the general case we use an approximation procedure. For m =
1, 2, . . . let νm be the restriction of the Lévy measure ν to the set {y : |y| > 1/m}.
Then each νm is a finite symmetric measure. If Ym is an infinitely divisible random
variable with the characteristic function given by (72), with νm replacing ν, then
Ym ⇒ Y as m → ∞, and the fact that (73) holds for Y follows from the fact that
it holds for each Ym and Fatou’s lemma.
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