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Abstract. We investigate partial maxima of the uniform AR(1) processes
with parameter r > 2. Positively and negatively correlated processes are con-

sidered. New limit theorems for maxima in complete and incomplete samples
are obtained.

1. Introduction

We consider an apparently simple stationary stochastic process with standard
uniform marginals. The process is defined as a first order autoregressive (AR(1))
model

Xn = αXn−1 + εn, n > 1, (1.1)

where (εn)n>1 is an i.i.d. sequence of innovations, independent of the initial value
X0. We will consider two different AR(1) processes, each one parametrized by an
integer r > 2. In both cases the initial state X0 is taken to be a standard uniform
random variable.

Positively correlated uniform AR(1) processes are defined by (1.1) with α =
1/r, where r > 2 is an integer. In this case a generic noise variable εn takes
one of the r discrete values

{
0, 1/r, 2/r, . . . , (r − 1)/r

}
with equal probabilities

1/r. These processes were introduced by Chernick (1981). Obviously, a positively
correlated uniform AR(1) process is stationary, and each Xn has the standard
uniform distribution.

Negatively correlated uniform AR(1) processes are also defined by (1.1), but now
α = −1/r, with r > 2 still an integer. This time a generic noise variable εn takes
one of the r discrete values

{
1/r, 2/r, . . . , (r− 1)/r, 1

}
with equal probabilities 1/r.

These processes were introduced by Chernick and Davis (1982).
The extreme values of the positively and negatively correlated uniform AR(1)

processes are interesting, and have attracted attention because its extremes clus-
ter in a somewhat unusual way. Recall that, marginally, the standard uniform
distribution is in the Weibull domain of attraction, and for un = 1 − x/n with
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x > 0 we have P
{

max16i6n Ui 6 un
}
→ e−x as n → ∞, if U1, U2, . . . are i.i.d.

standard uniform random variables. For this sequence (un) both positively and
negatively correlated uniform AR(1) processes satisfy the D(un) condition of Lead-
better (1974). This was shown by Chernick (1981) and Chernick and Davis (1982).
If these processes also satisfied the D′(un) condition of Leadbetter (1974), then
the extremes of these processes would not cluster, and the partial maxima of these
processes would satisfy a limit theorem with the same normalization and the same
limit as the i.i.d. standard uniform sequence. This is, however, not true, and
condition D′(un) fails for the positively and negatively correlated uniform AR(1)
processes. In fact, it was shown by Chernick (1981) that the partial maximum
Mn = max{X1, . . . , Xn} of the positively correlated uniform AR(1) process satis-
fies P {Mn 6 1− x/n} → exp

{
−(1− r−1)x

}
as n→∞, while Chernick and Davis

(1982) showed that for the negatively correlated uniform AR(1) processes one has
P {Mn 6 1− x/n} → exp

{
−(1− r−2)x

}
as n → ∞. In particular, the extremes

of the two processes cluster, and the extremal index of the two processes is equal
to 1 − r−1 and 1 − r−2 in the positive correlated and negatively correlated cases,
correspondingly. See Leadbetter (1983).

Even among processes whose extremes cluster, the uniform AR(1) processes may
be unusual. We explain this point briefly. The stationary process Yn = (1−Xn)−1,
n = 0, 1, . . . has standard Pareto (1) marginals, and, more generally, multivariate
regularly varying distributions with exponent 1 of regular variation. Therefore, the
spectral tail process is well defined; it can be obtained (extending first the Y process
in law to a stationary process

(
. . . , Y−1, Y0, Y1, Y2, . . .

)
indexed by Z) by

P

[(
Yn
Y0
, n ∈ Z

)
∈ ·
∣∣∣∣|Y0| > y

]
⇒ P

[(
Tn, n ∈ Z

)
∈ ·
]

as y → ∞; see Basrak and Segers (2009). Since the process Y is a Markov chain,
one can expect, in accordance to the theory of Segers (2007) and Janssen and
Segers (2014) that the tail process is, itself, a Markov chain of a particular type,
the so-called back-and-forth tail chain. This is, indeed, the case if the process Y
corresponds to the positively correlated uniform AR(1) process. It is not difficult
to check that in this situation one has, in law,

Tn =

{
rn if n 6 0,∏n
j=1A

(r)
j if n > 0,

where A
(r)
1 , A

(r)
2 , . . . are i.i.d. random variables, P (A

(r)
1 = r) = 1 − P (A

(r)
1 = 0) =

1/r. On the other hand, if the process Y corresponds to the negatively correlated
uniform AR(1) process, then the spectral tail process is not even a Markov chain.
It is not difficult to check that in the above notation we can now write, in law,

Tn =


rn if n 6 0 is even,∏n/2
j=1A

(r2)
j if n > 0 is even,

0 if n is odd.

This happens because, if the process X is a negatively correlated uniform AR(1)
process, then the process Y does not satisfy Condition 2.2 of Segers (2007) or of
Janssen and Segers (2014).

We are interested in studying the extreme value theory of the uniform AR(1)
processes in incomplete samples. This means that only some of the observations
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of the process of interest are registered, and one studies the extremal behaviour
of the registered observations. Questions of this type are of obvious interest in
situations where more than one natural frequency of observations exists (for ex-
ample, in finance), or where one may be interested in less frequent observations of
the state of a physical system (e.g. annual) than the natural frequency (e.g. daily
observations). The observation scheme could more generally be driven by a mech-
anism independent of the process of interest. Studying extreme value theory for
incomplete samples has venerable history, starting, probably, with Mittal (1978),
and a number of new results appeared more recently, such as Scotto (2005), Hall
and Hüsler (2006), Hall and Scotto (2008). Most of the previous work concentrated
on the cases where the registered observations were either equally spaced, or were
registered in a periodic manner. For us periodically registered observations provide
one of the examples, and we will discuss it in the sequel.

In order to obtain a fuller picture of the extremes of a partially registered random
sequence, it is useful to understand the joint behavior of the maxima of both fully
and partially registered observations. Let X = (Xn) be a stationary process, and let
cn ∈ {0, 1}, n = 1, 2, . . ., be a deterministic sequence defining the registration: the
observation Xn of the process is registered if cn = 1 and is not registered otherwise.
Then

Mn = max
16i6n

Xi and M̃n = max
16i6n: ci=1

Xi

are the two partial maxima of interest. Clearly, Mn is bigger of M̃n, and the partial

maximum of the nonregistered observations, so, in particular, Mn > M̃n for every
n. We will assume existence of an asymptotic sampling frequency

p = lim
n→∞

1

n

n∑
j=1

cj ∈ (0, 1] . (1.2)

Under very general conditions it was shown in Mladenović and Piterbarg (2006)
that if the extremes of the process X do not cluster, i.e. if the D′(un) condition
of Leadbetter (1974) holds for the process X for an appropriate for a domain of
attraction sequence (un), then the partial maxima of the registered and nonreg-
istered observations are asymptotically independent, which fully determines the

joint limiting law of the appropriately normalized pair
(
M̃n,Mn

)
. In particular,

that limiting law exists, and is completely determined by the asymptotic frequency
p in (1.2). This result, of course, does not apply in the case of the uniform AR(1)
processes. In fact, it was shown by examples in Mladenović (2009) and Mladenović
and Živadinović (2015) that neither asymptotic independence of the partial max-
ima of the registered and nonregistered observations holds, nor is the limiting law

of
(
M̃n,Mn

)
determined by the asymptotic frequency p.

It is the purpose of this paper to give a general solution to the problem of the joint

asymptotic behaviour of the properly normalized pair
(
M̃n,Mn

)
. We will provide

sufficient conditions for existence of the limiting distribution, explain what features
of the sampling sequence (cn) determine the limiting distribution, and describe the
form of the limiting distribution. Our main results are stated in Section 2, which
also provides a number of examples and a discussion. The proofs are given in
Section 3. Finally, Section 4 contains certain estimates concerning the application
of the D(un, vn) condition in our arguments.
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2. The limit theorems for the partial maxima

The marginal distributions of the uniform AR(1) processes dictate the manner
in which the partial maxima should be normalized. Specifically, we will study the

limiting behaviour of the random vector
(
n(1− M̃n), n(1−Mn)

)
, try to determine

existence and the shape of the limit

G(x, y) = lim
n→∞

P
{
M̃n 6 1− x

n
, Mn 6 1− y

n

}
, x, y > 0 . (2.1)

Notice that, if 0 < x 6 y, then

P
{
M̃n 6 1− x

n
, Mn 6 1− y

n

}
= P

{
Mn 6 1− y

n

}
→
{

exp
{
−(1− r−1)y

}
for positively dependent X,

exp
{
−(1− r−2)y

}
for negatively dependent X,

(2.2)

by Chernick (1981) and Chernick and Davis (1982), irrespectively of the behaviour
of the sampling sequence (cn). Therefore, the only non-trivial case as far as the
limit in (2.1) is concerned is the case 0 < y < x.

We state and discuss below the limiting results for the positively correlated
uniform AR(1) processes and negatively correlated uniform AR(1) processes sep-
arately. Before doing so, we would like to draw the attention of the reader to
the difference in the mechanism that makes the extremes cluster in the positively
correlated case and in the negatively correlated case, and we do it in an informal
manner. In the positively correlated case, one large value of the process will be
followed by large values as long as the subsequent noise variables keep taking the
value (r−1)/r. In the negatively correlated case a large value of the process cannot
be immediately followed by another large value, but the value two units of time
away can be also large as long as the pair of the two subsequent noise variables
takes the value (1/r, 1). This importance of the parity in the negatively correlated
case will be visible both in the statement of the results and in their proofs.

A. Positively correlated uniform AR(1) processes. For a sampling sequence (cn)
we denote for n, j = 1, 2, . . . the empirical frequencies of consecutive zeroes,

fn,j =

n−j+1∑
i=1

1
(
ci = ci+1 = . . . = ci+j−1 = 0

)
(2.3)

if j 6 n and fn,j = 0 if j > n. We will use the notation

fj = lim
n→∞

fn,j
n
, j ∈ {1, 2, . . .}, (2.4)

if the limit exists. Note that f1 = 1 − p, where p is defined in (1.2), and we
always assume existence of this limit. The following theorem is our main result for
positively correlated uniform AR(1) processes.

Theorem 2.1. Let X be a positively correlated uniform AR(1) process.

(a) If the limiting frequencies fj in (2.4) exist for each j ∈ {1, 2, . . .}, then the

sequence
(
n(1− M̃n), n(1−Mn)

)
, n = 1, 2, . . . converges weakly as n→∞.

(b) Let j be a positive integer, and suppose that the limit fk in (2.4) exists for
all k ∈ {1, . . . , j}. Then the limit G(x, y) in (2.1) exists for all (x, y) in the range
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0 < xr−j 6 y < xr−(j−1), and is given by

G(x, y) = exp

{
−(r − 1)x

j−1∑
k=0

fk − fk+1

rk+1
− (r − 1)y

fj
r

}
, (2.5)

with the convention f0 = 1.

Remark 2.2. An immediate conclusion from Theorem 2.1 and the pointwise er-
godic theorem is that, if the sampling sequence (cn) is a realization of a sta-
tionary 0 − 1-valued process, then for almost every such realization, the sequence(
n(1−M̃n), n(1−Mn)

)
, n = 1, 2, . . . converges weakly. In particular, if the underly-

ing stationary process is an i.i.d. Bernoulli sequence with probability p of observing
1, then for almost every realization we have fj = (1 − p)j , j = 1, 2, . . ., and the
expression (2.5) for the limiting distribution reduces to

G(x, y) = exp

{
− (r − 1)p

r + p− 1

(
1− (1− p)jr−j

)
x− (r − 1)

r
(1− p)jy

}
for (x, y) in the range 0 < xr−j 6 y < xr−(j−1), j = 1, 2, . . ..

Remark 2.3. Suppose that the sampling sequence (cn) is periodic, with period
k > 1. This sequence is one of the k possible realisations of the stationary process,
consisting of taking the sequence (cn) and erasing a random number N of its initial
entries, the random number N having a discrete uniform distribution between 0
and k − 1. Since each realization has a positive probability, Remark 2.2 applies,

and the sequence
(
n(1 − M̃n), n(1 − Mn)

)
, n = 1, 2, . . . converges weakly. If l

is the largest number of consecutive zeroes within a period, we have fj > 0 for
1 6 j 6 l, and fj = 0 for j > l. We conclude that the expression (2.5) for the

limiting distribution G in the range 0 < xr−(l+1) 6 y < xr−l remains valid in the
entire range 0 < y < xr−l. The results of Mladenović (2009) and Mladenović and
Živadinović (2015) treat such periodic sampling sequences.

Remark 2.4. Instead of considering the joint distribution of the maxima of all ob-
servations and of the registered observations, one can consider the joint distribution
of the maxima of the registered and of the nonregistered observations. Let

M̂n = max
16i6n: ci=0

Xi

be the partial maximum of the nonregistered observations. Then

P
(
M̃n 6 1− x

n
, M̂n 6 1− y

n

)
=

 P
(
M̃n 6 1− x

n , Mn 6 1− y
n

)
if 0 < y 6 x

P
(
Mn 6 1− x

n , M̂n 6 1− y
n

)
if 0 < x 6 y,

and so the sequence
(
n(1 − M̃n), n(1 − M̂n)

)
converges weakly if and only if both

sequences
(
n(1 − M̃n), n(1 − Mn)

)
, n = 1, 2, . . ., and

(
n(1 − M̂n), n(1 − Mn)

)
,

n = 1, 2, . . ., converge weakly, sufficient conditions for which is the existence of
the asymptotic frequency of any number of consecutive zeroes and existence of
the asymptotic frequency of any number of consecutive ones. Suppose that the
asymptotic frequency of ones p ∈ (0, 1), so that the marginal limits of both random

variables
(
n(1− M̂n)

)
and

(
n(1− M̃n)

)
are nondegenerate. When are the maxima

of the registered observations and of the nonregistered observations asymptotically
independent? Theorem 2.1 says that a necessary and sufficient condition for such
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asymptotic independence is fk = f1 for all k > 1. That is, asymptotically, zeroes
arrive in arbitrarily long groups and then, automatically, ones arrive in arbitrarily
long groups as well. Such sampling sequences (cn) exist. An example is the following
sequence. Let kj = [j(1− p)/p] for j = 1, 2, . . ., and construct a sampling sequence
by alternating j consecutive ones with kj consecutive zeroes, j = 1, 2, . . .. Clearly,
f1 = 1− p in this case.

B. Negatively correlated uniform AR(1) processes. In this case it is natural
to consider, for a sampling sequence (cn), the empirical frequencies of zeroes at
consecutive positions of the same parity, so we define

f̃n,j =

n−2j+2∑
i=1

1{ci = ci+2 = · · · = ci+2j−2 = 0}

if j 6 n/2, and f̃n,j = 0 if j > n/2. We will use the notation

f̃j = lim
n→∞

f̃n,j
n
, j ∈ {1, 2, . . . , } (2.6)

if the limit exists. Note that f̃n,1 = fn,1 defined by (2.3), and as before we assume

that the limit p = 1 − f̃1 = 1 − f1 in (1.2) exists. The following theorem is our
main result for negatively correlated uniform AR(1) processes.

Theorem 2.5. Let X be a negatively correlated uniform AR(1) process.

(a) If the limiting frequencies f̃j in (2.6) exist for each j ∈ {1, 2, . . .}, then he

sequence
(
n(1− M̃n), n(1−Mn)

)
, n = 1, 2, . . . converges weakly as n→∞.

(b) Let j be a positive integer, and suppose that the limit f̃k in (2.6) exists for
all k ∈ {1, . . . , j}. Then the limit G(x, y) in (2.1) exists for all (x, y) in the range
0 < xr−2j 6 y < xr−(2j−2), and is given by

G(x, y) = exp

{
−(r2 − 1)x

j−1∑
k=0

f̃k − f̃k+1

r2k+2
− (r2 − 1)y

f̃j
r2

}
, (2.7)

with the convention f̃0 = 1.

The remarks on Theorem 2.1 that appear above have obvious counterparts in the
negatively correlated case. We only address them briefly. If the sampling sequence
(cn) is a realization of a stationary 0 − 1-valued process, then for almost every

realization, the sequence
(
n(1−M̃n), n(1−Mn)

)
, n = 1, 2, . . . still converges weakly,

and in the special case of an i.i.d. Bernoulli sequence the limiting distribution of
the process is

G(x, y) = exp

{
− (r2 − 1)p

r2 + p− 1

(
1− (1− p)jr−2j

)
x− (r2 − 1)

r2
(1− p)jy

}
for (x, y) in the range 0 < xr−2j 6 y < xr−2(j−1), j = 1, 2, . . .. Further, we always

have weak convergence of the sequence
(
n(1 − M̃n), n(1 −Mn)

)
in the case of a

periodic sampling scheme, and the requirement for the asymptotic independence of
the maxima of the registered observations and of the nonregistered observations is
f̃k = f̃1 for all k > 1.
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3. Proofs

The argument we will use depends, as do most of the arguments in related state-
ments, on a version of the D(un) condition. Since we have to deal with two types
of observations, registered observations and nonregistered observations, and since
the corresponding arguments in the multivariate cumulative distribution functions
take, in general, different values, we need a two-sequence version of the D(un)
condition. This condition, the so-called D(un, vn) condition (with un = 1 − x/n,
vn = 1− y/n, x, y > 0 in our case) was introduced by Davis (1979), and Chernick
and Davis (1982) explained that this condition holds for both positively and neg-
atively correlated uniform AR(1) processes. This implies the following fact. For a
fixed positive integer j, let x, y > 0 be either in the range 0 < xr−j 6 y < xr−(j−1)

or in the range 0 < xr−2j 6 y < xr−(2j−2), depending on whether the process
is positively correlated or negatively correlated. In the positively correlated case
assume that the limit fk in (2.4) exists for all k ∈ {1, . . . , j}, and in the negatively

correlated case assume that the limit f̃k in (2.6) exists for all k ∈ {1, . . . , j}. Let
(mn) be a sequence of positive integers such that mn →∞, mn/n→ 0 as n→∞.
If the limit

lim
n→∞

n

mn

(
1− P

(
M̃mn 6 1− x

n
, Mmn 6 1− y

n

))
= H(x, y) (3.1)

exists, then the limit G(x, y) in (2.1) exists, and

G(x, y) = exp
{
−H(x, y)

}
. (3.2)

We explain why this is true in Section 4.

Proof of Theorem 2.1. Since part (a) of the theorem is an obvious consequence of
part (b), we will prove part (b) of the theorem. Throughout the proof we will use
the notation

zi =

{
x, if ci = 1,

y, if ci = 0.
(3.3)

For a positive integer m we denote

am = P
(
M̃m 6 1− x/n, Mm 6 1− y/n

)
= P (X1 6 1− z1/n, X2 6 1− z2/n, . . . ,Xm 6 1− zm/n) . (3.4)

We will let m = mn →∞ sufficiently slowly with n so that rm/n→ 0. Note that

Xi = r−(i−1)X1 +

i∑
j=2

r−(i−j)εj , i = 2, 3, . . . ,m .

This implies the following fact that we will use repeatedly in the subsequent calcu-
lations:

• The inequality Xi 6 1 − zi/n holds if and only if X1 6 ri−1 −
i∑

j=2

rj−1εj −

ri−1zi/n.

Writing εj = kj/r with kj ∈ {0, 1, . . . , r − 1}, this condition translates into

X1 6 r
i−1 −

i∑
j=2

rj−2kj − ri−1zi/n . (3.5)
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We will often use the following elementary fact about the right hand side of (3.5):

ri−1 −
i∑

j=2

rj−2kj

{
= 1, if kj = r − 1 for all j = 2, 3, . . . , i,

> 2, in all other cases.
(3.6)

Using the formulation in (3.5), the probability in (3.4) can be written in the form

am =

r−1∑
k2=0

r−1∑
k3=0

· · ·
r−1∑
km=0

r−(m−1)P

( m⋂
i=1

{
X1 6 r

i−1 −
i∑

j=2

rj−2kj − ri−1zi/n

})
= S1 + S2 + · · ·+ Sm, (3.7)

where we have decomposed the full (m− 1)-tuple sum on the first line by grouping
its terms into sums Sl, 1 6 l 6 m according to the following rules:

• The sum Sm consists of the single term k2 = · · · = km = r − 1.

• For 2 6 l 6 m− 1, the sum Sl runs over all k2, . . . , km ∈ {0, 1, . . . , r− 1} such
that k2 = · · · = kl = r − 1, but kl+1 6= r − 1.

• The sum S1 runs over all k2, . . . , km ∈ {0, 1, . . . , r − 1} such that k2 6= r − 1.

It is easy to compute the number of terms in each sum. We use these numbers
as a part of the calculations below. Recall that according to our constraints on the
rate of growth of m we have ri−1zi/n ∈ (0, 1) for all n large enough. For all such
n we have

Sm = r−(m−1)P

( m⋂
i=1

{
X1 6 1− ri−1zi/n

})
= r−(m−1)

(
1− max16i6m r

i−1zi
n

)
, (3.8)

while for 1 6 l 6 m− 1, we have

Sl =
[
(r − 1)rm−l−1

]
r−(m−1)P

( l⋂
i=1

{
X1 6 1− ri−1zi/n

})
=
r − 1

rl

(
1− max16i6l r

i−1zi
n

)
=
r − 1

rl
− (r − 1) max16i6l r

izi
rl+1n

:= Al −Bl . (3.9)

Let j = 1, 2, . . . and consider a pair (x, y) such that 0 < xr−j 6 y < xr−(j−1). Let
l ∈ {1, 2, . . . ,m− 1}. The following cases are possible in (3.9).

Case 1 For some k ∈ {0, 1, . . . , j − 1}, cl−k = 1, while cl−k+1 = . . . = cl = 0. In
this case

max
16i6l

rizi = rl−kx ,

so that

Bl =
(r − 1)x

rk+1n
.

Note that this scenario is feasible only if l − k > 1.

Case 2 cd = 0 for all integer d such that max{l − j + 1, 1} 6 d 6 l. In this case

max
16i6l

rizi = rly ,
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so that

Bl =
(r − 1)y

rn
.

We conclude that each occurrence of the pattern 10 . . . 0 (one followed by k
zeroes), k ∈ {0, 1, . . . , j − 1}, in the sequence c1, . . . , cm−1 contributes exactly

(r − 1)x

rk+1n

to the sum B1 + . . .+Bm−1, while each occurrence of the pattern 0 . . . 0 (j zeroes)
contributes exactly

(r − 1)y

rn
to that sum. It is elementary that the number of times the pattern 10 . . . 0 (one
followed by k zeroes) occurs in the sequence c1, . . . , cm−1 is equal to fm,k−fm,k+1−δ,
with δ ∈ {0, 1} (δ = 1 if the number of zeroes at the initial positions of the sequence
(cn) is at least k) and the convention that fm,0 = m. Therefore,

S1 + . . .+ Sm−1 =
1

r
− 1

rm

− (r − 1)x

n

j−1∑
k=0

fm,k − fm,k+1

rk+1
− (r − 1)y

rn
fm,j +O(1/n) ,

where the O(1/n) term comes both from the δ correction above and from the fact
that the sum B1 + . . .+Bm−1 can also contain some additional terms (r−1)y/(rn)
due to a possible presence of a string of initial zeroes in the sequence c1, . . . , cm−1

of the length smaller than j. We conclude by (3.7) that

am =1− (r − 1)x

n

j−1∑
k=0

fm,k − fm,k+1

rk+1
− (r − 1)y

rn
fm,j +O(1/n) .

Since m = mn →∞ as n→∞, we conclude by (3.4) that

n

mn

(
1− P

(
M̃mn 6 1− x/n, Mmn 6 1− y/n

))
(3.10)

= (r − 1)x

j−1∑
k=0

(
fmn,k

mn
− fmn,k+1

mn

)
r−(k+1) +

r − 1

r
y · fmn,j

mn
+ o(1)

→ (r − 1)x

j−1∑
k=0

fk − fk+1

rk+1
+ (r − 1)y

fj
r

as n → ∞. Therefore, (3.1) holds. An appeal to (3.2) proves (2.5) and, hence,
establishes part (b) of the theorem. �

Proof of Theorem 2.5. As in the proof of Theorem 2.1, it is enough to prove part
(b). We use once again the notation (3.4), but in this case it is convenient for us
to let the sequence m = mn to consist of even numbers, so for 0 < y < x and a
positive even integer 2m we will consider

a2m = P

{
M̃2m 6 1− x/n,M2m 6 1− y/n

}
= P

{
X1 6 1− z1/n,X2 6 1− z2/n, . . . ,X2m 6 1− z2m/n

}
, (3.11)
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where zi is once again given by (3.3). It is appropriate now to let m = mn → ∞
sufficiently slowly with n so that r2m/n → 0. The parity of the time variables
is important now, so we will use a more detailed representation of the stationary
sequence (Xn) than in the proof of Theorem 2.1. Let us write

X2i−1 = r−2i+2X1 +

i∑
j=2

r−2i+2jε2j−1 −
i−1∑
j=1

r−2i+2j+1ε2j , i > 2,

X2i = −r−2i+1X1 −
i−1∑
j=1

r−2i+2j+1ε2j+1 +

i∑
j=1

r−2i+2jε2j , i > 1.

Certain simple facts follow from the above representations. We will list them sep-
arately as they refer to the odd-numbered observations and to the even-numbered
observations. We write for each j εj = kj/r with kj ∈ {1, . . . , r}.

The first simple fact is that for i > 2 the inequality X2i−1 6 1 − z2i−1/n holds
if and only if

X1 6 r
2i−2 +

i−1∑
j=1

r2j−2k2j −
i∑

j=2

r2j−3k2j−1 − r2i−2z2i−1/n. (3.12)

We will use the following elementary fact about the right hand side of (3.12):

r2i−2 +

i−1∑
j=1

r2j−2k2j −
i∑

j=2

r2j−3k2j−1{
= 1, if k2 = k4 = · · · = k2i−2 = 1, k3 = k5 = · · · = k2i−3 = r,

> 2, in all other cases.
(3.13)

The second simple fact is that for i > 1 the inequality X2i 6 1 − z2i/n holds if
and only if

X1 > −r2i−1 −
i−1∑
j=1

r2j−1k2j+1 +

i∑
j=1

r2j−2k2j + r2i−1z2i/n. (3.14)

Once again, we will use an elementary fact about the right hand side of (3.14):

−r2i−1 −
i−1∑
j=1

r2j−1k2j+1 +

i∑
j=1

r2j−2k2j{
= 0, if k2 = k4 = · · · = k2i = r, k3 = k5 = · · · = k2i−1 = 1,

6 −1, in all other cases.
(3.15)

We proceed with a decomposition of the probability in (3.11) parallel to the decom-
position in (3.7), but now we have to be careful about parity of the time stamp.
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We write

a2m =

r∑
k2=1

r∑
k3=1

· · ·
r∑

k2m=1

r−2m+1P

({
X1 6 1− z1/n

}
∩

m⋂
i=2

{
X1 6 r

2i−2 +

i−1∑
j=1

r2j−2k2j −
i∑

j=2

r2j−3k2j−1 − r2i−2z2i−1/n

}
m⋂
i=1

{
X1 > −r2i−1 −

i−1∑
j=1

r2j−1k2j+1 +

i∑
j=1

r2j−2k2j + r2i−1z2i/n

})
= S1 + S2 + · · ·+ S2m, (3.16)

where we have decomposed the full (2m−1)-tuple sum on the first line by grouping,
once again, its terms into sums Si, 1 6 i 6 2m, according to the following rules:

The sum S2m consists of the single term with k2 = k4 = · · · = k2m = r and
k3 = k5 = · · · = k2m−1 = 1. If we select n so large that z1/n+ rj−1zj/n ∈ (0, 1) for
all 2 6 j 6 2m (this choice of n we remain in force for the duration of the proof),
then

S2m = r−2m+1P

{
X1 6 1− z1

n
,X1 > max

16i6m

r2i−1z2i

n

}
= r−2m+1

(
1− z1

n
− max16i6m r

2i−1z2i

n

)
. (3.17)

The sum S2m−1 consists of r terms with k2 = k4 = · · · = k2m−2 = 1 and
k3 = k5 = · · · = k2m−1 = r, while k2m can take any value in {1, 2, . . . , r}. We have

S2m−1 =
r

r2m−1
P

{
X1 6 1− z1

n
,X1 6 1− max

26i6m

r2i−2z2i−1

n

}
= r−2m+2

(
1− max16i6m r

2i−2z2i−1

n

)
. (3.18)

For 1 6 l 6 m− 1, the sum S2l runs over all k2, k3, . . . , k2m ∈ {1, 2, . . . , r} such
that k2 = · · · = k2l = r and k3 = · · · = k2l−1 = 1, but (k2l+1, k2l+2) 6= (1, r).
Clearly, this sum has (r2 − 1)r2m−2l−2 terms and

S2l =
r2 − 1

r2l+1

(
1− z1

n
− max

16i6l

r2i−1z2i

n

)
=
r2 − 1

r2l+1

(
1− z1

n

)
− (r2 − 1) max16i6l r

2iz2i

r2l+2n
:= A2l −B2l. (3.19)

For 2 6 l 6 m− 1, the sum S2l−1 is taken over all k2, k3, . . . , k2m ∈ {1, 2, . . . , r}
such that k2 = · · · = k2l−2 = 1 and k3 = · · · = k2l−1 = r, but (k2l, k2l+1) 6= (1, r).
This sum has (r2 − 1)r2m−2l−1 terms and

S2l−1 =
r2 − 1

r2l

(
1− max

16i6l

r2i−2z2i−1

n

)
=
r2 − 1

r2l
− (r2 − 1) max16i6l r

2i−1z2i−1

r2l+1n
:= A2l−1 −B2l−1. (3.20)
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Finally, the sum S1 runs over all k2, k3, . . . , k2m ∈ {1, 2, . . . , r} such that both
k2 6= r and (k2, k3) 6= (1, r). This sum has r2m−1 − r2m−2 − r2m−3 identical terms,
so that

S1 =
(
1− r−1 − r−2

)(
1− z1/n

)
. (3.21)

We proceed now in a manner similar to the steps we took to prove Theorem 2.1.
Let j = 1, 2, . . . and consider a pair (x, y) such that 0 < xr−2j 6 y < xr−(2j−2).
We consider l ∈ {2, . . . , 2m − 2}. The following cases are possible in (3.19) and
(3.20).

Case 1 If for some k ∈ {0, 1, . . . , j− 1}, c2l−2k = 1, while c2l−2k+2 = · · · = c2l = 0,
then max16i6l r

2iz2i = r2l−2kx and hence B2l is equal to

(r2 − 1)x

r2k+2n
. (3.22)

Similarly, if for some k ∈ {0, 1, . . . , j − 1}, c2l−2k−1 = 1, while c2l−2k+1 = · · · =
c2l−1 = 0, then max16i6l r

2i−1z2i−1 = r2l−2k−1x and B2l−1 is still given by (3.22).

Case 2 If c2d = 0 for all even integers 2d such that max{2l− 2j + 2, 2} 6 2d 6 2l,
then max16i6l r

2iz2i = r2ly, and B2l is equal to

(r2 − 1)y

r2n
. (3.23)

If c2d−1 = 0 for all odd integers 2d−1 such that max{2l−2k−1, 1} 6 2d−1 6 2l−1,
then max16i6l r

2i−1z2i−1 = r2l−1y, and B2l−1 is still given by (3.23).

Let us denote by Πk(10 . . . 0) the pattern one followed by k zeroes on consecutive
positions of the same parity, where k ∈ {0, 1, . . . , j − 1}. Each occurence of such
pattern in the sequence c2, . . . , c2m−2 contributes exactly

(r2 − 1)x

r2k+2n

to the sum B2 + · · · + B2m−2. Each occurence of the pattern “j zeroes on the
consecutive positions of the same parity” contributes exactly

(r2 − 1)y

r2n

to that sum. The number of times the pattern Πk(10 . . . 0) occurs in the sequence

c1, . . . , c2m−2 is equal to f̃2m−2,k − f̃2m−2,k+1 − δ, where δ ∈ {0, 1, 2} depends on
the initial strings of zeroes on even and odd positions in the sequence (cn), with

the convention f̃2m,0 = 2m. As in the proof of Theorem 2.1 we conclude that

a2m = 1− (r2 − 1)x

n

j−1∑
k=0

f̃2m−2,k − f̃2m−2,k+1

r2k+2
− (r2 − 1)y

r2n
f̃2m−2,j +O(1/n).
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Since m = mn →∞ as n→∞, we conclude by (2.6) that

n

2m

(
1− P

(
M̃2m 6 1− x

n
, M2m 6 1− y

n

))
= (r2 − 1)x

j−1∑
k=0

(
f̃2m−2,k

2m
− f̃2m−2,k+1

2m

)
r−(2k+2) + (r2 − 1)y

f̃2m−2,j

2mr2
+ o(1)

→ (r2 − 1)x

j−1∑
k=0

f̃k − f̃k+1

r2k+2
+ (r2 − 1)y

f̃j
r2

as n → ∞, so (3.1) holds, and the statement of part (b) of the theorem follows
from (3.2). �

4. Condition D(un, vn)

In this section we prove the claim made at the beginning of Section 3. Specifically,
if x, y > 0 are in the range 0 < xr−j 6 y < xr−(j−1) for some positive integer j,
then, under the assumption that the limit fk in (2.4) exists for all k = 1, . . . , j,
the statement (3.1) for positively correlated uniform AR(1) processes implies that
the limit in (2.1) exists, and is given by (3.2). The argument in the negatively
correlated case (under the assumption that the appropriate limits in (2.6) exist) is
similar.

We start with the definition of the D(un, vn) condition and a discussion of how it
applies to the uniform AR(1) processes.

Definition 4.1. Let (Xn) be a stationary process and (un) and (vn) two sequences
of real numbers. The condition D(un, vn) is satisfied, if for all sets A1, A2, B1, B2

of positive integers such that A1 ∩A2 = ∅, B1 ∩B2 = ∅ and

b− a > l for all a ∈ A1 ∪A2, b ∈ B1 ∪B2,

the following inequality holds∣∣∣∣P( ⋂
j∈A1∪B1

{Xj 6 un} ∩
⋂

j∈A2∪B2

{Xj 6 vn}
)
−

−P
( ⋂
j∈A1

{Xj 6 un} ∩
⋂

j∈A2

{Xj 6 vn}
)
· P
( ⋂
j∈B1

{Xj 6 un} ∩
⋂

j∈B2

{Xj 6 vn}
)∣∣∣∣

6 αn,l, (4.1)

with αn,ln → 0 as n→∞ for some ln = o(n).

We claim that the positively correlated uniform AR(1) processes satisfy the
bound (4.1) with un = 1 − y/n, vn = 1 − x/n, where x > 0, y > 0. Moreover, we
can choose αn,l to be independent of l ≥ 1, but depending instead on the cardinality
of A1 ∪A2. Specifically, (4.1) holds with the right hand side given by

αn,m =
max(x, y)

n

log(mmax(x, y))

log r
+

1

n

r

1− 1/r
, (4.2)

where m = card(A1 ∪A2).
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In order to establish the above fact, denote

Ã1(un) =
⋂
j∈A1

{Xj 6 un}, Ã2(vn) =
⋂
j∈A2

{Xj 6 vn},

B̃1(un) =
⋂
j∈B1

{Xj 6 un}, B̃2(vn) =
⋂
j∈B2

{Xj 6 vn},

∆n(A1, A2, B1, B2) = P
(
Ã1(un)Ã2(vn)B̃1(un)B̃2(vn)

)
−P

(
Ã1(un)Ã2(vn)

)
· P
(
B̃1(un)B̃2(vn)

)
Since the process (Xn) is, obviously, associated, it follows that

0 6 ∆n(A1, A2, B1, B2)

= P
(
Ã1(un)Ã2(vn)

){
P
(
B̃1(un)B̃2(vn)|Ã1(un)Ã2(vn)

)
− P

(
B̃1(un)B̃2(vn)

)}
:= P

(
Ã1(un)Ã2(vn)

)
(P1 − P2).

Let i∗ = max(A1 ∪ A2). To bound the difference P1 − P2 we will use a coupling

argument, and we start by outlining its general structure. Let X0, X̂0, εi, i = 1, 2, . . .
be random variables defined on some probability space, satisfying the following
conditions. Both X0 and X̂0 take values in (0, 1), X̂0 has the standard uniform

distribution, and X̂0 − X0 ≤ θ a.s. for some nonrandom θ ∈ (0, 1). Further,

(X0, X̂0) are independent of an i.i.d sequence (εi) of random variables taking values
{0, 1/r, . . . , (r − 1)/r} with equal probabilities. Define

Xi = r−iX0 +

i∑
j=1

r−(i−j)εj , i = 1, 2, . . .

X̂i = r−iX̂0 +

i∑
j=1

r−(i−j)εj , i = 1, 2, . . . .

Let C and D be two disjoint finite subsets of {l, l + 1, . . .}. Then

P
(
Xi 6 un, i ∈ C, Xi 6 vn, i ∈ D

)
6P
(
X̂i − r−iθ 6 un, i ∈ C, X̂i − r−iθ 6 vn, i ∈ D

)
6P
(
X̂i 6 un, i ∈ C, X̂i 6 vn, i ∈ D

)
+
∑
i∈C

P (un < X̂i 6 un + r−iθ) +
∑
i∈D

P (vn < X̂i 6 vn + r−iθ) .

Therefore,

P
(
Xi 6 un, i ∈ C, Xi 6 vn, i ∈ D

)
− P

(
X̂i 6 un, i ∈ C, X̂i 6 vn, i ∈ D

)
(4.3)

≤
∞∑
i=l

min
(
r−iθ, max(x, y)/n

)
=

∑
l6i6log(nθ)/ log r

·+
∑

i>log(nθ)/ log r

·

≤max(x, y)

n

log(nθ)

log r
+

1

n

r

1− 1/r
.

We now use (4.3) to estimate the difference P1−P2. To this end we need to couple
two random variables, Xi∗ with its unconditional standard uniform distribution,
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and the same Xi∗ with its conditional law given Xi ≤ un, i ∈ A1 and Xi ≤ vn, i ∈
A2. In the coupling the latter random variable is X0 in the computation leading
to (4.3), and the former random variable is X̂0. We need to couple these random
variables in such a way that the resulting difference θ is small.

Note that the conditional law of Xi∗ given Xi ≤ un, i ∈ A1 and Xi ≤ vn, i ∈ A2

is uniform on some subset of (0, 1), consisting of some finite collection of intervals.
Each condition of the type Xi ≤ un, i ∈ A1 removes some subintervals of (0, 1)
of total length y/n from the support of the conditional law of Xi∗ , while each
condition of the type Xi ≤ vn, i ∈ A2 removes some subintervals of (0, 1) of total
length x/n from the same support. If m = card(A1 ∪ A2), then the total number
of conditions is m, and the conditional law of Xi∗ given Xi ≤ un, i ∈ A1 and
Xi ≤ vn, i ∈ A2 is uniform on a finite union of subintervals of (0, 1) of total length
at least 1 − (m/n) max(x, y). According to Lemma 4.2 below, we can achieve

coupling of X0 and X̂0 with θ = (m/n) max(x, y). Therefore, by (4.3),

P1 − P2 ≤
max(x, y)

n

log(mmax(x, y))

log r
+

1

n

r

1− 1/r

and, hence, (4.1) holds with the bound in (4.2).

Lemma 4.2. Let 0 < γ < 1 and let X0 be a random variable with the uniform
distribution on a finite union of disjoint subintervals of (0, 1) of total length γ. Then

there is a coupling of X0 with a standard uniform random variable X̂0 such that
X̂0 −X0 6 1− γ a.s..

Proof. Let the support of X0 be the disjoint union of (hi, hi+pi), i = 1, . . . , k with
0 6 h1 < h1+p1 < h2 < h2+p2 < . . . < hk < hk+pk 6 1 with p1+p2+. . .+pk = γ.
We couple X0 and X̂0 as follows. Generate X0. If X0 ∈ (hi, hi + pi) for some
i = 1, . . . , k, we set

X̂0 = X0/γ + (p1 + . . .+ pi−1 − hi)/γ.

It is elementary to check that X̂0 has the standard uniform distribution. If X0 ∈
(hi, hi + pi) for some i = 1, . . . , k, we have

X̂0 −X0 = (1/γ − 1)X0 + (p1 + . . .+ pi−1 − hi)/γ
6 (1/γ − 1) (hi + pi) + (p1 + . . .+ pi−1 − hi)/γ
=− (hi + pi) + (p1 + . . .+ pi−1)/γ

6− (p1 + . . .+ pi−1 + pi) + (p1 + . . .+ pi−1 + pi)/γ

= (1/γ − 1) (p1 + . . .+ pi−1 + pi)

6 (1/γ − 1) γ = 1− γ,

as required. �

We are now ready to prove that (3.1) implies that the limit G(x, y) in (2.1) exists
and (3.2) holds. Let m = mn → ∞ be a sequence of positive integers such that
mn/n→ 0 and (3.1) holds. Choose another sequence of positive integers, l = ln →
∞ such that ln/mn → 0 as n→∞. Let k = [n/(m+ l)]. For 0 6 y 6 x we consider
the difference

∆ = P
{
M̃n 6 1− x/n, Mn 6 1− y/n

}
−
[
P
(
M̃m 6 1− x/n, Mm 6 1− y/n

)]k
.
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We will prove that ∆→ 0 as n→∞. This will clearly imply that the limit in (2.1)
exists, and is given by (3.2). Decompose Nn = {1, 2, . . . , n} = (I1∪J1)∪ (I2∪J2)∪
· · · ∪ (Ik ∪ Jk) ∪ Ik+1 with

Ii = {(m+ l)(i− 1) + 1, . . . , (m+ l)(i− 1) +m}, 1 6 i 6 k,

Ji = {mi+ l(i− 1) + 1, . . . ,mi+ l(i− 1) + l}, 1 6 i 6 k,

Ik+1 = {(m+ l)k + 1, . . . , n}.

For 1 6 i 6 k we set

M̃(Ii) = max{Xj | j ∈ Ii, cj = 1},
M(Ii) = max{Xj | j ∈ Ii},

Ai =
{
M̃(Ii) 6 1− x/n,M(Ii) 6 1− y/n

}
.

Using the notation A1A2 . . . Ak for the intersection of k events, it is clear that |∆|
does not exceed∣∣∣P {M̃n 6 1− x/n, Mn 6 1− y/n

}
− P

{
M̃(m+l)k 6 1− x/n, M(m+l)k 6 1− y/n

}∣∣∣
+
∣∣∣P {M̃(m+l)k 6 1− x/n, M(m+l)k 6 1− y/n

}
− P (A1A2 . . . Ak)

∣∣∣
+
∣∣∣P (A1A2 . . . Ak)−

[
P (A1)

]k∣∣∣
:= ∆1 + ∆2 + ∆3.

Since 1− x/n 6 1− y/n,{
M̃(m+l)k 6 1− x/n, M(m+l)k 6 1− y/n

}
\
{
M̃n 6 1− x/n, Mn 6 1− y/n

}
⊂

n⋃
j=(m+l)k+1

{Xj > 1− x/n} ,

and, hence,

∆1 6 (m+ l)P
{
X1 > 1− x/n

}
= (m+ l)x/n→ 0 as n→∞.

Similarly,

∆2 6 lk P
{
X1 > 1− x/n

}
= lkx/n→ 0 as n→∞.

Further, we can write

∆3 6 |P (A1A2 . . . Ak)− P (A1)P (A2) . . . P (Ak)|

+
∣∣∣P (A1)P (A2) . . . P (Ak)−

[
P (A1)

]k∣∣∣
:= ∆′3 + ∆′′3 .

Since each set Ii contains m numbers, by a repeated application of the D(un, vn)
bound (4.1) with (4.2), we obtain

∆′3 6 kαn,m 6
max(x, y)

m

log(mmax(x, y))

log r
+

1

m

r

1− 1/r
→ 0

since m→∞ as n→∞, so it remains to consider ∆′′3 .
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For 1 6 i 6 k let

f
(i)
m,j =

(m+l)(i−1)+m−j+1∑
i=(m+l)(i−1)+1

1(ci = ci+1 = · · · = ci+j−1 = 0)

be the number of times the pattern 00 . . . 0 (j consecutive zeros) appears in the
stretch of the sequence (cn, n ∈ Ii). Since the limit in (2.4) is assumed to exist, we

know that f
(1)
m,j/m = fm,j/m→ fj as m→∞ and, similarly, for i > 2,

f
(i)
m,j

m
=

f(m+l)(i−1)+m,j

(m+ l)(i− 1) +m
· (m+ l)(i− 1) +m

m

−
f(m+l)(i−1),j

(m+ l)(i− 1)
· (m+ l)(i− 1)

m

→ fj · i− fj · (i− 1) = fj .

as m→∞. In the proof of Theorem 2.1 we showed that this impies that

P (Ai) = 1− (r − 1)x

n

j−1∑
d=0

f
(i)
m,d − f

(i)
m,d+1

rd+1
− (r − 1)y

rn
f

(i)
m,j +O(1/n)

= exp

{
−

(
(r − 1)x

n

j−1∑
d=0

f
(i)
m,d − f

(i)
m,d+1

rd+1
− (r − 1)y

rn
f

(i)
m,j

)}
+O(1/n) ,

i = 1, 2, . . .. Consequently,

P (A1)P (A2) . . . P (Ak)

= exp

{
−

k∑
i=1

(
(r − 1)x

n

j−1∑
d=0

f
(i)
m,d − f

(i)
m,d+1

rd+1
− (r − 1)y

rn
f

(i)
m,j

)}
+O(k/n)

= exp

{
−

(
(r − 1)x

n

j−1∑
d=0

fn,d − fn,d+1

rd+1
− (r − 1)y

rn
fn,j

)
+O(kl/n)

}
+O(k/n)

→ exp
{
−H(x, y)

}
as n→∞. Since we also have [

P (A1)
]k → e−H(x,y)

as n→∞, we have proved that ∆′′3 → 0.
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P. Mladenović (2009): Maximum of a partial sample in the uniform AR(1)
process. Statistics and Probability Letters 79:1414–1420.
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