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ABSTRACT
In this paper, we propose a complex network based low-

level feature for image retrieval systems based on the graph

representation of the image and the mathematical theory of

diffusion over manifolds. We show that the proposed image

feature is invariant to non-structural changes on images and

performs well in hand written digits classification task. We

also show that performance of image retrieval with existing

low-level features could be improved by combining with the

proposed feature.

1. INTRODUCTION

Fast content based image retrieval (CBIR) has been a subject

of intensive research for many years. A typical image retrieval

task includes several sub-tasks such as feature extraction and

classification. The critical initial step in most image retrieval

systems is extraction of appropriate low-level features.

Researchers have designed a variety of image features

based on intensity, color, shape and texture statistics or de-

scriptors. Recent surveys [1, 2, 3, 4] have briefly introduced

or evaluated many of the low-level features appearing in the

state of the art CBIR literature [5, 6]. These features have

all been derived from reasoning and/or intuition about useful

information for classification. However, no low-level feature

can completely capture essential structural information. Re-

cent research [7, 8] suggest graphs as the form that organizes

information in the brain. Hence, it seems reasonable to design

a low-level feature that is based on a graph representation for

the image.

The idea of using graphs in image processing is not en-

tirely new [9] and there are many published examples of graph

similarity testing. In [10] and [11], the authors treat every

pixel as a vertex in a graph and connect the neighboring pixels

according to the intensity differences. In [12, 13], researchers

build graphs based on descriptors such as the edge location

and segmented region. For graph similarity testing, in a re-

cent survey [14] the authors introduce most of the existing

methods. However, these methods are either not scalable or

not always effective [15]. Some other methods such as vertex

ranking require prior knowledge of the nodes mapping be-

tween the two compared graphs [16], which is not suitable

for comparing image-generated graphs that do not have any

vertex label.

In this work, we consider a feature vector based on graph

heat content. Heat content is the summation of heat diffusion

on the graph over time. The asymptotic behavior of the heat

content has already been used as a property to understand the

connectivity structure of the graph [17, 15]. In [18, 19] the

author points out that Monte-Carlo simulations of diffusion

can be effective in testing the similarity of complex graphs

and that this may have implications on concept abstraction

mechanisms in human and animal intelligence. Heat content

can be estimated using a random walk on graph. In [20], the

authors show that a random walk based similarity algorithm is

effective in differentiating large graphs with the same heavy

tail degree distribution.

Our proposed approach exhibits the following features.

First, our method uses a graph representation of the image

and summarizes the graph structure into a single heat con-

tent feature vector which is invariant to image rotation and

small distortion. Second, the length of the feature vector can

be very short since the initial behavior of heat content is the

most important. Third, the heat content feature performs bet-

ter in classification compared to some widely-used low-level

features and can be combined with other features to further

improve the retrieval performance.

The rest of the paper is organized as follows. In Section 2,

we discuss the fast feature extraction for a complex network.

In Section 3, we propose the general algorithm of graph gen-

eration and feature extraction. In Section 4, three experiments

are shown to illustrate the performance of the heat content

feature. Section 5 is the conclusion and suggestion for future

work.

2. HEAT CONTENT FEATURE EXTRACTION OF
COMPLEX NETWORK

2.1. Heat equation and heat content

Our method is based on a fast feature extraction algorithm for

complex networks. Let G = (V,E) denote a weighted graph

generated by an image. V is the vertex set and E ⊆ V × V
is the edge set. The adjacency matrix is denoted as A = [auv]
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and auv is the edge weight from u to v. We define the out-

degree matrix D = diag[du] to be du =
∑

v auv . The graph

Laplacian and the normalized graph Laplacian [21] of the

graph G are defined as L = D −A and L = D−1/2LD−1/2.

We partition all the vertices in V into two subsets iD and

∂D and V = iD ∪ ∂D. iD is the set of all interior nodes

and ∂D is the set of all boundary nodes. With the definition

of boundary and interior nodes, the heat equation of the graph

is associated with the normalized graph Laplacian and can be

defined as {
∂ht

∂t = −Lht

ht(u, v) = 0 for u ∈ ∂D,
(1)

with initial condition h0(u, u) = 1 if u ∈ iD.

Intuitively, ht(u, v) is the amount of heat that flows from

vertex u to vertex v at time t. All heat that flows to the

boundary vertices is absorbed and the rest remains. The in-

terior heat is rich in information because the graph structure

affects the heat diffusion pattern, which determines the total

heat. We denote the the number of interior vertices as |iD|
and the |iD| × |iD| heat matrix Ht is defined as Ht(u, v) =
ht(u, v) for u, v ∈ iD.

For convenience, we still use L to denote the interior part

of the original Laplacian. We denote Λ = diag[λi] as the di-

agonal eigenvalue matrix and Φ = [φ1, · · · , φn] as the eigen-

vector matrix in which φi is the corresponding eigenvector of

the eigenvalue λi. We diagonalize L as L = ΦΛΦ−1, where

Φ−1 = [π1, π2, · · · , πn]
′. The solution to the heat equation is

Ht = e−Lt = Φe−ΛtΦ−1 and for each entry of Ht, we have

Ht(u, v) =
∑|iD|

i=1 e−λitφi(u)πi(v). The heat content Q(t) is

defined as

Q(t) =
∑

Ht(u, v) =
∑
u

∑
v

|iD|∑
i=1

e−λitφi(u)πi(v). (2)

A discrete-time heat content vector with a given length

could be seen as a type of feature of the corresponding image.

Research has already proved that small changes in the graph

will not affect the Laplacian spectrum too much [22]. Thus

the heat content feature should be invariant to perturbations

and small distortions of the original image.

2.2. Fast heat content estimation

Directly finding the eigenvalues and the eigenvectors of the

graph is very time comsuming. We have to estimate the heat

content in a more affordable way. One approach to estimate

the heat content is to use a matrix multiplication method. We

could approximate the continuous heat content by the sum-

mation of a discrete time random walk on graph. Suppose

we have the transition matrix defined as M = D−1A and a

lazy random walk transition matrix as ML = (1− δ)I + δM .

In a lazy random walk, a random walker either moves out

with probability δ or remains at the current node with prob-

ability 1 − δ. For any given time t = kδ, the distribu-

tion of the random walker can be calculated theoretically as

Pt = Mk
LP0 = (I − t

kLr)
kP0 where P0 is the initial distri-

bution and Lr is the random walk Laplacian [23]. Notice that

when k → ∞ (δ → 0 while keeping kδ = t) the distribution

will converge to e−LrtP0. Thus we have Mk
L → e−Lrt.

The heat content Ht = eLt is a little different, but we can

use the relationship between the random walk Laplacian and

the normalized Laplacian to connect them. We have Lr =
D−1L = D−1/2LD1/2. By using the notations in previous

subsection, the random walk Laplacian can be expressed as

Lr = (D−1/2Φ)Λ(Φ−1D1/2) = (D−1/2Φ)Λ(D−1/2Φ)−1.

So each entry in matrix Mk
L converges to Mk

L(u, v) →
e−Lrt =

∑|iD|
i=1 e−λitφi(u)πi(v)

√
du/dv . We then have the

following estimation of heat content by matrix multiplication

Q̂(k) =
∑
u

∑
v

Mk
L(u, v)

√
du
dv

. (3)

We can also use a Monte Carlo method to estimate the

heat content. We will discuss the details in section 3.

3. HEAT CONTENT ESTIMATION BASED IMAGE
FEATURE EXTRACTION

3.1. Graph generation algorithm for grayscale image

To generate a graph from an image, our approach is to treat

each pixel in the image as a node in the graph. We only con-

sider grayscale images in this paper.

First, every pixel pi is represented by one vertex vi ∈ V
in our graph G = (V,E). Then the weight of each edge

e = (vi, vj) ∈ E is defined by the following equation

A(i, j) =

{
ε1+f(Ii,Ij)
d(pi,pj)

(Ii �= Ij)
ε2

d(pi,pj)
(Ii = Ij)

(4)

in which Ii, Ij are intensities of pixels pi and pj . d(pi, pj)
is a distance measure of pixel pi to pj . A monotonically in-

creasing function f(Ii, Ij) calculates the difference between

the intensity of pixel pi and pj . ε1 and ε2 are two small pos-

itive numbers. We could either connect every pixels pair or

only connect all the neighboring pixels for less computational

complexity. The intuition behind this graph generation ap-

proach is that human vision tends to focus on high-contrast

places. Our approach emphasizes the close high-difference

pixel pairs by giving the corresponding graph edges larger

weights.

3.2. Random walk based heat content estimation

Suppose we have already generated a graph G = (V,E) from

an image I with the boundary B defined as a set of all the

nodes corresponding to pixels on the natural boundary of the

image. The major steps of our Monte Carlo heat content esti-

mation algorithm are:
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(1) According to the weight matrix A, compute the degree

of each node D and the corresponding random walk matrix P .

(2) At the initial time, give every vertex the same number

k of random walkers to simulate a uniform initial condition.

The initial size of random walkers on the graph is s = nk.

(3) In each step, every random walker stays at its current

vertex vi with probability δ (0 ≤ δ ≤ 1) and with probabil-

ity 1 − δ goes out. The probability of going to neighbor vj
should equal to pij in the random walk matrix P . If vj ∈ B,

for which B represent all the boundary vertices, the random

walker is then deleted.

(4) After every step, a heat content value is calculated by

Q̂(t) =
∑s

i=1 1×(do

dc
)
1/2
i in which do and dc are the degree of

origin node vo and current node vc of the ith random walker.

(5) Running the algorithm for T/δ steps to get the heat

content Q̂(t) from 0 to T .

4. THE RESULTS OF THE EXPERIMENT

Three experiments were performed to examine the perfor-

mance of our heat content feature. The first experiment is

an example to show the performance of the heat content fea-

ture under image variations such as rotation, stretching and

affine transforms. The second experiment is a retrieval exper-

iment for spectrograms. The purpose of this experiment is to

check the robustness of the heat content feature for similar-

structure but largely distorted spectrogram images due to dif-

ferent reading speed and background environment. In the last

experiment, we apply the heat content feature in a classifica-

tion task for hand written digits dataset MNIST and compare

it with some widely used low-level features.

4.1. Heat content of affine transformed images

We set up a dataset containing seven types of fish images. The

original fish image is from [24]. To each type of fish image,

five affine transforms under random but bounded (the varia-

tions are less than 30%) coefficients were applied to generate

five similar fish images for each type. Figure 1(a) shows the

result of fish images after affine transform.

The simulated heat contents of all of the fish images are

plotted in figure 1(b). The heat content curves of the same

color corresponds to the same type of the fish images. Even

from the beginning part (t < 10), the heat content curves can

successfully cluster the same types of fishes into one group.

The result illustrates that the heat content feature is robust to

rotation, stretching and affine transform of images, which is a

useful property for image feature extraction.

4.2. Spectrogram retrieval experiment

In this experiment, we test our feature by a spectrogram re-

trieval experiment. A spectrogram is an image, which is the

result of a short time fourier transform (STFT) of an audio

(a) Fish image examples (b) Heat content curves

Fig. 1. Affine transformed fish image examples and corre-

sponding heat content curves. In the graph generation pro-

cess, f(Ii, Ij) = |Ii − Ij |, d is the square of distance,

ε1 = ε2 = 1. In the Monte Carlo estimation, δ = 0.1 and

the number of initial random walkers per vertex is 1.

sample. We record 40 single-word “.wav” audio samples and

generate all the spectrograms. The STFT window sizes and

the overlapping lengths are set to be the typical settings. Then

the 40 spectrograms are divided into 2 groups. The first group

is the reference group in which 20 words are read at normal

speed. The second group is the test group in which all the

previous words are read again but at slower speed in a slightly

different recording environment.

(a) Spectrograms (b) Ratio of durations

Fig. 2. The spectrograms and duration ratios between test

samples and reference samples

Figure 2(a) shows the spectrograms of several word pairs

in the reference and test group. The test images are distorted

from the reference images, but the major structure still re-

mains. Figure 2(b) illustrates the exact ratio of time durations

on the vertical scale between the 20 slower test samples and

the 20 original reference samples. The distortion percentage

is from 20% to 80%. For each spectrogram S, we convert the

image to grayscale, and then divided the image into 16 blocks.

A 10-steps heat content vector h is computed for each block.

Figure 3 shows the Euclidean distance matrix of the combined

heat content vectors between all the reference and test sam-

ples. We can see that every test sample is correctly matched

to its reference.
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Fig. 3. Distance matrix for

the test and reference spec-

trograms

Fig. 4. Hand-written digit

image examples in MNIST

database

4.3. Hand written digits classification experiment

The MNIST database [25] is a benchmark widely used in im-

age classification algorithm comparison. It contains a train-

ing group of 60, 000 images and a testing group of 10, 000
images. One property of this dataset is that all the images are

hand written digits with standard size and contrast, which is

very “similar” already. Figure 4 shows some example images.

We first compute the heat content feature for every image

based on forty-nine 10× 10 random position overlapping lo-

cal image blocks. Five steps of heat content is used for each

image block. Table 1 compares the classification error rates

of the heat content feature and other blockwise similar-size

low-level features including the intensity histogram, intensity

moments, Gabor coefficients, gray-level co-occurrence ma-

trix (GLCM) and edge directions histogram. All the features

are normalized and the classification algorithm is a k-nearest-

neighbors classifier with L2 norm as the distance measure.

The result shows that although the heat content feature alone

is not the best, it is still better than some single low-level fea-

tures. More importantly, if we add the heat content feature to

any other feature and form a combined feature, the error rate

always drops. This result provides preliminary evidence that

the heat content feature contains some useful image informa-

tion which is not represented by the existing low-level image

features.

Our next experiment is to simulate the real image retrieval

task by combining three types of features (Intensity, texture

and shape). We apply logistic and linear kernel support vec-

tor machine (SVM) [26] classifiers to execute the classifica-

tion. Table 2 shows that in all situations the performance of

the combined feature with the heat content is better than the

original combination in both classifiers. This result further

illustrates that the heat content feature contains unique and

useful image information as a new type of low-level feature

which has the potential to improve the feature exaction step

for current image retrieval systems.

Feature Alone with HC
Intensity histogram (Histogram) 10.76% 6.89%
Intensity moments (Moments) 8.94% 7.04%

Gabor coefficients (Gabor) 3.05% 2.94%
Gray-level co-occurrence (GLCM) 6.92% 4.49%

Edge directions (Edge) 3.68% 3.15%
Heat content (HC) 6.54% N/A

Table 1. Classification error rate (k-NN classifier)

Feature Logistic SVM

Histogram + Gabor + Edge 2.12% 1.47%

Histogram + Gabor + Edge + HC 2.01% 1.31%
Histogram + GLCM + Edge 2.58% 1.62%

Histogram + GLCM + Edge + HC 2.28% 1.54%
Moments + Gabor + Edge 2.06% 1.30%

Moments + Gabor + Edge + HC 1.90% 1.24%
Moments + GLCM + Edge 2.36% 1.48%

Moments + GLCM + Edge + HC 2.20% 1.41%
Combined feature 1.82% 1.29%

Combined feature with HC 1.78% 1.22%

Table 2. Classification error rate (logistic/SVM classifier)

5. CONCLUSION

Feature extraction is the first and most fundamental step of

a fast image retrieval system. In this paper, we propose a

graph-based image representation associated with a fast graph

similarity comparison algorithm based on the asymptotic be-

havior of the heat content. The heat content feature is shown

to be a robust, easily computed image feature and has the po-

tential to be an effective and efficient low-level feature for

image retrieval. The heat content feature can also be com-

bined with other existing low-level features to create a com-

plex visual signature which may improve the following classi-

fication/retrieval tasks. Although we still need further exper-

iments and analysis to thoroughly understand the advantages

and drawbacks of the heat content feature, our preliminary

results show that heat content computation could be a useful

component of image retrieval tasks.

In future work we will first consider how to improve the

graph generation algorithm. We also plan to design a visual

signature including the modified heat content feature which

can handle the color information of image and to test its

performance on large scale image retrieval tasks such as the

COREL database.
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