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Abstract

We consider a weighted stationary spherical Boolean model in Rd to which

a Matérn-type thinning is applied. Assuming that the radii of the balls in

the Boolean model have regularly varying tails, we establish the asymptotic

behaviour of the tail of the contact distribution of the thinned germ-grain

model under 4 different thinning procedures of the original model.
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1. Introduction

We consider hard-core global thinning of a stationary spherical Boolean model in Rd, constructed as

follows. Let Φ be a Poisson point process on Rd × (0,∞)× (0,∞) with mean measure

m(dx, dr, dw) = λ dxG(dr, dw) . (1.1)

Here λ > 0 is the spatial intensity, and G is a probability law on (0,∞)× (0,∞). We mention that a Poisson

point process is often simply called a Poisson process, or a Poisson random measure. In fact, the “measure

aspect” is particularly important for us in this paper, and we will occasionally emphasize it in the sequel.

Let (Xn, Rn,Wn), n = 1, 2 . . . be a measurable enumeration of the points of Φ. We view Xn ∈ Rd as the

center of the nth ball, and Rn its radius. In the sequel we will use the notation Br(x) for a closed ball

of radius r > 0 centered at x ∈ Rd, so the nth point of Φ corresponds to closed ball BRn(Xn). The last

component, Wn, is the weight of the nth ball, and it will be used below in resolving collisions between balls.
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Let F (·) = G(· × (0,∞)) be the law of the radius marking a spatial Poissonian point. We will assume that∫ ∞
0

rd F (dr) <∞ . (1.2)

It is well known that, under this assumption, with probability 1, a realization of the random field Φ has the

property that only finitely many balls of the type BRn(Xn) intersect any compact set in Rd. This implies

that the union

D =

∞⋃
n=1

BRn(Xn) (1.3)

is a random closed subset of Rd. We refer the reader to Chiu et al. (2013) for this fact, and for a general

reference on Boolean and related models.

It is common to refer to a random configuration of the type we have constructed as a germ-grain model;

such a model does not need to involve a spatial Poisson point process or spherical shapes. In the Boolean

model above each Xn is a germ, and the corresponding closed ball BRn(0) is its grain. The set D in (1.3) is

the grain cover of the space.

Some of the balls BRn(Xn) in the Boolean model will overlap. In ordet to obtain a hard-core germ-grain

model, i.e. a configuration in which no two grains overlap, it is possible to thin the Boolean model, by

removing (at least) one ball in each pair of balls involved in an overlap. We will follow the global thinning

procedure introduced by Mansson and Rudemo (2002). This is where the weight component Wn of the

nth ball is used. Informally, for every pair of different balls, BRn(Xn) and BRm(Xm) with a non-empty

intersection, the ball BRn(Xn) gets deleted if Wn ≤Wm; this procedure deletes both balls if Wn = Wm. To

be a bit more formal, we use the notation borrowed from Kuronen and Leskelä (2013): let

Nx,r,w =
{

(x′, r′, w′) ∈ Rd × R+ × R+\(x, r, w) : Br′(x
′) ∩Br(x) 6= ∅

}
(1.4)

(the notation is somewhat informal: a ball of the type Br(x) is not a subset of Rd ×R+ ×R+; it is really a

subset of that product space with w fixed, so a proper notation would be Bwr (x). As long as no confusion

is likely to arise, we will keep the informal notation because it is simpler.) We view the set Nx,r,w as the

collection of centers, radii and weights of balls that could, potentially, intersect a reference ball Br(x) with

weight w. Then the thinned Boolean model we are considering is given by

Φth =
{

(x, r, w) ∈ Φ : w > w′, for all (x′, r′, w′) ∈ Φ ∩Nx,r,w

}
. (1.5)

By construction, all the remaining grains (balls) in the thinned random field Φth are disjoint. The corre-

sponding grain cover can be written in the form

Dth =
⋃

(x,r,w)∈Φth

Br(x) . (1.6)
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The thinning procedure we are using is sometimes referred to as the Matérn type II construction. An

discussion of different Matérn type constructions and their extensions was given in Nguyen and Baccelli

(2013). This model was studied in Mansson and Rudemo (2002) and Anderson et al. (2006). Chiu et al.

(2013) provided a survey of Matérn thinnings. Teichmann et al. (2013) used probabilistic thinning rules to

generalize Matérn type constructions and presented a detailed second order analysis for these general models.

Our inspiration for the present work came from the paper of Kuronen and Leskelä (2013), and we refer the

reader to this paper for an illuminating discussion of the importance and applications of hard-core germ-grain

models. Specifically, the latter paper considers the case of power law grain sizes; in our notation we can

describe this setup as follows. Recalling that we denote by F the marginal distribution of the probability

measure G in (1.1) corresponding to the random radius of a Poisson ball, the power law distribution of the

grain sizes in Kuronen and Leskelä (2013) is the assumption of regular variation of the tail

F̄ (r) := 1− F (r) = r−αL(r) , (1.7)

where α > d and L is a slowly varying function; recall that a measurable eventually positive function L

is slowly varying at ∞ if for any c > 0, L(cx)/L(x) → 1 as x → ∞. The restriction α > d assures that

the integrability condition (1.2) holds. We refer the reader to Resnick (2007) for information on regular

varying tails. In the sequel we extensively use two facts about regularly varying functions that quantify their

similarity with power functions. The first property is referred to as Potter’s bounds: if (1.7) holds, then for

any fixed δ > 0, there exists x0 > 0 such that, for all x, y ≥ x0,

F̄ (y)/F̄ (x) ≤ (1 + δ) max
{

(y/x)−α+δ, (y/x)−α−δ
}
,

see Theorem 1.5.6 in Bingham et al. (1987). We will also use one of the properties referred to as Karamata’s

theorem, specifically the version that says that if F̄ satisfies (1.7), then it integrates similarly to a power

function: if α > 1, then ∫∞
x
F̄ (t) dt

xF̄ (x)
→ 1

α− 1
as x→∞,

see Proposition 1.5.10 in Bingham et al. (1987).

Under the assumption (1.7) of regular variation, Kuronen and Leskelä (2013) discovered appearance of

power-like decay of the covariance function of the thinned grain cover (1.6), defined by

kth(z) = P (0 ∈ Dth, z ∈ Dth)− P (0 ∈ Dth)P (z ∈ Dth),

as ‖z‖ → ∞. This was the case under three out of four choices of the joint law G in (1.1) they considered;

we will return to these choices in a moment.

In this paper we are interested in the contact distribution for the thinned Boolean model described above.

It is a probability law H on (0,∞) whose complementary c.d.f. is defined by

H̄(r) = P
(
Br(0) ∩Dth = ∅

∣∣0 /∈ Dth

)
, r > 0 . (1.8)
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The contact distribution can, of course, be defined for any germ-grain model. It differs only by a possible

atom at zero from the empty space function, a probability law on [0,∞) defined by

H̄e(r) = P
(
Br(0) ∩Dth = ∅

)
, r ≥ 0 . (1.9)

Contact distributions are important characteristics of germ-grain models; a survey on the topic is in Hug

et al. (2002). Explicit formulas for the contact distributions are mostly available only for Poisson-based

models such as Poisson cluster models. For example, for the non-thinned Boolean model Dth = D, we have

H̄e(r) = exp

{
−λvd

[
rd + d

∫ ∞
r

xd−1F̄ (x− r) dx
]}

, r ≥ 0 .

Here vd is the volume of the d-dimensional unit Euclidean ball. Our goal in this paper is to understand the

tail behaviour of the contact distribution H for the thinned Boolean model with a power law distribution of

the grain sizes. Specifically, we are interested in answering the question whether a power law distribution of

the grain sizes results in a power law behaviour of the contact distribution for the thinned Boolean model.

Notice that for the original Boolean model with the grain cover (1.3) the tail of the contact distribution

decays, obviously, exponentially fast regardless of the distribution of the radius of a ball. It turns out that

certain choices of the joint law G of the radius of a ball and its weight lead to appearance of a power law-like

decay of the contact distribution, while other choices do not.

One possible choice of the law G in (1.1) is given by setting Wn = Rn a.s. for all n, so that G is

concentrated on the diagonal r = w of (0,∞) × (0,∞). With this choice of G, balls with a larger radius

have a larger weight. We refer to this situation as the case of heavy large balls. It is useful to mention

that the results concerning this case remain true if Wn is any strictly increasing function of Rn (and even

more general possibilities fall under the same framework). Another possible choice of G is given by setting

Wn = 1/Rn a.s. for all n. With this choice of G, balls with a smaller radius have a larger weight. As above,

the results concerning this case remain true if Wn is any strictly decreasing function of Rn. A third possible

choice of the law G is to make it a product law, and to make the marginal law of the weights continuous (e.g.

standard uniform). That is, the weights are independent of the radii of the balls. Finally, one could make

the weights of the balls constant (e.g. Wn = 1 a.s. for all n). In this case, only isolated balls in the original

Boolean model (i.e. the balls that do not overlap with any other ball) stay in the thinned grain-germ model

Φth. The latter thinning mechanism is known as the Matérn type I construction.

It is interesting that, as it was shown in Kuronen and Leskelä (2013), when the radii of the balls are

regularly varying as in (1.7), the covariance function of the thinned grain cover (1.6) has a power-like decay

under all of the above thinning mechanisms apart from the case of heavy small balls.

In a certain sense the above situation is preserved when one is interested in the tail of the contact

distribution. In Section 2 we show that this tail has a power-like decay in all cases apart from the case of
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heavy small balls. Interestingly, the power of the rate of decay is different for the three thinning mechanisms

considered here. Finally, in Section 3, on the other hand, we show that in the situation when a ball with a

large radius has a smaller weight than a ball with a small radius, the tail of the contact distribution decays

exponentially fast.

2. Power law of the contact distribution

We start this section with showing that, in the case when a ball with a larger radius in a Boolean model

has a larger weight than a ball with a smaller radius, the contact distribution of the thinned model has a

tail with power-like decay.

Theorem 1. Assume that the distribution of the radii of the balls in the Boolean model satisfies (1.7) with

α > d. If Wn = Rn a.s. (i.e. if larger balls have larger weights), then the contact distribution of the thinned

germ-grain model satisfies

0 < lim inf
r→∞

H̄(r)(
rdF̄ (r)

)2 ≤ lim sup
r→∞

H̄(r)(
rdF̄ (r)

)2 <∞ . (2.1)

Proof. Throughout the proof, we may and will work with the tail of the empty space function (1.9)

instead of the tail of the contact distribution. Further, we denote by c a finite positive constant whose value

is not important and that may change from one appearance to the next. We will also introduce a notational

simplification. The Poisson point process Φ is a measure in the d+2-dimensional space Rd× (0,∞)× (0,∞),

but in the present context the “weight” coordinate is a function of the “radius” coordinate, so it is simpler

to view Φ as a measure in the d+ 1-dimensional space Rd × (0,∞), described by the location of the center

of a ball and its radius. We will use the appropriate notation throughout the proof.

We start with proving the lower bound in (2.1). We will construct a scenario under which the ball Br(0)

does not intersect Φth. The idea of the construction is that a single ball with a large radius in Φ “eliminates”

all the other balls in Φ that intersect Br(0), and then another ball in Φ of an even larger radius “eliminates”

the first ball of a large radius, but does not itself intersect Br(0). That will leave Br(0) disjoint from Φth.

The two large balls will have centers in sets of sizes proportional to r, and also radii of the size proportional

to r, which explains the order of magnitude of the tail in (2.1).

For r > 0 we consider three disjoint subsets of Rd × (0,∞):

A(1)
r =

{
(x, t) : t ≥ ‖x‖+ r

}
, (2.2)

A(2)
r =

{
(x, t) : max(r, ‖x‖ − r) ≤ t < ‖x‖+ r

}
, (2.3)

A(3)
r =

{
(x, t) : ‖x‖ − r ≤ t < r

}
. (2.4)



6 Y.Dong, G. Samorodnitsky

Notice that only those balls BRn(Xn) in Φ for which (Xn, Rn) ∈ A
(1)
r ∪ A(2)

r ∪ A(3)
r intersect Br(0).

Furthermore, any ball BRn(Xn) in Φ for which (Xn, Rn) ∈ A(1)
r contains the entire ball Br(0) as a subset.

The set A
(1)
r will be most important for us in proving the lower bound in (2.1). Consider the event

Br =
{

Φ
(
A(1)
r

)
= 1, Φ

(
A(2)
r

)
= 0
}
.

On the event Br we can define a random vector (X(r), R(r)
)
∈ A

(1)
r corresponding to the location of the

center and the radius of the single ball in Φ for which that pair is in the set A
(1)
r . We extend the definition

of (X(r), R(r)
)

to the outside of the event Br in an arbitrary measurable way (e.g. define it on Bcr to be the

pair (0, 1).) Clearly, this vector has the law

P
(
(X(r), R(r)) ∈ ·

∣∣Br) =
(Leb× F )(·)

(Leb× F )(A
(1)
r )

over A
(1)
r . Here Leb is the d-dimensional Lebesgue measure. Note that

H̄e(r) = P
(
Br(0) ∩Dth = ∅

)
≥ P (Br ∩ B̂r) , (2.5)

where

B̂r =
{

there is a Φ-ball BRn(Xn) with (Xn, Rn) ∈ (A(1)
r ∪A(2)

r ∪A(3)
r )c

and Rn > R(r) that intersects BR(r)(X(r)).
}

Let vd be the volume of the unit ball in Rd. By switching to the spherical coordinates we see that for the

large r,

E
[
Φ
(
A(1)
r

)]
=λdvd

∫ ∞
0

xd−1F̄ (x+ r) dx (2.6)

=λdvdr
d

∫ ∞
0

td−1F̄ (r(t+ 1)) dt

∼crdF̄ (r)→ 0 .

On the last step we used the Potter bounds for regularly varying functions; see Resnick (2007). Therefore,

for large r,

P (Br) ∼E
[
Φ
(
A(1)
r

)]
∼ c rdF̄ (r) . (2.7)

Similarly,

E
[
Φ
(
A(2)
r

)]
∼ crdF̄ (r)→ 0,

as r →∞.

Next, for (y, w) ∈ A(1)
r we denote

Ar,(y,w) =
{

(x, t) ∈ (A(1)
r ∪A(2)

r ∪A(3)
r )c : t > w, the ball Bt(x) intersects the ball Bw(y)

}
.
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Then, since a Poisson point process, viewed as a random measure, assigns independent values to disjoint

sets,

P (B̂r|Br) =
1

(Leb× F )(A
(1)
r )

∫ ∫
(y,w)∈A(1)

r

P
(
Φ(Ar,(y,w)) > 0

)
dyF (dw)

≥ 1

(Leb× F )(A
(1)
r )

∫
B3r(0)\B2r(0)

∫ 5.5r

5r

(
1− exp

{
−m(Ar,(y,w))

})
dyF (dw)

because, obviously, (
B3r(0) \B2r(0)

)
× (5r, 5.5r) ⊂ A(1)

r .

It follows from (2.6) that

(Leb× F )
[
(B3r(0) \B2r(0))× (5r, 5.5r)

]
(Leb× F )(A

(1)
r )

≥ c

for all large r. Therefore, the lower bound in (2.1) will follow from (2.5) and (2.7) once we show that there

is a constant c such that for all r large enough

m(Ar,(y,w)) ≥ c rdF̄ (r) (2.8)

for all (y, w) ∈ (B3r(0) \B2r(0))× (5r, 5.5r). To this end, for such a pair (y, w) consider the point

ỹ =
y

‖y‖
(‖y‖+ w) ∈ Rd ,

and the ball Br(ỹ). Let ‖z‖ ≤ r. Note that the distance from the point ỹ+z ∈ Br(ỹ) to the ball Bw(y) does

not exceed ‖z‖ ≤ r, while the distance from that same point to ball Br(0) is greater than ‖y‖+w−r > w+r.

Taking into account the bounds on w we have chosen, we see that any ball centered at a point ỹ+z ∈ Br(ỹ)

with a radius t ∈ (5.5r, 6r) will intersect the ball Bw(y) but not the ball Br(0). We conclude that for a pair

(y, w) as above,

Ar,(y,w) ⊃
{

(x, t) : x ∈ Br(ỹ), t ∈ (5.5r, 6r)
}
,

implying that

m
(
Ar,(y,w)

)
≥ c rd

(
F̄ (5.5r)− F̄ (6r)

)
∼ c rdF̄ (r)

as r →∞, by the regular variation. This proves (2.8).

Now we switch to proving the upper bound in (2.1). Let K > 0 be a fixed number to be specified

momentarily. Denote

A(4)
r (K) =

{
(x, t) : max(r/K, ‖x‖ − r) ≤ t < ‖x‖+ r

}
.

The same argument using regular variation and the Potter bounds as in (2.6) shows that for large r,

E
[
Φ
(
A(4)
r (K)

)]
≤ c rdF̄ (r) (2.9)
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(with a K-dependent constant c). This bound, together with (2.6), tells us that for large r,

P
(
Φ
(
A(1)
r

)
≥ 2
)
≤ c
(
rdF̄ (r)

)2
, P

(
Φ
(
A(4)
r (K)

)
≥ 2
)
≤ c
(
rdF̄ (r)

)2
,

P
(
Φ
(
A(1)
r

)
≥ 1, Φ

(
A(4)
r (K)

)
≥ 1
)
≤ c
(
rdF̄ (r)

)2
.

Therefore, the upper bound in (2.1) will follow once we prove the following 3 statements. For large r,

P
(
Br(0) ∩Dth = ∅, Φ

(
A(1)
r

)
= 1
)
≤ c
(
rdF̄ (r)

)2
, (2.10)

P
(
Br(0) ∩Dth = ∅, Φ

(
A(4)
r (K)

)
= 1
)
≤ c
(
rdF̄ (r)

)2
, (2.11)

P
(
Br(0) ∩Dth = ∅, Φ

(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0
)
≤ c
(
rdF̄ (r)

)2
. (2.12)

We will see that (2.10) and (2.11) hold for any K > 0. We will specify K when we prove (2.12).

We start with proving (2.10). For the event in that probability to occur, the only Φ-ball in A
(1)
r must

overlap with another Φ-ball, of a larger radius, and lying outside of A
(1)
r . Since restrictions of a Poisson

point process to disjoint sets are independent, and since the only Φ-ball in A
(1)
r has a radius of at least r,

the probability in (2.10) is bounded from above by

P
(
Φ
(
A(1)
r

)
= 1
)

sup
s≥r

P
(
Φ(A(5)

s ) > 0
)
,

where

A(5)
s =

{
(x, t) ∈ Rd × (0,∞) : t > s, the ball Bt(x) intersects the ball Bs(0)

}
, (2.13)

the center of the ball of radius s being irrelevant due to the stationarity. It is elementary that for large s,

by the regular variation of F̄ and Karamata’s theorem on integration of regularly varying functions (see e.g.

Resnick (2007)),

m
(
A(5)
s

)
=c

∫ ∞
0

xd−1F̄
(
s ∨ (x− s)) dx (2.14)

=c(2s)dF̄ (s) + c

∫ ∞
2s

xd−1F̄ (x− s) dx

≤csdF̄ (s) .

Therefore, for large s,

P
(
Φ(A(5)

s ) > 0
)
≤ csdF̄ (s) ,

and (2.10) follows from (2.6). Clearly, all the ingredients involved in the proof of (2.10) are also available

for the proof of (2.11), so we only need to prove (2.12).

Now we explain how to choose K. It will be chosen together with several other constants. Choose

sequentially positive real numbers 0 < θ < d/α and 0 < τ < θ(α− d), a positive integer I > 2(α− d)/τ − 1
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and, finally, K > 2I+1. We start with considering the concentric balls Br2−i(0), i = 0, 1, . . . , I. For

i = 0, 1, . . . , I, let

Mi = sup
{
Rn : BRn(Xn) is an Φ-ball, ‖Xn‖+Rn < r2−i

}
.

Then

P
(
Mi ≤

(
r2−i

)θ)
= exp

{
−m

({
(x, t) : ‖x‖+ t < r2−i, t >

(
r2−i

)θ})}
.

Further, since θ < 1,

m
({

(x, t) : ‖x‖+ t < r, t > rθ
})

≥m
({

(x, t) : ‖x‖ < r/2, rθ < t ≤ r/2
})

=crd
(
F̄ (rθ)− F̄ (r/2)

)
∼ crdF̄ (rθ)

as r →∞. By the choice of θ we see that

P
(
Mi ≤

(
r2−i

)θ)
= o(

(
rdF̄ (r)

)2
), i = 0, 1, . . . , I ,

and so (2.12) will follow once we prove that

lim sup
r→∞

P
(
Br(0) ∩Dth = ∅, Φ

(
A

(1)
r

)
= Φ

(
A

(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

)
(
rdF̄ (r)

)2 <∞ . (2.15)

Consider the events

Hi =
{

the Φ-ball fully inside Br2−i(0) of the largest radius,

is eliminated by an Φ-ball not fully inside Br2−i(0)
}
,

i = 0, 1, . . . , I. Note that, on the event Hc
i , the largest Φ-ball fully inside Br2−i(0) stays in the thinned

process, hence Br(0) ∩Dth 6= ∅. Therefore, in order to prove (2.15), it is enough to prove that

lim sup
r→∞

(
rdF̄ (r)

)−2
P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
(2.16)

∩H0 ∩ . . . ∩HI

)
<∞ .

Consider first the probability

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
∩HI

)
≤P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,MI >

(
r2−I

)θ} ∩HI

)
.

On the latter event, we can define a random vector
(
X̃I , R̃I

)
as the center and the radius of the largest

Φ-ball fully within Br2−I (0). Note that R̃I >
(
r2−I

)θ
. The random vector

(
X̃I , R̃I

)
is determined by the

Poisson process Φ on the set {
(x, t) : ‖x‖+ t < r2−I

}
,
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and the corresponding Φ-ball can only be eliminated by the Φ-balls in the complement of that set. Since

restrictions of a Poisson point process to disjoint sets are independent, we conclude, in the notation of (2.13)

that for large r,

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,MI >

(
r2−I

)θ} ∩HI

)
≤ sup
s≥(r2−I)θ

P
(
Φ(A(5)

s ) > 0
)

≤c
(
r2−I

)θd
F̄
(
(r2−I)θ

)
≤ cr−τ ,

where on the last two steps we used (2.14), the choice of τ and the regular variation of F̄ .

Next we consider the probability

P
( {

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
∩HI−1 ∩HI

)
≤P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = I − 1, I

}
∩HI−1 ∩HI

)
.

Note that the condition Φ
(
A

(1)
r

)
= Φ

(
A

(4)
r (K)

)
= 0 in the above event means that the largest Φ-ball

completely within Br2−I (0) could only be eliminated by a Φ-ball centered at a point whose norm is in the

range r2−I ± r/K, while the largest Φ-ball completely within Br2−(I−1)(0) could only be eliminated by a

Φ-ball centered at a point whose norm is in the range r2−(I−1) ± r/K. These two ranges are disjoint by the

choice of K. We use, once again, the fact that restrictions of a Poisson point process to disjoint sets are

independent, and an argument as above gives us

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = I − 1, I

}
∩HI−1 ∩HI

)
≤ c
(
r−τ

)2
.

Proceeding in the same manner, we finally obtain

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
∩H0 ∩ . . . ∩HI

)
≤ c
(
r−τ

)I+1

for large r. By the choice of I, we see that (2.16) follows.

Now we consider the case of isolated balls remaining. Once again, the contact distribution has a power-

like decaying tail, but the corresponding power is different from the power obtained in Theorem 1. This

is, perhaps, not surprising, since keeping only isolated balls results in fewest balls remaining in the thinned

model, hence larger “open space”.

Theorem 2. Assume that the distribution of the radii of the balls in the Boolean model satisfies (1.7) with

α > d. If only isolated balls are kept in the thinned model, then the contact distribution of the thinned

germ-grain model satisfies

0 < lim inf
r→∞

H̄(r)

rdF̄ (r)
≤ lim sup

r→∞

H̄(r)

rdF̄ (r)
<∞ . (2.17)
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Proof. We use the same conventions as in the proof of Theorem 1. In particular, we work with the tail of

the empty space function, and view the Poisson point process Φ as a measure in the d+ 1-dimensional space

Rd × (0,∞).

Once again, we start with a lower bound. One scenario under which the ball Br(0) is disjoint from the

grain cover in the thinned model is existence of a Φ-ball that covers the entire ball Br(0) plus existence of

a Φ-ball that is entirely within the ball Br(0). Since

m
({

(x, t) : Bt(x) ⊂ Br(0)
})
→∞

as r →∞, we conclude by (2.6) that

P
(
Br(0) ∩Dth = ∅

)
≥
(
1− o(1)

)
P
(
Φ(A(1)

r ) ≥ 1
)

∼E
(
Φ(A(1)

r )
)
∼ c rdF̄ (r) .

This proves the lower bound in (2.17).

The argument for the upper bound in (2.17) is based on several facts. First of all, since the thinned

random filed Φth is a.s. non-empty, for any ε > 0 and large enough a > 0,

P
(

there is Bv(x) ∈ Φth with ‖x‖ ≤ ε and v ≤ a
)
> 0 . (2.18)

Secondly, there is a constant c > 0 such that for any 0 < a ≤ r there exist at least [crd/ad] closed balls

of radius a completely within Br(0), such that the Euclidean distance between any two different balls is at

least a. This fact can be easily verified by considering a regular grid of size a inside Br(0).

Let M(r) be the largest radius of a Φ-ball intersecting Br(0) (defined to be 0 if no Φ-ball intersects Br(0)).

Clearly, for any t > 0,

P
(
M(r) > t

)
= 1− e−m(A

(6)
r,t ) ,

where

A
(6)
r,t =

{
(x, s) ∈ Rd × (0,∞) : s > t, the ball Bs(x) intersects the ball Br(0)

}
.

An argument similar to the one in (2.14) shows that

m
(
A

(6)
r,t

)
≤ c rdF̄ (t) , (2.19)

with a similar lower bound, but with a different constant c. Write

P
(
Br(0) ∩Dth = ∅

)
≤ P (M(r) > r) +

∫ r

0

P
(
Br(0) ∩Dth = ∅|M(r) = t

)
FM(r)(dt) ,

where FM(r) is the law of M(r). It follows from (2.19) that we have to prove that

lim sup
r→∞

∫ r
0
P
(
Br(0) ∩Dth = ∅|M(r) = t

)
FM(r)(dt)

rdF̄ (r)
<∞ . (2.20)
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It follows from Mecke’s characterization of the Poisson process that there is a version of the regular

conditional law of the Poisson process Φ given M(r) such that, on the event {M(r) > 0}, given that

M(r) = t for t > 0, the point process Φ restricted to the set A
(6)
t = {(x, s) : s < t} is still a Poisson point

process on that set with the same mean measure m, restricted to that set; see Mecke (1967). Take a > 0

such that (2.18) holds, and choose ε = a. Let 0 < p < 1 be the corresponding value of the probability in

(2.18). Consider a < t < r. There are [crd/td] closed balls of radius t completely within Br(0), such that

the Euclidean distance between any two different balls is at least t. For each one of these [crd/td] balls, with

probability at least p, there is an isolated Φ-ball with a center in it, and radius not exceeding t. The events

that such Φ-balls exist are independent, and presence of such a Φ-ball guarantees that Br(0) ∩ Dth 6= ∅.

Therefore, for any t > a,

P
(
Br(0) ∩Dth = ∅|M(r) = t

)
≤ (1− p)[crd/td] ≤ (1− p)−1(1− p)cr

d/td .

It is clear that

P
(
M(r) ≤ a

)
≤ e−cr

d

= o
(
rdF̄ (r)

)
.

Furthermore, ∫ r

a

P
(
Br(0) ∩Dth = ∅|M(r) = t

)
FM(r)(dt)

≤c
∫ r

a

e−r
d/ctd FM(r)(dt)

≤crd
∫ r

0

e−r
d/ctd t−(d+1)F̄M(r)(t) dt

≤cr2d

∫ r

0

e−r
d/ctd t−(d+1)F̄ (t) dt

=crd
∫ 1

0

e−1/csd s−(d+1)F̄ (rs) ds

∼crdF̄ (r)

∫ 1

0

e−1/csd s−(α+d+1) ds

as r → ∞ by the regular variation of F̄ and the Potter bounds. This completes the proof of (2.20) and,

hence, of the upper bound in the theorem.

Finally, we consider the case when the weights are independent of the radii of the balls.

Theorem 3. Assume that the distribution of the radii of the balls in the Boolean model satisfies (1.7) with

α > d. If the weight of a ball in the model is independent of its radius and has a continuous distribution,

then the contact distribution of the thinned germ-grain model satisfies

0 < lim inf
r→∞

H̄(r)

F̄ (r)
≤ lim sup

r→∞

H̄(r)

F̄ (r)
<∞ . (2.21)
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Proof. The structure of the argument is similar to that in Theorem 1. We also follow the conventions in

the proof of Theorem 1 by working with the tail of the empty space function. However, since in this case the

weight of a Φ-ball is not a function of its radius, we have to view the Poisson point process Φ as a measure

in the full d+ 2-dimensional space Rd × (0,∞)× (0,∞).

As before, we start with proving the lower bound in (2.21). The scenario we will use is similar to the

scenario we used to prove the lower bound in Theorem 1. Specifically, in this scenario there is a single ball of

a large radius and large weight that “eliminates” all the other Φ-balls that intersect Br(0), and then another

ball in Φ of an even larger weight “eliminates” the first ball, but does not itself intersect Br(0). Recall the

definition of the sets A
(1)
r , A

(2)
r and A

(3)
r in (2.2) - (2.4) accordingly. As before, on the event

Br =
{

Φ
(
A(1)
r × (0,∞)

)
= 1
}
,

we can define a random vector (X(r), R(r),W (r)
)

corresponding to the location of the center, the radius and

the weight of the single ball in Φ for which the pair (X(r), R(r)
)

is in the set A
(1)
r . Therefore,

P
(
Br(0) ∩Dth = ∅

)
≥ P (Br ∩ B̂r) ,

where now

B̂r =
{
W (r) > max{w : (x, t, w) ∈ Φ

(
(A(2)

r ∪A(3)
r )× (0,∞)

)
and there is (x, t, w) ∈ Φ

(
(A(1)

r ∪A(2)
r ∪A(3)

r )c
)

and w > W (r) such that Bt(x) intersects BR(r)(X(r))
}
.

A standard computation shows that if (for example) 2r ≤ R(r) ≤ 3r, then the expected number of the

Boolean balls that intersect BR(r)(X(r)) but not Br(0) is at least crd. Similarly,

P
(

Φ
(
A(1)
r × (0,∞)

)
= 1, 2r ≤ R(r) ≤ 3r

)
≥ crdF̄ (r) .

Since

m
(
(A(2)

r ∪A(3)
r )× (0,∞)

)
≤ crd ,

in order to prove the lower bound in (2.21) it is enough to prove the following statement. Let c1, c2 be

positive numbers, and let N1, N2 be independent Poisson random variables with means c1r
d and c2r

d,

correspondingly. Let W0, W
(1)
n , n = 1, 2, . . . , W

(2)
n , n = 1, 2, . . . be i.i.d. standard uniform random variables

independent of the Poisson random variables. Then for some positive c,

P
(

sup
n≤N2

W (2)
n > W0 > sup

n≤N1

W (1)
n

)
≥ cr−d . (2.22)

To this end, note that, by symmetry, for any fixed n1 ≥ 1, n2 ≥ 1,

P
(

sup
n≤n2

W (2)
n > W0 > sup

n≤n1

W (1)
n

)
=

n2

n1 + n2 + 1
· 1

n1 + 1
. (2.23)



14 Y.Dong, G. Samorodnitsky

Now (2.22) follows from the fact that

P
(
N2 ≥ (c2/2)rd

)
→ 1, P

(
N1 ≤ 2c1r

d
)
→ 1

as r →∞. This completes the proof of the lower bound.

Now we prove the upper bound in (2.21). Let K1 be a large positive number we will specify below. Denote

A(7)
r (K1) =

{
(x, s, w) ∈ Rd × (0,∞)× (0,∞) : s ≥ r/K1, the ball Bs(x) intersects the ball Br(0)

}
.

As in (2.9) we have

E
[
Φ
(
A(7)
r (K1)

)]
≤ c rdF̄ (r) (2.24)

(with a K1-dependent constant c). Therefore, if l1 ≥ α/(α− d), then

P
(
Φ
(
A(7)
r (K1)

)
> l1

)
= o
(
F̄ (r)

)
as r →∞, and, hence, we need to prove that

lim sup
r→∞

P
(
Br(0) ∩Dth = ∅, Φ

(
A

(7)
r (K1)

)
≤ l1

)
F̄ (r)

<∞ . (2.25)

Fix θ ∈ (d/α, 1), and let

A(8)
r (K1, θ) =

{
(x, s, w) ∈ Rd × (0,∞)× (0,∞) : rθ < s < r/K1,

the ball Bs(x) intersects the ball Br(0)
}
.

As above, we have for large r,

E
[
Φ
(
A(8)
r (K1, θ)

)]
≤ c rdF̄ (rθ) .

By the choice of θ we see that, if l2 ≥ α/(θα− d), then

P
(
Φ
(
A(8)
r (K1, θ)

)
> l2

)
= o
(
F̄ (r)

)
as r →∞. Therefore, in order to establish (2.25), it is enough to prove that for every j = 0, 1, . . . , l1,

lim sup
r→∞

P
(
Br(0) ∩Dth = ∅, Φ

(
A

(7)
r (K1)

)
= j, Φ

(
A

(8)
r (K1, θ)

)
≤ l2

)
F̄ (r)

<∞ . (2.26)

Now we specify K1 by setting K1 > l2. Note that for every choice of l2 and K1 as above, the complement

in Br(0) of the union of at most l2 balls of radii not exceeding r/K1 contains a ball of a radius γr for some

γ = γ(l2,K1) > 0 (we can choose γ = (1/l2 − 1/K1)/2).

We first consider the case j = 0 in (2.26). Let Φr,θ be the restriction of the Poisson point process Φ to

the set Rd × (0, rθ]× (0,∞). Using, once again, the property of a Poisson point process that its restrictions

to disjoint sets are independent, we see that (2.26) with j = 0 will follow once we show that

lim sup
r→∞

P
(
Bγr(0) ∩Dr,θ,th = ∅

)
F̄ (r)

<∞ , (2.27)
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where Dr,θ,th is the grain cover corresponding to the thinning of Φr,θ (with the weights still being independent

of the radii). The fact that we are allowed to use the ball centered at the origin in (2.27), instead of a randomly

centered ball described in the previous paragraph, is a consequence of translation invariance of Φr,θ.

In order to prove (2.27), we need one more simple estimate. Let t be a large number, t ≤ γr/3. Consider

concentric balls Bt/3(0), Bt(0) and B3t(0). Then there is 0 < q < 1 such that

P
(

sup{w : (x, s, w) ∈ Φr,θ
(
(Bt(0) \Bt/3(0))× (0,∞)

)
} (2.28)

> max
(

sup{w : (x, s, w) ∈ Φr,θ
(
(Bt/3(0) \Bt/9(0))× (0,∞)

)
},

sup{w : (x, s, w) ∈ Φr,θ
(
(B3t(0) \Bt(0))× (0,∞)

)
}
)
≥ q

for all t large enough. Indeed, the Poisson point process Φr,θ assigns mean measures of the order ctd to

each of the three annuli in question (with c K1-dependent), so (2.28) follows by using conditioning and a

computation analogous to (2.23).

Now it is clear that the probability in the numerator in (2.27) can be bounded from above by (1− q)cr1−θ

for some c > 0 because we can fit into Bγr(0) triple annuli as above with the radial separation between

neighboring triples exceeding rθ, which makes, by the definition of Φr,θ, the events whose probabilities are

computed in (2.28), independent. Therefore, (2.27) holds, and so we have proved (2.26) with j = 0.

Next we consider (2.26) with j = 1. It follows from (2.24) that

P
(
Φ
(
A(7)
r (K1)

)
= 1
)

= O
(
rdF̄ (r)

)
as r →∞. Therefore, we need to prove the following version of (2.27): consider the grain cover Dr,θ,th and

a random variable W independent of it, whose law is the distribution of the weight in the Boolean model

(W is the weight of the single ball in Φ
(
A

(7)
r (K1)

)
. We eliminate all the balls in Dr,θ,th whose weight is

smaller or equal to W , and we call the resulting grain cover D̂r,θ,th. Then (2.26) with j = 1 will follow once

we prove that

lim sup
r→∞

rdP
(
Bγr(0) ∩ D̂r,θ,th = ∅

)
<∞ . (2.29)

In order to see that this is true, we use an argument similar to the one used to prove (2.27). Consider the

triple annuli in (2.28). Since we already know that the probability that fewer than cr1−θ events in (2.28)

occurs is o(r−d), we only need to consider what happens if at least cr1−θ of the events occur. In the latter

case, the only possibility for Bγr(0) ∩ D̂r,θ,th = ∅ is that the weight of the heaviest Φ-ball in the union of

cr1−θ of annuli of radii of order cr and width of order crθ does not exceed W . Since the mean measure of

the Poisson point process Φr,θ assigns the weight of the order crd to that union, the latter probability does

not exceed cr−d, once again, by conditioning and a computation analogous to (2.23).

Therefore, (2.29) is true, and so we have proved (2.26) with j = 1. The cases j = 2, . . . , l1, are similar
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and easier, since the probabilities

P
(
Φ
(
A(7)
r (K1)

)
= j
)

become asymptotically smaller as j increases.

This completes the proof of the upper bound in (2.21).

3. Heavy small balls and exponential decay of the contact distribution

In this section we prove that, if the weight of a ball is a strictly decreasing function of its radius, then the

tail of the contact distribution decays exponentially fast. This turns out to be unrelated to the fact that the

tail of the radii of the balls is regularly varying.

Theorem 4. Assume that the distribution of the radii of the balls in the Boolean model satisfies (1.2). If

Wn = 1/Rn a.s. (i.e. if larger balls have smaller weights), then for some c > 0 the contact distribution of

the thinned germ-grain model satisfies

H̄(r) ≤ e−cr
d

(3.1)

for all r large enough.

Proof. Once again, we work with the tail of the empty space function. Since the weight of a ball is a

function of its radius, we switch, once again, to viewing the Poisson point process Φ as a measure in the

d+ 1-dimensional space Rd × (0,∞).

Choose a finite number γ > 0 such that

F
(
(0, γ)

)
> 0 .

Let Φγ be the restriction of the Poisson point process Φ to the set {(x, s) : s ≤ γ}. As in the proof of

Theorem 2, for some c > 0 that depends on γ, we can find at least crd disjoint balls of radius γ within Br(0),

such that the distance between any two different balls exceeds 2γ. Let us call these balls Bi, i = 1, . . . , n,

with n ≥ crd. For i = 1, . . . , n consider the event

Hi =
{

Φγ
({

(x, s) : Bs(x) ∩Bi 6= ∅
})

= 1, Φγ
({

(x, s) : Bs(x) ∩
[(
Bi +Bγ(0)

)
\Bi

]
6= ∅
})

= 0
}
.

Here Bi + Bγ(0) is simply the ball concentric with Bi of radius 2γ. Note that, on the event Hi, the single

Φγ-ball in the description on the event cannot be “eliminated” by any other Φ-ball. Indeed, if another

Φγ-ball intersected it, the latter ball would be in the set
[(
Bi + Bγ(0)

)
\ Bi

]
, which is impossible on the

event Hi. Furthermore, any Φ-ball which is not a Φγ-ball has simply too large a radius. Therefore,

P
(
Br(0) ∩Dth = ∅

)
≤ P

(
∩ni=1H

c
i

)
=
(
1− P (H1)

)n ≤ (1− P (H1)
)crd

.
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The equality in this calculation follows from the fact that the balls Bi are sufficiently far away from each

other so that different events Hi are determined by restrictions of the Poisson point process Φγ to disjoint

sets and, hence, are independent.

In order to prove the theorem we only need to check that P (H1) > 0. Since Φγ is translation invariant,

we replace, in the calculation below, B1 by Bγ(0) and B1 + Bγ(0) by B2γ(0). Note that the event H1 is

defined as the intersection of two independent events, so we only need to check that each one of these events

has a positive probability.

It is clear that

Φγ
(
Bγ(0)× (0, γ]

)
⊂ Φγ

({
(x, s) : Bs(x) ∩Bγ(0) 6= ∅

})
⊂ Φγ

(
B2γ(0)× (0, γ]

)
,

so that

E
[
Φγ
({

(x, s) : Bs(x) ∩Bγ(0) 6= ∅
})]
∈ (0,∞)

and, hence,

P
(

Φγ
({

(x, s) : Bs(x) ∩Bγ(0) 6= ∅
})

= 1
)
> 0 .

Further,

Φγ
({

(x, s) : Bs(x) ∩
(
B2γ(0)

)
\Bγ(0)

)
6= ∅
})
⊂ Φγ

(
B3γ(0)× (0, γ]

)
,

so that

E
[
Φγ
({

(x, s) : Bs(x) ∩
(
B2γ(0)

)
\Bγ(0)

)
6= ∅
}]
<∞

and, hence,

P
(

Φγ
({

(x, s) : Bs(x) ∩
(
B2γ(0)

)
\Bγ(0)

)
6= ∅
}

= 0
)
> 0 .

This implies that P (H1) > 0, and the proof of the theorem is complete.

Notice that a lower bound of the type

H̄(r) ≥ e−cr
d

for large r (with, possibly, a different exponent c than in (3.1)) is trivially true since it holds for the original

spherical Boolean model even before thinning.
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