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Abstract— We address two fundamental issues in the compu-
tational theory of mind (CTM): the extreme accuracy of visual
signal perception and the quick recall of relevant information
from a vast memory. The key component of our approach is
an algorithm that converts the spatial signal into a temporal
representation. The model is motivated by human vision, but
it is valid for concept abstraction and analogical thinking in
general.

I. INTRODUCTION

Human and animal minds are constantly searching for
relations among event sequences, observed or internal. In
fact all objects (as well as concepts and their interactions) are
defined by the relations among their constituents. Relations
are much more stable and useful than raw signal pieces.
Remembering the repeating relations is effective in the
survival game. We ask the following questions: 1) how does
the mind generate invariant relations, 2) how should invariant
relations be encoded to enable fast retrievable memory with
a huge capacity, and 3) what are the enabling algorithms for
these processes?

We first tackle the questions about visual perception re-
lated relation generation. We see many objects in our visual
scene simultaneously, and when focusing we see some very
clearly. Our two eyes each receive a different set of light
signals, but we don’t see doubles. Even in just one eye, we
have millions of photo receptors in different places, and they
work together to provide a seamless perception of the visual
scene. How do they collaborate?

Our hypothesis, which provides a vital cue to many of the
puzzles of the mind behavior, is that all these photo receptors
are sampling the same set of signal values that characterize
the visual scene, thereby helping each other in the spirit of
the law of large numbers, where the repeated observations
for a fixed statistical parameter help reducing the estimation
inaccuracy.

Similarly, in unsupervised object recognition, a fundamen-
tal issue is the definition of an object. If a cat is an object,
is an ear of a cat also an object? How about the ear tip?
This raises an algorithmic question about signal processing
in the early stages of the visual pathway. The spatial visual
signals need to be converted to time signal representations
to travel and communicate. Such time signals, representing
a small visual region, should be able to add to those of the
neighboring regions in order to represent the larger region.
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Such additivity would demand the processing algorithms at
this level be linear. We develop such processing algorithms in
Section II and discuss relation generation with such models
in Section III.

Finally, to enable the memory network to have a large
capacity, we make the network nodes active. The usual mem-
ory networks use only the link weights to code the content
and the nodes are assumed to serve as the homogeneous
connection hubs only. In contrast, the nodes in our proposed
memory network are cascaded resonating circuits with a wide
range of resonance frequencies. This will be discussed in
Sections IV-VII.

Visual signal processing is not very different from concept
abstraction in the mind. This is not strange since Nature
repeats successful mechanisms. To this end we use the
following outline bullets to provide a background for some
statements in the paper.
• Intelligence is based on matching signals with relational

experiences, not pixel or sound experiences;
• For this, signals must be converted to a format aimed

at relation generation;
• Relational similarity testing must be quick and robust;
• Such testing is ubiquitous at all levels of experience

matching;
• Language is the algebra of relation sets (and thus an

intelligence amplifier);
• We develop algorithms for signal conversion, relation

generation, memory retrieving and concept abstraction.

II. AN ANALYSIS OF VISUAL SIGNAL SAMPLING
MECHANISM

Our visual scene is stable and accurate despite the move-
ments of our body and eye balls. We believe this is due to
the fact that each of a large number of photoreceptor cells
is sampling the same set of signal values. These values are
closely related to the phase shift in each Fourier element of
the signal marked by the spatial frequency pair (u, v).

To illustrate the process of acquring the phase related
signal we look at the following simplified model. Consider

ψ̇(x, t) =

∫
Ds

A(x, x′)ψ(x′, t)dx′ (1)

with ψ(x, t) the “system state” at location x and time t, Ds

a small region covered by the concerned signal sampler, or
“neuron”. A(x, x′) is the symmetric (for ease of discussion)
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spatial signal with the spectral decompostion

A(x, x′) =
∑
i

αiφi(x)φi(x
′). (2)

This leads to (assuming an uniform initial condition
ψ(x, 0) ≡ 1)∫

Ds

ψ(x, t)dx =
∑
i

eαit

(∫
Ds

φi(x)dx

)2

. (3)

As can be seen the signal
∫
Ds
φi(x)dx is being “carried”

by the time function exp(αit). Note that the model treats
the image as an operator acting on the system state which
enables the separation of αi and φi(x)φi(x

′). This is a major
departure from the conventional approches of spatial signal
processing where the singal is viewed as a passive object.
This also confirms to the biology reality where the light
signals keep acting on the retina.

We now argue that the integral of the eigenfunction
over a fixed region provides a phase-related signal. For the
simplicity of illustration we consider a 1D function f(x) on
the real line. The Fourier series coefficients of f(x) form a
sequence of complex numbers each with a magnitude and a
phase. Consider a signal sampler that sums the Fourier series
terms over an interval [α, β]. We have for the nth Fourier
term an sin(nωx) + bn cos(nωx) = rn sin(nωx + φn),
that (ignoring rn, which becomes a factor in the carrier
mode/frequency as mentioned)

gnαβ(f)

=

∫ β

α

sin(nωx+ φn)dx

=
2

nω
sin

(
α+ β

2
nω + φn

)
sin

(
β − α

2
nω

)
(4)

where all items except φn are fixed by the sampler position
and size in the visual sensory system and are independent
of the function f(x). The difference between two functions
f1(x) and f2(x) will be reflected in their φn’s and eventually
in the differences between gnαβ(f1) and gnαβ(f2). Note that all
the samplers at different positions are getting the information
about the same φn’s. Note also that the phase shifts are much
more important than the magnitude as demonstrated in some
image processing examples. Furthermore the purpose of such
signal processing is not to reconstruct the original image but
to be able to tell the similarities and differences of the inputs.
The above differences would be accurately estimated and the
high resolution perception of the image differences is enabled
by “all eyes on the same ball”. One may note that the 1/(nω)
factor makes an individual high frequency component small.
However the numbers of the high frequency samplers would
be larger due to the smaller physical sizes, an observation
motivated the method of Mel-frequency cepstrum in audio
signal processing.

In the theory about the Fourier transform of causal func-
tions the Kramers-Kronig relations and the Bode gain-phase
relation assert that the magnitude and the phase determines
each other due to the causality constraint [1]. In the case of

2D images the finiteness of the image provide the constraints
[10]. An image is the superposition of 2D Fourier elements
and each 2D sampler is getting the phase-like information
for all elements with strong enough presence.

To detect the differences we note that each gnαβ(f) is
carried by a different frequency. The resonators in the
Resonator Chain Unit (RCU) networks described later will
be able to receive the corresponding quantities. In the brain
such quantities are likely to be thresholded into binary ones
to enable or disable certain RCUs. Then the large numbers
would compensate for such quantization to achieve accuracy.

We note that such “all eyes on the same ball” mechanism
explains the visual accuracy, stability and object recognition
robustness. For example, the phase shifts (φn(t)) for a
moving visual scene (V (x, t)) are collected from many retina
receptors swept by the moving image.

We now develop a basic image processing algorithm unit.
The model is

ψtt(x, t) + γψt(x, t) = αψxx(x, t) + V (x)ψ(x, t) (5)

h(t) =

∫
Ds

ψ(x, t)dx (6)

with ψ(x, t) a function of the location vector x and the time
t, V (x) the image and γ, α real constants. We use this to
convert the spatial signal V (x) into a temporal one h(t) with
a wavy nature so as to communicate with other parts. We
note that V (x) can be time varying V (x, t) to model eye
and image movements. In biology reality the whole region
is bounded by the eye sight of visual scene and is gradually
blurred outside the fovea. Biology study found that the eyes
are in constant motion[17], supporting that the receptors in
different locations should be sampling the same set of signal
values.

To see how the above equations convert signals we use
the ansatz

ψ(x, t) = X(x)T (t) (7)

to substitute in the above equation to see

X(T ′′ + γT ′) = (αX ′′ + V (x)X)T. (8)

If T ′′ + γT ′ = λT and αX ′′ + V (x)X = λX then the
equation is satisfied. Note that

(α∆ + V (x))X = λX (9)

is similar to the time independent Schrodinger equation.
Under quite reasonable assumptions one can employ spectral
decomposition and for the infinite region an eigenfunction
X(x) should be alternating similar to a sinusoid. The “phase
shifts” of the eigenfunctions reflect the changes of the
“potential” or image V (x).

The left side gives us

T ′′ + γT ′ = λT (10)

which is a decayed wave equation. This T (t) is the carrier
signal for the spatial phase-like information associated with
each eigenvector of the operator α∆ +V (x). The phase-like
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information is obtained by integrating ψ(x, t) over a small
region Ds.

That the time function h(t) represents the spatial signal
V (x) can be seen from the realization theory of linear
dynamic systems if we approximate α∆ + V (x) by a large
matrix and double the state space to make the equation
first order in time [2]. Since the sampling grid is fixed the
differences in the visual scenes can be detected from the
time function representations via resonance decompositions.
Also the relations among the h(t)s will form features such
as edges.

III. MAGNUS EXPANSION EXHIBITS RELATIONAL
INFORMATION

The time function h(t) contains rich information about
the relations among the constituents of the incoming signal
V (x, t). This can be seen from the Magnus expansion
described below.

Consider a general time varying linear differential equation
for the n-dimensional vector function Y (t)

d

dt
Y (t) = A(t)Y (t), Y (0) = Y0 (11)

with an n× n matrix A(t). This would be the case if in (5)
we approximate the operator ∆+αV (x, t) by a matrix A(t)
and double the state space to make the equation first order
in time. If [A(t1), A(t2)] = A(t1)A(t2) − A(t2)A(t1) = 0
for all t1, t2 pairs, for example when A(t) ≡ A, we have a
matrix exponential solution

Y (t) = exp

(∫ t

t0

A(s) ds

)
Y0. (12)

In general one could have

Y (t) = exp (Ω(t)) Y0, (13)

with the series construction

Ω(t) =

∞∑
k=1

Ωk(t). (14)

The Magnus expansion provides a solution to the linear time
varying matrix equation above, with the first three terms as

Ω1(t) =

∫ t

0

A(t1) dt1,

Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2 [A(t1), A(t2)] ,

Ω3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]) .

Intuitively when A(t) at different ts are commutative the
solution is provided by Ω1(t). In general the solution needs
more terms in the exponent and the Magnus series does this
in a systematic way. Our usage here is simply to support
the idea that the spatial-temporal signal transformation via
equations (5) and (6) generates an output time function
containing rich relational information among different spatial
and temporal parts of the input signal V (x, t). When the

output time function y(t) hits the RCU networks described
later such relational information forms RCU clusters in
memory. These relational memory will be used to form
common features via repeated experiences, and will serve
as the cues and constraints for retrieval.

In practical algorithms one can use the Fourier phase
arrays to represent signals. Properties of Fourier transform
related to transformations of the original spatial signals such
as translation, scaling, rotation, and differentiation are very
useful in obtaining invariant features.

IV. RESONANCE TRANSIENTS FOR SIGNAL COMPONENT
RECOGNITION

Signal transmissions in the brain are five or six orders of
magnitude slower than modern CPUs [3]. How could the
slow and noisy neurons provide quick and accurate visual
perceptions and fast concept retrieval? Here we discuss a
plausible mechanism using the resonance transients of the
RCU components.

We analyze the transient behavior of a second order
dynamic system stimulated by a exponentially decaying sine
(EDS) function input. Specifically we check

h(t) = e−λt sin(nt) ∗ e−µt sin(mt)

=

∫ t

0

e−λt sin(nτ)e−µt sin(m(t− τ))dτ. (15)

We assume the neural circuits are efficient high Q filters
with a very small µ. We also assume the input signal does
not decay too fast and thus is with a small λ. The latter can
be relaxed. Under these assumptions we have (treating both
λ and µ as zero):

h(t)

=
m sin(nt)− n sin(mt)

m2 − n2

=
m

m2 − n2
[sin(nt)− sin(mt)] +

m− n
m2 − n2

sin(mt)

=
2m

m2 − n2

[
sin(

n−m
2

t) cos(
n+m

2
t)

]
+

1

m+ n
sin(mt). (16)

When m and n are large the impact of the last term is
minimal. The first term is a sine wave at frequency |n +
m|/2 modulated by a low frequency sine wave at frequency
|n−m|/2. When n−m→ 0 it can be shown that this term
goes to t, a basic phenomena in resonance. When n and
m are close this term results in an envelop starting going
down at around π/|n − m|. When the difference |n − m|
increases this point moves closer to the time origin. Note
that the amplitude of the components in the incoming signal
does not have much effect on the behavior described above.

Check Figure 1 for a small scale experiment where an
EDS signal combination is convolved with single EDS
signal components to recognize the signals that are in the
combination. The responses for those that are in the input
combination are marked by red, cyan, magenta and yellow.
The responses for the rest are marked by green, blue and
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Fig. 1. Using Resonance Transients to Recognize Input Components

black. One can see that the response differences are quite
recognizable for the small frequency differences between the
two sets.

functions and legends of Figure 1. per MATLAB code
t=0.0:0.01:20.0;
a=exp(-0.1*t).*sin(500*t);
b=exp(-0.1*t).*sin(505*t);
c=exp(-0.1*t).*sin(510*t);
d=exp(-0.1*t).*sin(515*t);
e=exp(-0.1*t).*sin(495*t);
f=exp(-0.1*t).*sin(490*t);
g=exp(-0.1*t).*sin(520*t);
x=conv(a+b+c+d,a, red;
y=conv(a+b+c+d,b), cyan;
z=conv(a+b+c+d,c), magenta;
w=conv(a+b+c+d,d), yellow;
u=conv(a+b+c+d,e), green;
v=conv(a+b+c+d,f), blue;
s=conv(a+b+c+d,g), black

V. RESONATOR CHAIN AS MEMORY UNIT

We now focus on how to code the EDS signal combina-
tions in memory. To this end we consider a set of resonators
sequentially arranged so that each would get excited in the
time order in which the matching frequency occurs in the
input signal. We call this arrangement a Resonant Chain
Unit, or RCU. RCU uses the resonance mechanism to code
information in an unsupervised manner.

A RCU is composed of several resonators with different
resonating frequencies. There are fixed time delays between
the successive resonators. For an illustrative example con-
sider the case of a RCU consisted of 4 resonators R1 ∼ R4
with frequencies f1 ∼ f4, respectively. The RCU is build as

E R1 R2 R3 R4

O

I

d d d d

BI

BO

Fig. 2. Basic structure of a Resonator Chain Unit (RCU)

R1 → d→ R2 → d→ R3 → d→ R4. When R1 is excited
by a matching frequency close to f1 in the input its output
goes through the delay d and gets the R2 resonator ready. But
R2 has to also receive a signal with a matching frequency
close to f2 to get excited. This process goes on until either
all resonators are excited, or the unit excitation is aborted.
Figure 2 is a schematic structure of a RCU. RCU could be
forced to excite by a signal at the circled box E. Such signals
could be due to group connections via simultaneity, attention,
and other learning-based connections. RCU output can also
branch out (BO in Figure 2) to get other RCU input port
ready to respond to an input. RCU input port has a control
signal BI which receives signals from other RCU’s BO port.
The control signals have a binary nature namely they serve
as on-off switches.

When a RCU is excited it generates output as the sum of
all its resonators with the delays between them. Note that in
Figure 2 the sum signal can go out only when R4 is excited.
The sum signal goes on to other parts looking for similar
RCUs to excite. In the areas immediately behind the signal
receptors the RCUs reset to rest condition shortly after the
excitation input signal vanishes. However the RCUs in the
memory region would sustain the excitation states longer in
order to form connections with other excited RCUs to form
a RCU cluster.

A RCU could also serve as a node in a super RCU
to code more complicated sequences. RCUs may also be
used to code spatial-temporal information and to construct
hierarchies of memory trees to facilitate fast retrieval of
information coded by long RCU sequences. The spatial-
temporal signal conversation algorithms discussed before is
generally applicable to convert the signal of a cluster of
spatially connected RCUs to a time function.

RCU interactions are quick since the resonance effect ac-
cumulates from the moment when the external signal arrives.
In other words, when a sinusoid function hits a group of
resonators the resonating response curve deviates from others
immediately. While the initial differences are small, they are
often enough to inhibit other resonators. This is similar to
the selection rule in the ordinal optimization method [11][4]
referred as horse race rule. As the name implies, often
times the transient behavior of a system reveals its potential
when ordinal comparison is the decision base. In our current
situation it is known in neuroscience that most neurons when
excited tend to inhibit other neighboring neurons and render
them silent. If we restrict to a mathematically simplified
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scenario where a causal sinusoid function convolve with the
impulse response function of a second order linear system,
it can be seen that with the above convolutional horse race
selection the input sinusoid function would very quickly
select a receiver that resonances with it. This could be the
basis for the quickness of image recognition exhibited in
human and many animals. In fact this could also be the
basis for the quickness of abstract thoughts where relevant
concepts in the memory are recalled very quickly.

Resonance transients based quick recall assumes linear
signal processing and enables signal aggregation and de-
composition in large scale, which are needed to address
various binding problems. In previous works [5][6][7][8][9]
we connect the spatial-temporal conversion in linear control
theory to the researches relating the geometric shapes to
their Laplacian spectrums [13], [16]. Although nonlinear
mechanisms are ubiquitous in biology systems including
the brain, linear signal processing in certain levels could
nevertheless be essential.

VI. RCU NETWORKS

We discuss some uses of the RCU networks. Figure 3
shows a small sector of a RCU network to illustrate some
connection possibilities.
• Dictionary style retrieval. A RCU with BO port can be

used to control the access of other RCUs. An important
usage is to carry a dictionary style retrieval. A query
signal is a string of EDSs. The first portion of such a
query signal could excite some RCUs to let their BO
port sending an “on” signal to open the entrance of
some other RCUs. Now the query string drops the first
portion and moves to look for opened RCUs that match
the second portion, and so on.

• Learning with RCU networks. RCUs could form a
cluster and excitation of enough number of the member
RCUs of a cluster would excite the entire cluster. The
E port connects the RCU members in a cluster. Such
connections would gradually decay and enable learning
new connections.

• Relation recording. We consider the playground of
mind as a huge fabric in the 3 dimensional space with
randomly and densely distributed appositions between
the axons and dendrites ready to be connected. The
relational signals are EDS strings and naturally form
RCU clusters for recording and for link control. The
links that have been used more often would be easier to
access, since such links would have more widely spread
access branches than the less used links.

• Simultaneity recording. Node E1, E2, E3 in Figure
3 denote the output branches that could be sent to
other RCU’s external triggering point E which, upon
receiving enough inputs would excite the RCU. This
enables a RCU memory group to be excited together
when needed. Different groups may overlap to cover the
entire set of simultaneity. Overlapping is used to hook
up small groups to form a large group. In visual image
coding such overlapping coding is crucial to keep the

RCU1

RCU2

RCU3

E1

E2

E3

I

E

BI

Fig. 3. A small sector of a RCU network

neighboring information of the image patches. But the
mechanism works generally for clusters of RCUs for
keeping their connectivity information when multiple
concepts interact.

Although RCU networks are feasible and serve as a plausible
computation structure for biological intelligence, one can
bypass them in computer algorithms for general artificial
intelligence. For example the similarity testing of the Fourier
phase arrays could be used to replace the Laplacian-Integral-
RCU operations.

VII. ABSTRACTION AND ANALOGICAL THINKING

Abstraction is the process of sifting the similarities from
the instances or the differences among the instances. One
of the impressive examples of abstract similarity testing is
the psychology phenomena referred as analogical reminding,
where a sequence of current events reminds a possibly
remote experience that is only similar in an abstract man-
ner [12][14][15]. Analogical reminding is featured by the
quickness, the abstractness, and the involuntariness of a
memory recall carried out by the relatively slow neurons. The
quickness calls for large scale content addressable memory.
The abstractness needs the ability to sift commons from in-
stances. And the involuntariness demands automatical recall.
The spatial/temporal signal conversion described above could
help achieving these.

To explain the idea of abstraction we use an example of
shape relation similarity testing. The shapes in the visual field
are represented as clusters of connected RCUs. Using the
above conversion scheme one has the temporal representation
of a RCU cluster, which codes the spectral information of
the shape images in the operator/matrix α∆ + V (x). The
relation between two such matrices can be coded in another
matrix/network/RCU cluster. Now we consider simple analo-
gies in which one tests the similarity between the relations
that relate more concrete concepts. Consider two pairs of
geometrical shapes (A,B) and (X,Y ). Suppose it makes
sense to say that “A is to B as X is to Y ”, for example “a
square A is to a rectangle B as a circle X is to an ellipse
Y ”. The following diagram shows the relational matrices
RAB and RXY (which would be coded into RCU clusters)
between the shape pairs.

Now the relational similarity statement that “A is to B as
X is to Y ” can be understood as the similarity of matrices
RAB and RXY , which is algorithmically the same as the
similarity testing of the two concrete shapes such as two
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squares.

A X

B Y

RAX

RAB RXY

RBY

More concretely let A be a square and X be a circle, and
B and Y are their stretched versions namely a horizontal
rectangle and a horizontal ellipse, respectively. In terms of
the RCU cluster representations one checks the similarity of
the similar components between A and B and those between
X and Y , as well as the similarities of the differences
between A and B and those between X and Y . The
concept of “stretching a shape” would be represented by the
commonalities emerged from such comparisons, which are
the Fourier phase array changes from one to the other, form-
ing the RCU cluster representation of the abstract concept
of “stretching a shape”. Such a process could iterate and
generate many “abstract” relations for later use. Note that
the relations represented by the dashed lines could generate
the representation for the concept of “rounded smoothing”.

The relational similarity testing does not need conscious
instructional effort and leads to an involuntary experience,
not unlike recognizing facial expressions. Recognizing facial
expressions such as a smile is crucial for human interactions.
Consider two faces A and X , and their smile versions B
and Y . The relational matrices RAB and RXY are similar
and the similarity defines the concept of “smile”. Human
babies perhaps sift this out from smile faces early on.
The relational network of smile could make connections
to relevant concepts and it is possible that the silly smiles
and sounds made by adults when holding a baby form the
neurological base for the original sense of humor, which
would be triggered by concrete or abstract silliness depends
on the storage of abstractions in the mind.

The relational networks RAB and RXY are generated
automatically (due to resonance among components of the
temporal representations A,B,X, Y ) and stored in the mem-
ory as part of the experiences. Such relational networks,
and the relational networks for these relational networks, are
all generated in subconscious and sitting there ready to be
excited. This may help explaining the analogical reminding
phenomena mentioned before.

Furthermore, since the above scheme in testing the rela-
tional similarity is the same as the “concrete” shape similar-
ity, the process can be repeated to extract multiple levels of
relations that exists between different lower level relations.
The spatial-temporal signal conversion plays a central role in
this recursion. Since a RCU cluster can be represented by a
matrix, the algorithm capable of converting the information
carried in a matrix or by a time function back and forth
enables such recursion. This process generates many RCU
clusters representing all sorts of relations which serve as cues
and constraints for memory recall.

Finally we quote the renowned scientist Stanislaw Ulam
from [18]. “There must be a trick to the train of thought,
a recursive formula. A group of neurons starts working

automatically, sometimes without external impulse. It is a
kind of iterative process with a growing pattern. It wanders
about in the brain, and the way it happens must depend on
the memory of similar patterns. Very little is known about
this. Perhaps before a hundred years have passed this will
all be part of a fascinating new science.”

VIII. CONCLUDING REMARKS

Unsupervised learning of concepts is essential for ana-
logical thinking, which is considered a hallmark of human
intelligence. We argue that signals in the brain constantly
generate relations among their constituents. Unsupervised
learning is then accomplished by fast similarity testing of
the stored relation sets using resonance transients and time
sequenced memory units. We discuss specific algorithms to
achieve these functions.
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