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Abstract

In this paper, we propose two types of 2D PCSDE model to study
the generative mechanism of correlated power law distributions in real
datasets. The model of type I generates unstable fractional asymptotic
dependence coefficient. This model well explained the data observed
in some social networks. The asymptotic dependence coefficient of
model of type II can be arbitrarily parameterized between 0 to 1.
This model is meaningful in providing suggestions to new generative
models for complex networks.

1 Introduction

Power law distributions has been observed in variety of natural and man-
made phenomenons [1]. Natural phenomenons reach a variety of fields like
sizes of earthquakes, firing pattern in neural networks, etc.; other phenomenon-
s better to be included in man-made categories are corpus of natural lan-
guage, income ranks, degree distribution of complex networks, etc. Moti-
vated by the mystery of power law distribution, researchers are looking for
explanations that brings power law to different areas. In [2], Schwab, et al.
proposed a general model without fine-tuning to produce Zipf’s law in neuron
systems. Barabási-Albert model (B-A model) is a scale-free network gener-
ative mechanism based on preferential attachment [3]. Researchers expend
B-A model to directed network generative model to explain the existence of
correlated in-degree and out-degree distribution in World-Wide-Web [4, 5, 6].
In addition to the above models targeting specific area existing power law,
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some work tries to trace all the phenomenons back to a common cause, like
the work in [7, 8, 9, 10]. Reed and Huges’ basic idea in [8] is that power law
exists when an exponentially growing process is stopped at at an exponential-
ly distributed time. In their following paper in 2003 [9] , they demonstrated
that this idea can be applied to explain power law behaviors in biology and
growing networks.

In [11], Bo et al. interpret the basic idea in [8] in a different way by
using Stochastic Differential Equations driven by Poisson counter (PCSDE).
The steady state density of the PCSDE model shows lower tail or upper
tail power law behavior. A simple model produces an upper tail power law
distribution is as following, dXt = βXtdt+ (ε−Xt−)dNt, with β, ε > 0, and
N is a Poisson process with intensity λ. The steady state distribution follows

fX(x) = Cx−(1+
λ
β
), x ≥ ε.

We show that this model can be used to describe the expected degree
growth in growing network. In the generative algorithms, normally the net-
work is growing by adding new nodes and new degrees in each step and when
adding new degrees, the nodes are selected with preferential attachment. As-
suming that the expected number of nodes added in each step is EN and
the expectation of the total degree added in each step is EM . The total
degrees added split into the part associated with the new nodes EM1 and
the part added to the nodes in the original graph with preferential attach-
ment EM2. Assuming that the expected number of nodes in the network
grows exponentially with rate λ, the life time of the nodes follow exponential
distribution with rate λ. We prove that the expected degree of a node in the
network grows exponentially with rate β = EM2

EM
λ. The PCSDE model pro-

vide a directed explanation to the power law behavior in network generative
models with preferential attachment. The exponent of B-A model in [3] can
be estimated using PCSDE model to be 3 under the fact that EM2 = 1

2
EM .

1D PCSDE model can be used to explain power law behaviors in undi-
rected network. Actually, independent or correlated two-dimensional power
law distribution has been widely observed in empirical data, like citation net-
work, social network [12]. Traditional multivariate Pareto Distribution [13]
has the same exponents for all univariate margins, which is not suitable to
fit real world data with different marginal exponents. In [13], Asimit et al.
designed a new type of multivariate Pareto distribution with arbitrarily pa-
rameterized margins. We developed a basic 2D SDE formulation to generate
similar multivariate power law distribution. However, this model generates
asymptotic independence distribution regardless of the parameters.

In this paper, we are seeking for modifications to the basic 2D PCSDE
model to generate asymptotic dependence. The new models has the following
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meanings: (1) help understanding the causes of correlated power law behav-
iors in empirical data; (2) predict network involvement with finite observed
data; (3) it is quite natural to develop new network generative models in the
spirit of the new features in the modified models.

The paper is organized as follows. In Section 2, we present some 2D pow-
er law distributions in empirical data and review the basic 2D SDE model;
Section 3 is our first attempt to generate asymptotic dependence by intro-
ducing in Markov on-off process, the modification of type I. Since the model
proposed can not produce asymptotic dependence in an elegant way, we pro-
posed another model in Section 4. In section 4, the modification of type II
is discussed. The last section concludes the paper.

2 2D Power Law Data and 2D PCSDE Model

2D power law distribution exists in some directed social networks, like friend-
ship connections between users in Youtube and Flickr website [12]. As shown
in Figure 1, the two variables in-degree and out-degree in the two datasets
are obviously correlated. The empirical correlation coefficients of the two
datasets are 0.9492 and 0.7558. In this paper, we attempts to explain the
existence of 2D correlated power law distributions in real world data. Our
first try is the following 2D PCSDE model with a shared Poisson Counter.

Figure 1: 2D power law data in social networks

2D Model with a Shared Poisson Counter

The following 2D model is a PCSDE formulation of the bivariate Pareto
distribution of the second kind in [13],

dXi = Xidt+ (1−Xi)(dN0 + dNi) (1)

where N0, N1, and N2 are independent Poisson counters with rate λ0, λ1,
and λ2, respectively. The marginal distribution of this model is fXi(xi) =
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(λ0 + λi)x
−(λ0+λi+1)
i , xi ≥ εi; and the CCDF is F̄Xi(xi) = x

−(λ0+λi)
i , xi ≥ εi.

The joint CCDF of this model is F̄X1,X2(x, x) = x−λ+ , where λ+ = λ0+λ1+λ2.
The asymptotic behavior of this model can be studied by computing the

‘asymptotic dependence coefficient’, which is defined as lim
x→∞

P (X2 > x|X1 >

x). In this model, we have

P (X2 > x|X1 > x) =
x−λ+

x−(λ0+λ1)
= x−λ2

x→∞−−−→ 0. (2)

This model is useful in generating correlated 2D power law data; however,
the two variables in this model are asymptotic independent. In the next
section, we will pursue modulations to the original sharing Poisson counter
model to produce nonzero asymptotic dependence coefficient.

3 Modulated 2D PCSDE Model of Type I

The basic model is asymptotic independent due to the existence of two inde-
pendent Poisson Counters. In the first modified model, we consider shutting
down the two independent Poisson Counters during some period of the grow-
ing processes.

3.1 2D Models with Markov On-off Modulation

Define a Markov on-off process Yt and our modified 2D PCSDE model is as
follows:

dY = (1− Y )dM1 − dM2,

dXi = Xidt+ (1−Xi)((1− Y )dN0 + Y dNi), (3)

where Mi has rate µi, Ni has rate λi. In this model, the shared Poisson
counter N0 is effective in “off” period, and the two independent Poisson
counters is effective in “on” period.

Let

ξ
(1)
± =

λ0 + λ1 + µ1 + µ2 ±
√

(λ1 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
> 0,

ξ± =
λ0 + λ1 + λ2 + µ1 + µ2 ±

√
(λ1 + λ2 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
> 0.

It is easy to check that ξ− − ξ(1)− > 0, which makes

P (X2 > x|X1 > x) = Θ(x−(ξ−−ξ
(1)
− ))

x→∞−−−→ 0.
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This model is still asymptotic independent. However, consider a special
case when the arrival rates of Poisson counters N0, N1 and N2 are the same,
which gives λ1 = λ2 = λ0 , λ. If µ1, µ2 � λ, we have P (X2 > x|X1 >
x) ∼ µ2

µ1+µ2
x−ξ−−ξ− and ξ− − ξ− < µ1. If µ1 is small enough, the model

can produce non-zero dependence coefficient over a few decades under this
special condition (as shown in Figure 2).

Figure 2: Theoretical dependence coefficient for the modulated model with
Markov on-off process in a special case

3.2 Modulated Model with ‘Manually Resetting’

The above model separates the effective time of the independent and shared
Poisson Counters. However, when we are talking about tail behavior, which
corresponding to a very long growing process, the probability for the inde-
pendent Poisson counters never being effective goes to 0. So we manually
revert the growing process to initial value whenever the Markov on-off process
changes its state. The new model is as follows:

dXi(t) = Xidt+ (1−Xi)((1− Y )(dN0 + dM1) + Y (dNi + dM2)) (4)

Let λ1 = λ2 , λ, the marginal and joint CCDFs are as follows:

F̄Xi(x) = x−(λ+µ2)
µ1

µ1 + µ2

+ x−(λ0+µ1)
µ2

µ1 + µ2

, (5)

and
F̄X(x, x) = x−(2λ+µ2)

µ1

µ1 + µ2

+ x−(λ0+µ1)
µ2

µ1 + µ2

. (6)

Then let ∆µ = µ1 − µ2, we have the asymptotic dependence coefficient
of this model:

P (X2 > x|X1 > x)
x→∞−−−→


1 λ > λ0 + ∆µ
µ2

µ1+µ2
λ = λ0 + ∆µ

0 λ < λ0 + ∆µ.

(7)
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This model successfully generates non-zero asymptotic dependence coef-
ficient under special conditions. It seems that the conditional probability
depends on the parameters in a discontinuous way. When a parameter is
perturbed, the conditional probability goes to 1 or 0 as the value x goes to
infinity.

We use this model to fit the joint CCDF of Youtube and Flickr datasets
mentioned in Section 2. The “rmse (root mean square error)” for “Youtube”
data fitting is 8.2335e − 006 and for “Flickr data” is 2.4703e − 005. We
compare the CCDFs of the original datasets and our model fitting results with
heat map, as shown in Figure 3.2. Using the fitting parameters we suggest the
asymptotic dependence coefficients to the two datasets. We suggest in-degree
and out-degree in ”Youtube” dataset go towards asymptotic dependence;
while the in-degree and out-degree in “Flickr” datasets are asymptotically
independent.

Figure 3: 2D power law data fitting results

4 2D Modified Model of Type II

Modulated model with Markov on-off process and manually resetting in
Section 3.2 successfully generate nonzero asymptotic dependence coefficient.
However, the case when fractional asymptotic dependence coefficient appears
is unstable. We are interested in inventing a more simple and natural mod-
el, which could generate fractional asymptotic dependence coefficients in an
elegant way.
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In this section, we proposed a new model where the exponential growth
process of the two variables X1 and X2 are not independent any more. The
model is as follows:

dX1 = (X1 + βX2)dt+ (1−X1)dN1;

dX2 = (βX1 +X2)dt+ (1−X2)dN2. (8)

We omit the computation here and only give the results. Let the Poisson
rates λ1 = λ2 , λ. For the marginal tail, we prove that

P (X > x) ∼ Cx−α, x→∞. (9)

The marginal tail exponent α can be computed by solving the equation
EAα = 1, and

EAα =
1

2
I1 + I22

1

4− 2I1
, (10)

where I1 = λ2−α

β

∫ 1

0
z

2λ−α(1+β)
2β

−1(1+z)αdz and I2 = λ2−α

β
B
(

2λ−α(1+β)
2β

, α + 1
)

.

Since an analytic solution to I1 is not available, we use MATLAB to compute
the integration numerically and solve α numerically with different β values.

The conditional probability can be computed with Breiman’s Theorem
[14]. Let T ∼ exp(2λ) and given T = t, u ∼ U(0, t), we get the asymptotic
dependence coefficient for this model,

P(X2 > x|X1 > x)
x→∞−−−→ 2EV α

EV α + EWα
, (11)

where

V =
eu(1+β) − eu(1−β)

2
,W =

eu(1+β) + eu(1−β)

2
. (12)

EV α and EWα can be computed numerically using MATLAB. Since 0 <
V < W with β > 0, the asymptotic dependence coefficient of this model is
between 0 and 1.

Let λ = 1/4, λ = 1/2, λ = 1 and λ = 2, the results are plotted in
Figure 4. As shown in the Figure, with β increasing, α decreases until it
reaches 0, which means that the tail becomes heavier. On the other hand,
the asymptotic dependence coefficient increases with the increasing of β and
it reaches 1 when the marginal tail exponent α reaches 0.

5 Discussions

In this paper, we develop two types of 2D PCSDE models to generate bi-
variate power law distribution with tail dependence. The model of Type I
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(a) α value as a function of β (b) Asymptotic dependence coefficient as a
function of β

Figure 4: Numerical results of α and asymptotic dependence coefficient as a
function of β with different λ values(λ = 1/4, 1/2, 1, and 2))

makes modulation on the Poisson Counter part. We aware that the problem
of the basic 2D shared Poisson counter model in Section 2 is the existence of
independent Poisson counters. Shared Poisson counter means the two vari-
ables start their growth at the same time, which means a common cause
lying behind. In social networks, the reason could be that the user is very
active. When the empirical data indicates dependence in the regions of very
large values we would be able to infer that there is a common cause for the
vary large values observed. On the other hand, sometimes an ID in a social
network may have a very high in-degree but quite ordinary out-degree, which
contributes to the independence at the tail part. Obviously, there is no com-
mon cause in this case. For example, this ID may have a very high in-degree
because of he/she being famous; however being famous does not ensure high
out-degree.

Our modulated model in Section 3 could be seen as a mixture of the two
cases. Our study suggests that the conditional probability of one variable
given the other tends to be either 0 or 1 asymptotically, and the case where
such conditional probability is fractional is not stable. This phenomenon
could be explained by the fact that a user only belongs one of the two groups,
which is realized by the “Manually resetting” procedure in the model in
Section 3.2. As the value increasing, the users in one group may become
dominant.

To sum up, although our model of Type I is not that concise and could
not produce stable fractional asymptotic dependence coefficient, it does con-
nect to the evolvement of real social networks. We have the theoretical joint
distribution of this model, so we can fit real world data and predict the
asymptotic behavior based on the data observed.
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The model of Type II keeps the two independent Poisson counters but
makes modulation on the differential equation part. This model is more
complicated to analyze. In this paper we get some conclusions about the tail
behavior. This model successfully generate fractional asymptotic dependence
coefficient. The coefficient can be adjusted by the parameters in the model.

Since we could not get the precise joint distribution of this model, we did
not use this model to fit any empirical data. The principle of this model
is to make the increment of one variable also depend on the current value
of another one. This inspire us to invent new complex network generative
models. For example, a new node with an outgoing link selects the target
node with a probability proportional to not only the node’s current in-degree,
but also the node’s current out-degree.

Our on-going and further work includes: (1) exploring datasets which
can be explained by our model of type II potentially; (2) generalizing our 2D
models to multivariate models.

References

[1] A. Clauset, C.R. Shalizi and M.E.J. Newman, Power-Law Distributions
in Empirical Data, SIAM REVIEW, 51(4), 661-703, 2009.

[2] D.J. Schwab, I. Nemenman and P. Mehta, Zipfs Law and Criticality in
Multivariate Data without Fine-Tuning, Physical Review Letters, PRL
113, 068102, 2014.

[3] A. Barabási and R. Albert, Emergence of Scaling in Random Networks,
Science, 286, 509-512, 1999.

[4] P.L. Krapivsky, G.J. Rodgers and S. Redner, Degree Distributions of
Growing Networks, Physical Review Letters 86(23),5401-5404, 2001.

[5] P.L. Krapivsky and S. Redner, A statistical physics perspective on Web
growth, Computer Networks, 39, 261-276, 2002.

[6] B. Bollobás, C. Borgs, J. Chayes and O. Riordan Directed Scale-free
Graphs, Proceedings of SODA’03, 132-139, 2003.

[7] W.J. Reed, The Pareto, Zipf and other power laws, Economics Letters,
74, 15-19, 2001.

9



[8] W.J. Reed and B.D. Huges, From gene families and genera to incomes
and internet file sizes: Why power laws are so common in nature, Physical
Review E 66,067103,2002.

[9] W.J. Reed and B.D. Huges, Power-law distributions from exponential
processes: an explanation for the occurrence of long-tailed distributions
in biology and elsewhere, Scientiae Mathematicae Japonicae, 58(2), 473-
483, 2003.

[10] M. Mitzenmacher, A Brief History of Generative Models for Power Law
and Lognormal Distributions, Internet Mathematics, 1(2), 226-251, 2004.

[11] B. Jiang, R.W. Brockett, W. Gong and D. Towsley Stochastic Differen-
tial Eqations for Power Law Behavior, 51st IEEE Conference on Decision
and Control, 6696-6701, Dec 10-13, 2012.

[12] J. Kunegis, KONECT: the Koblenz Network Collection,WWW 2013
Companion, May 13-17, 2013, Rio de Janeiro, Brazil.

[13] A.V. Asimit, E. Furman and R. Vernic, On a Multivariate Pareto Distri-
bution, Insurance: Mathematics and Economics, 46(2), 308-316, 2010.

[14] D. Denisov and B. Zwart, On a theorem of Breiman and a class of
random difference equations, Journal of Applied Probability, 44(4),
1031-1046, 2005.

10


