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ABSTRACT

In this paper, we propose a complex network based low-
level feature for image retrieval systems based on the graph
representation of the image and the mathematical theory of
diffusion over manifolds. We show that the proposed image
feature is invariant to non-structural changes on images and
performs well in hand written digits classification task. We
also show that performance of image retrieval with existing
low-level features could be improved by combining with the
proposed feature.

1. INTRODUCTION

Fast content based image retrieval (CBIR) has been a subject
of intensive research for many years. A typical image retrieval
task includes several sub-tasks such as feature extraction and
classification. The critical initial step in most image retrieval
systems is extraction of appropriate low-level features.

Researchers have designed a variety of image features
based on intensity, color, shape and texture statistics or de-
scriptors. Recent surveys [1, 2, 3, 4] have briefly introduced
or evaluated many of the low-level features appearing in the
state of the art CBIR literature [5, 6]. These features have
all been derived from reasoning and/or intuition about useful
information for classification. However, no low-level feature
can completely capture essential structural information. Re-
cent research [7, 8] suggest graphs as the form that organizes
information in the brain. Hence, it seems reasonable to design
a low-level feature that is based on a graph representation for
the image.

The idea of using graphs in image processing is not en-
tirely new [9] and there are many published examples of graph
similarity testing. In [10] and [11], the authors treat every
pixel as a vertex in a graph and connect the neighboring pixels
according to the intensity differences. In [12, 13], researchers
build graphs based on descriptors such as the edge location
and segmented region. For graph similarity testing, in a re-
cent survey [14] the authors introduce most of the existing
methods. However, these methods are either not scalable or
not always effective [15]. Some other methods such as vertex
ranking require prior knowledge of the nodes mapping be-
tween the two compared graphs [16], which is not suitable
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for comparing image-generated graphs that do not have any
vertex label.

In this work, we consider a feature vector based on graph
heat content. Heat content is the summation of heat diffusion
on the graph over time. The asymptotic behavior of the heat
content has already been used as a property to understand the
connectivity structure of the graph [17, 15]. In [18, 19] the
author points out that Monte-Carlo simulations of diffusion
can be effective in testing the similarity of complex graphs
and that this may have implications on concept abstraction
mechanisms in human and animal intelligence. Heat content
can be estimated using a random walk on graph. In [20], the
authors show that a random walk based similarity algorithm is
effective in differentiating large graphs with the same heavy
tail degree distribution.

Our proposed approach exhibits the following features.
First, our method uses a graph representation of the image
and summarizes the graph structure into a single heat con-
tent feature vector which is invariant to image rotation and
small distortion. Second, the length of the feature vector can
be very short since the initial behavior of heat content is the
most important. Third, the heat content feature performs bet-
ter in classification compared to some widely-used low-level
features and can be combined with other features to further
improve the retrieval performance.

The rest of the paper is organized as follows. In Section 2,
we discuss the fast feature extraction for a complex network.
In Section 3, we propose the general algorithm of graph gen-
eration and feature extraction. In Section 4, three experiments
are shown to illustrate the performance of the heat content
feature. Section 5 is the conclusion and suggestion for future
work.

2. HEAT CONTENT FEATURE EXTRACTION OF
COMPLEX NETWORK

2.1. Heat equation and heat content

Our method is based on a fast feature extraction algorithm for
complex networks. Let G = (V, E) denote a weighted graph
generated by an image. V is the vertex setand &/ C V x V
is the edge set. The adjacency matrix is denoted as A = [ay,]
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and a,, is the edge weight from u to v. We define the out-
degree matrix D = diag[d,| tobe d, = ), ay,. The graph
Laplacian and the normalized graph Laplacian [21] of the
graph G are definedas L = D — Aand £ = D-Y/2LD~1/2,

We partition all the vertices in V' into two subsets 7D and
0D and V = iD U 0D. iD is the set of all interior nodes
and 0D is the set of all boundary nodes. With the definition
of boundary and interior nodes, the heat equation of the graph
is associated with the normalized graph Laplacian and can be

defined as
% == —»Ch,t
hi(u,v) = 0 foru € 9D,

with initial condition hg(u,u) = 1if u € iD.

Intuitively, h;(u, v) is the amount of heat that flows from
vertex u to vertex v at time ¢. All heat that flows to the
boundary vertices is absorbed and the rest remains. The in-
terior heat is rich in information because the graph structure
affects the heat diffusion pattern, which determines the total
heat. We denote the the number of interior vertices as |iD|
and the |iD| x |iD| heat matrix Hy is defined as H;(u,v) =
hi(u,v) for u,v € iD.

For convenience, we still use £ to denote the interior part
of the original Laplacian. We denote A = diag[\;] as the di-
agonal eigenvalue matrix and ® = [¢1, - - - , ¢,,] as the eigen-
vector matrix in which ¢; is the corresponding eigenvector of
the eigenvalue )\;. We diagonalize £ as £ = ®AP !, where
®~! = [my, 79, -+ ,m,] . The solution to the heat equation is
H, = e ** = ®e 2P~ and for each entry of H;, we have
Hi(u,v) = ZL;Dl‘ e~ it¢;(u)m;(v). The heat content Q(t) is
defined as

ey

D]
Qt) = Z Hi(u,v) = Z Z Ze‘kitfbi(u)m(v). (2)

u v =1
A discrete-time heat content vector with a given length
could be seen as a type of feature of the corresponding image.
Research has already proved that small changes in the graph
will not affect the Laplacian spectrum too much [22]. Thus
the heat content feature should be invariant to perturbations

and small distortions of the original image.

2.2. Fast heat content estimation

Directly finding the eigenvalues and the eigenvectors of the
graph is very time comsuming. We have to estimate the heat
content in a more affordable way. One approach to estimate
the heat content is to use a matrix multiplication method. We
could approximate the continuous heat content by the sum-
mation of a discrete time random walk on graph. Suppose
we have the transition matrix defined as M = D~'A and a
lazy random walk transition matrix as My, = (1 —§)I + 5 M.
In a lazy random walk, a random walker either moves out
with probability § or remains at the current node with prob-
ability 1 — §. For any given time t = kd, the distribu-
tion of the random walker can be calculated theoretically as
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P, = M}jPy = (I — £LL,)*P, where P, is the initial distri-
bution and L, is the random walk Laplacian [23]. Notice that
when & — oo (§ — 0 while keeping kd = t) the distribution
will converge to e~L+'Py. Thus we have M} — e L+t
The heat content H; = et is a little different, but we can
use the relationship between the random walk Laplacian and
the normalized Laplacian to connect them. We have L, =
D=L = D='/2£D'/2 By using the notations in previous
subsection, the random walk Laplacian can be expressed as
L, = (D~Y2®)A(®~'DY?) = (D~'/2®)A(D~/2®)~ 1.
So each entry in matrix M} converges to MF(u,v) —
e Lt = ZLDI‘ e Nt (u)m;(v)\/dy/d,. We then have the
following estimation of heat content by matrix multiplication

Q(k) = ZZME(u,v)\/g 3)

We can also use a Monte Carlo method to estimate the
heat content. We will discuss the details in section 3.

3. HEAT CONTENT ESTIMATION BASED IMAGE
FEATURE EXTRACTION

3.1. Graph generation algorithm for grayscale image

To generate a graph from an image, our approach is to treat
each pixel in the image as a node in the graph. We only con-
sider grayscale images in this paper.

First, every pixel p; is represented by one vertex v; € V'
in our graph G = (V, E). Then the weight of each edge
e = (v;,v;) € E is defined by the following equation

a+tfUnl) 7 o7

A(i, ) = d(Ptu)] (Li # 1) @)
I\ =1
d(pi,p;) v

in which I;, I; are intensities of pixels p; and p;. d(p;,p;)
is a distance measure of pixel p; to p;. A monotonically in-
creasing function f(I;, I;) calculates the difference between
the intensity of pixel p; and p;. €; and €3 are two small pos-
itive numbers. We could either connect every pixels pair or
only connect all the neighboring pixels for less computational
complexity. The intuition behind this graph generation ap-
proach is that human vision tends to focus on high-contrast
places. Our approach emphasizes the close high-difference
pixel pairs by giving the corresponding graph edges larger
weights.

3.2. Random walk based heat content estimation

Suppose we have already generated a graph G = (V, F) from
an image I with the boundary B defined as a set of all the
nodes corresponding to pixels on the natural boundary of the
image. The major steps of our Monte Carlo heat content esti-
mation algorithm are:
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(1) According to the weight matrix A, compute the degree
of each node D and the corresponding random walk matrix P.

(2) At the initial time, give every vertex the same number
k of random walkers to simulate a uniform initial condition.
The initial size of random walkers on the graph is s = nk.

(3) In each step, every random walker stays at its current
vertex v; with probability 6 (0 < § < 1) and with probabil-
ity 1 — 0 goes out. The probability of going to neighbor v;
should equal to p;; in the random walk matrix P. If v; € B,
for which B represent all the boundary vertices, the random
walker is then deleted.

(4) After every step, a heat content value is calculated by
Q(t) = Zf 1 1><( )/2 in which d, and d,. are the degree of
origin node v, and current node v, of the s7th random walker.

(5) Running the algorithm for 7'/§ steps to get the heat
content Q(t) from 0 to T'.

4. THE RESULTS OF THE EXPERIMENT

Three experiments were performed to examine the perfor-
mance of our heat content feature. The first experiment is
an example to show the performance of the heat content fea-
ture under image variations such as rotation, stretching and
affine transforms. The second experiment is a retrieval exper-
iment for spectrograms. The purpose of this experiment is to
check the robustness of the heat content feature for similar-
structure but largely distorted spectrogram images due to dif-
ferent reading speed and background environment. In the last
experiment, we apply the heat content feature in a classifica-
tion task for hand written digits dataset MNIST and compare
it with some widely used low-level features.

4.1. Heat content of affine transformed images

We set up a dataset containing seven types of fish images. The
original fish image is from [24]. To each type of fish image,
five affine transforms under random but bounded (the varia-
tions are less than 30%) coefficients were applied to generate
five similar fish images for each type. Figure 1(a) shows the
result of fish images after affine transform.

The simulated heat contents of all of the fish images are
plotted in figure 1(b). The heat content curves of the same
color corresponds to the same type of the fish images. Even
from the beginning part (¢ < 10), the heat content curves can
successfully cluster the same types of fishes into one group.
The result illustrates that the heat content feature is robust to
rotation, stretching and affine transform of images, which is a
useful property for image feature extraction.

4.2. Spectrogram retrieval experiment

In this experiment, we test our feature by a spectrogram re-
trieval experiment. A spectrogram is an image, which is the
result of a short time fourier transform (STFT) of an audio
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(a) Fish image examples (b) Heat content curves
Fig. 1. Affine transformed fish image examples and corre-
sponding heat content curves. In the graph generation pro-
cess, f(I;,I;) |I; — I;|, d is the square of distance,
€1 = €3 = 1. In the Monte Carlo estimation, § = 0.1 and
the number of initial random walkers per vertex is 1.

sample. We record 40 single-word “.wav” audio samples and
generate all the spectrograms. The STFT window sizes and
the overlapping lengths are set to be the typical settings. Then
the 40 spectrograms are divided into 2 groups. The first group
is the reference group in which 20 words are read at normal
speed. The second group is the test group in which all the
previous words are read again but at slower speed in a slightly
different recording environment.
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(a) Spectrograms (b) Ratio of durations
Fig. 2. The spectrograms and duration ratios between test
samples and reference samples

Figure 2(a) shows the spectrograms of several word pairs
in the reference and test group. The test images are distorted
from the reference images, but the major structure still re-
mains. Figure 2(b) illustrates the exact ratio of time durations
on the vertical scale between the 20 slower test samples and
the 20 original reference samples. The distortion percentage
is from 20% to 80%. For each spectrogram S, we convert the
image to grayscale, and then divided the image into 16 blocks.
A 10-steps heat content vector h is computed for each block.
Figure 3 shows the Euclidean distance matrix of the combined
heat content vectors between all the reference and test sam-
ples. We can see that every test sample is correctly matched
to its reference.
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Fig. 4. Hand-written digit
image examples in MNIST
database

Fig. 3. Distance matrix for
the test and reference spec-
trograms

4.3. Hand written digits classification experiment

The MNIST database [25] is a benchmark widely used in im-
age classification algorithm comparison. It contains a train-
ing group of 60,000 images and a testing group of 10, 000
images. One property of this dataset is that all the images are
hand written digits with standard size and contrast, which is
very “similar” already. Figure 4 shows some example images.

We first compute the heat content feature for every image
based on forty-nine 10 x 10 random position overlapping lo-
cal image blocks. Five steps of heat content is used for each
image block. Table 1 compares the classification error rates
of the heat content feature and other blockwise similar-size
low-level features including the intensity histogram, intensity
moments, Gabor coefficients, gray-level co-occurrence ma-
trix (GLCM) and edge directions histogram. All the features
are normalized and the classification algorithm is a k-nearest-
neighbors classifier with L2 norm as the distance measure.
The result shows that although the heat content feature alone
is not the best, it is still better than some single low-level fea-
tures. More importantly, if we add the heat content feature to
any other feature and form a combined feature, the error rate
always drops. This result provides preliminary evidence that
the heat content feature contains some useful image informa-
tion which is not represented by the existing low-level image
features.

Our next experiment is to simulate the real image retrieval
task by combining three types of features (Intensity, texture
and shape). We apply logistic and linear kernel support vec-
tor machine (SVM) [26] classifiers to execute the classifica-
tion. Table 2 shows that in all situations the performance of
the combined feature with the heat content is better than the
original combination in both classifiers. This result further
illustrates that the heat content feature contains unique and
useful image information as a new type of low-level feature
which has the potential to improve the feature exaction step
for current image retrieval systems.
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Feature Alone with HC
Intensity histogram (Histogram) 10.76% 6.89%
Intensity moments (Moments) 8.94% 7.04%
Gabor coefficients (Gabor) 3.05% 2.94%
Gray-level co-occurrence (GLCM) 6.92% 4.49 %
Edge directions (Edge) 3.68% 3.15%
Heat content (HC) 6.54% N/A

Table 1. Classification error rate (k-NN classifier)

Feature Logistic SVM

Histogram + Gabor + Edge 2.12% 1.47%
Histogram + Gabor + Edge + HC 2.01% 1.31%
Histogram + GLCM + Edge 2.58% 1.62%
Histogram + GLCM + Edge + HC | 2.28% 1.54%
Moments + Gabor + Edge 2.06% 1.30%
Moments + Gabor + Edge + HC 1.90% 1.24%
Moments + GLCM + Edge 2.36% 1.48%
Moments + GLCM + Edge + HC 2.20% 1.41%
Combined feature 1.82% 1.29%
Combined feature with HC 1.78% 1.22%

Table 2. Classification error rate (logistic/SVM classifier)

5. CONCLUSION

Feature extraction is the first and most fundamental step of
a fast image retrieval system. In this paper, we propose a
graph-based image representation associated with a fast graph
similarity comparison algorithm based on the asymptotic be-
havior of the heat content. The heat content feature is shown
to be a robust, easily computed image feature and has the po-
tential to be an effective and efficient low-level feature for
image retrieval. The heat content feature can also be com-
bined with other existing low-level features to create a com-
plex visual signature which may improve the following classi-
fication/retrieval tasks. Although we still need further exper-
iments and analysis to thoroughly understand the advantages
and drawbacks of the heat content feature, our preliminary
results show that heat content computation could be a useful
component of image retrieval tasks.

In future work we will first consider how to improve the
graph generation algorithm. We also plan to design a visual
signature including the modified heat content feature which
can handle the color information of image and to test its
performance on large scale image retrieval tasks such as the
COREL database.
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