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Abstract— The main purpose of biological memory is to
robustly recognize objects and concepts, not to reconstruct their
copies. For this the memory should mostly record the relations
among the constituents of the incoming signals, rather than the
constituents themselves. Relational memories can be stored in
the form of network connectivity between neurons. However,
similarity testing for such spatial representations is difficult.
We suggest that the spatial representations are converted to
temporal representations for similarity testing, so as to enable
a large scale approximate content addressable memory. This
not only proposes a new way for automatic concept abstraction
in data analysis, but also explains some of the mysteries in the
behaviors of human and animal minds.

I. INTRODUCTION

Steven Pinker calls the mind a system of organs of com-
putation [16]. Rolf Landauer [12] noted that “Information
is not a disembodied abstract entity; it is always tied to
a physical representation. It is represented by engraving
on a stone tablet, a spin, a charge, a hole in a punched
card, a mark on paper, or some other equivalent.” The
information representations in the mind should be physical
and computable. They should enable quick retrieval in a
content addressable manner.

Neuroscience evidences suggest that neuronal appositions
are densely and randomly distributed. This sets up a base
for using neuronal spikes to construct connected neuronal
networks as the spatial representations of signals. To en-
able efficient similarity testing the spatial representations
should be converted to the temporal representations. Together
these representations form a basis for a large scale content
addressable memory which holds the key of many feats
of human/animal intelligence [16], [15], [2]. In this paper
we propose concrete algorithms for such conversions using
linear dynamic systems. We outline the main thoughts in this
section.

A biological memory system needs to record the gist of
stimulation signals as experiences for similarity testing. In
contrary to signal recordings in computer systems where
the constituent components of the signals such as the image
pixels and the audio waveform pieces are directly recorded,
it is much more useful to record the relations among the
raw components or component groups for checking the
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abstract similarities. A main function of a biological memory
is recognition rather than reconstruction. A robust image
recognition algorithm that is tolerant to small variations in
shape, size and illumination would benefit more from the
relational data in memory. We propose to convert spatial
representations to temporal ones for computing the relations.

A simple algorithm for such a conversion is to use the
linear dynamic system

ẋ(t) = Sx(t); x(0) = [1, 1, · · · , 1];

y(t) = [1, 1, · · · , 1]x(t)

where the matrix S and the output y(t) denote the spatial
and temporal representations of the same signal, respectively.
This has been proposed in [7], [8], [9] in the form of random
walks over graphs and diffusions on manifold domains.

For very high dimensions, although the above conversion
is theoretically accurate, it is numerically impractical. A
natural approach is to divide the spatial representation S
into small blocks and deal with each block separately. In
terms of images since the relations among neighboring pixels
are of more importance the matrix S is concentrated in
the diagonal band. Furthermore, one can coarse-grain and
compute only the relations among the neighboring pixel
groups. Such relations can be enough for recognizing an
image and the objects in it.

The concept of recognizing images and objects from
the relations of the neighboring pixel groups explains our
impressive visual sensing of the environment details. To be
able to see so many objects so clearly means being able
to detect very small changes in the retina signals of the
environment. This can be achieved if enough relations among
the image pixel groups are recorded and used for similarity
testing.

We use simple images to explain what we mean by
relations. An image is an n × n matrix I with elements
Iij denoting the parameters of the pixel at ij. If we restrict
to grayscale images then Iij is the intensity of the pixel, a
real number, and I is a real matrix. We use the intensity
differences and also the distances between pixels to make
an adjacency matrix A, and calculate the graph Laplacian
matrix L. When making the adjacency matrix we weight
the differences between pixels with a decreasing function of
their distances, such as the inverse of the distance square.
When taking the difference of the pixel intensities if the
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difference is positive we use the value and if negative we give
it a small positive weight for computational convenience.
The adjacency matrix A as well as the corresponding graph
Laplacian matrix L = D −A where D is the degree matrix
is asymmetric. In using the above algorithm to covert L
into a time function we would like to see more oscillatory
behavior in y(t) so as to enhance the discriminating power.
For this we split the matrix L into the summation of its
symmetrical part and anti-symmetrical part as L = 1/2(L+
LT ) + 1/2(L − LT ). We then construct a new matrix
M = 1/2(L + LT ) + k/2(L − LT ) with the parameter k
enhancing the skewness. Now we use this M in the place of
the system matrix S in the above algorithm, and the resultant
time function y(t) is to be used for similarity testing. If we
have two such spatial structures M1 and M2 such as two
neighboring pixel groups in an image, we generate two time
functions y1(t) and y2(t). For a simple implementation we
can take a linear functional of the difference between y1(t)
and y2(t) and the distance between the two pixel groups to
form a relation between them. A more plausible version can
be described as follows.

We start with how to convert a time function into a
network/graph structure. This is analogous to writing a
message to a piece of paper [12]. The paper here is a set of a
huge numbers of second order dynamic systems often used
to describe the inductance-capacitor-resistor (LCR) circuit.
And the pen is the temporal function of concern. The LCR
circuits are with diverse parameters such that each one of
them responds more strongly to a particular behavior mode of
the time function. This way the incoming time function picks
up many waiting LCR circuits and make them connecting
to each other following the neural plasticity rules to form a
network of LCR circuits. One of the important features of the
LCR circuits is resonance, which is the tendency to oscillate
with greater amplitude at some frequencies than at others.
Resonant systems are ubiquitous in Nature and it should be
plausible for biology memory. The network formed in this
manner will respond strongly when a similar time function
comes again, and will in generally responds weakly to time
functions that are different, accomplishing similarity testing
in a involuntary manner.

When the two time functions y1(t) and y2(t) mentioned
above hit the “paper” at the same time each of them will find
some LCR circuits to produce strong currents. These currents
in turn would make the connections between the circuits
and form a network. The strength of the connections are
determined by the two time functions and also the distances
between the two pixel groups. If two neighboring pixel
groups are very similar the connection between them will
be strong and symmetric. If they are very different then the
connection will be strong but directional.

At any stage of the memory system operation all existing
LCR circuits, henceforth also referred as resonators, can be
used as the “paper”. This way many connections are made
and an object or concept is defined by the connections of
the representation network to other networks (of resonators).
A macroscopic analogy is that a child encounters a new

word when reading English texts. The child would try to
register the word in mind by sound and then build up the
understanding of the meaning based on the connections to
neighboring words while reading further. It is these con-
nections to other networks that define the meaning of a
word or generally identify an object. In this process many
resonators are repeatedly used but the connections to neigh-
boring words/networks define the meaning. This enables
different objects to share the constituent resonators and saves
the storage space. Since resonator responses overlap in the
frequency domain, the interferences generate noises which is
especially harmful when information needs to be transmitted.
To reduce this kind of errors one introduces gaps between the
responding ranges of adjacent resonators (and we postulate
this is the case in biological memory due to innate design).
Such discretely spaced resonators responde more strongly to
the mode close to the center of the spaced frequency range.
The resonators are the basic units in a combinatoric scheme
to describe a huge number of objects, from the very concrete
images to the very abstract concepts. The resonators as the
basic memory unit would be used repeatedly by different
pieces of stimulation signals. The resonators having strong
currents at the same time would establish strong connections.
We assume that the information is coded by the numbers and
the types of the resonators and the connection strengthes to
the “neighboring” resonators, unless the coefficients are so
small as to be negligible. We also note that the neuroscience
rule of “spike timing dependent plasticity” (STDP) [14][1][4]
dictates that the network thus formed is asymmetric.

Signals representing objects and concepts need to be
transmitted for similarity testing in memory retrieval Signals
representing an item consisted of multiple constituent pieces
should be the aggregation of the “sub-signal representing
each constituent piece. As such multiple-input single-output
structure for signal aggregation and single-input multiple-
output structure for signal branching are both needed. The
signal operations should be essentially linear to utilize the
properties of superposition, mode preservation and reso-
nance.

Neuronal systems work in a warm and noisy environment.
As mentioned before signal transmission in analogue settings
cannot preserve high accuracy which is crucial, for example,
in coding the retina signals in high accuracy in order to
detect small changes. Our proposed spaced resonator system
provides a level of digitalization, an idea widely used in
computer and communications systems to battle the noises.
Imaging a network of many resonators that are accessible
via a random and dense connection fabric. The resonators’
resonant frequencies are discretely spaced. These spaced
resonators serve as quantization devices in the sense that
the energy of a signal component is absorbed into the
resonator with the closest resonance frequency. They also
provide automatic recall with resonance. Furthermore they
provide combinatorial power of representation similar to
languages [16][17]. For example a possible scheme is to
have symmetrically connected resonator groups as “letter”s
and sequentially connected such groups as “words” and
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“sentences”. Sequential connections are plausible with one-
way STDP and symmetrical connection can be realized with
STDP in both directions.

II. NETWORK OF RESONATORS FOR MEMORY

A. Resonators

Resonance is an ubiquitous phenomena. Parents pushing
a swing set know they should push in phase with the swing
set motion. A radio set selects the desired station by tuning
the receiver circuit into the frequency that resonates with
the station carrier wave. In a radio set receiver we set up
an inductance-capacitor-resistor circuit (LCR circuit) so that
the electrical and magnetic energies convert to each other
with the frequency determined by the circuit parameters. In a
swing set such frequency is determined by the swing height,
similar to the pendulum in a grandfather clock. Neuronal
circuits could perform as LCR circuits, with variable param-
eters. Although chemical/electrical dynamics would likely
be the main mechanism for the LCR like behaviors, the
topological arrangements of directional network links could
also play a role. Some mathematical facts along this line will
be discussed later.

A great feature of a resonant circuit is that it knows
what signal component will get it really excited, in the
way that a swing set knows how to select the pushing
pattern to swing high. Now imagine that a mind is based
on millions of such circuits with different groups of them
connecting to different labels (which are also represented by
resonator networks). If the query signal manages to reach
vast many LCR circuits via a random connection fabric
then the constituent query components would excite circuits
representing similar components, and the corresponding label
network would report the recognition of a concept, either
concrete or abstract.

The resistor in the LCR circuit dissipates the energy into
the environment to maintain stability and to reset. Unlike
in the computers, energy dissipated in the surroundings in a
brain is to be reused.

The transfer function of a resonator, or a second order
band-pass filter, is

H(s) =
H0ω

2
0s

s2 + ω0

Q s+ ω2
0

(1)

where ω0 = F0/2π is the frequency at which the gain of
the filter peaks, H0 = H/Q is the circuit gain, and Q =
F0/(Fh − FL), with FL and FH as the frequencies where
the response is -3dB from the peak, is the quality factor or
the selectivity of the filter. When we choose high Q the pass
band FH − FL is pretty narrow. Note that F0 =

√
FHFL

and the skirts of the response are symmetric around F0 on
a logarithmic scale. We assume that the “paper” in the brain
consists of a large numbers of such filters with different ω0s
which are appropriately spaced in the range of concern (by
innate design as a result of evolution).

B. Complex exponential convolution preserves the modes

The impulse response of an LCR circuit can be expressed
as the sum of complex exponential functions referred as
“modes”. The complex exponential modes are preserved in
the convolution operation. The importance of the temporal
convolution is that when an input signal going through
a linear dynamic system the output is the convolution of
the input and the system impulse response function. For a
linear system the input modes and the system’s modes are
preserved in the output, which is stronger when the two sets
of modes are more similar. Such mode preservation property
in addition to the spaced resonator network representation
scheme preserves the signal modes when traveling through
the paths and making connections to the sitting memories
via excitation of resonators. The convolution of complex
exponential functions e−λkt, k = 1, · · · , n preserves all the
modes in the sense that

e−λ1t ∗ e−λ2t ∗ · · · ∗ e−λnt = c1e
−λ1t + · · ·+ cne

−λnt (2)

where ck = [(λ1−λk) · · · (λk−1−λk)(λk−1−λk) · · · (λn−
λk)]−1 when all the λs are distinct, which covers all realistic
cases. We note that this mode preservation property is unique
to the linear dynamic systems and is important for coding and
transmitting relational information. For example, an image
could be divided into many small and overlapping blocks
with each converted to a temporal representation consisted
of complex exponential modes. The summations of portions
of the block representation will retain the summand modes
and try to find similar items in memory via mode resonance.

C. Resonator network representation of signals

The Fourier transform decomposes a time function as the
sum of eternal sinusoids and and Laplace transform does
this with eternal complex exponentials [13]. As such the
uncertainty principle kicks in when representing signals. A
compromise has to be made and we use impulse response
function of second order linear dynamic systems, or res-
onators, as the basic constituents. These are the real parts of
complex exponentials, or exponentially decayed sinusoids.
They are causal functions but are not orthogonal to each
other in terms of the usual inner product of time functions,
which implies that the interferences among constituents
would affect the information carried in the original signal. As
we mentioned before, one natural approach is to introduce
gaps between the neighboring basic constituents. In other
words the frequency line is divided into alternating on and
off intervals. For incoming signals with frequencies in an
on interval there are resonators responding strongly to the
incoming signal. And for the off interval frequencies there
is no resonators responding with non-negligible output. This
calls for high Q resonators.

Linear combinations of such resonators could approximate
practical signals well. When a signal comes in it excites the
resonators proportionally to its own decomposition weights
since stronger components travel further. A particular com-
ponent will excite strongly those that resonant with it in the
sea of uniformly randomly distributed resonators, achieving
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a rough proportionality. The resonators get excited will
excite other similar ones. This process may go on but the
whole dynamic spreading process will end soon when other
signals kick in and inhibit the current activities. The linear
combination weights are not the only factor in accurately
coding the relations. As mentioned before, the numbers and
the types of the resonators that are used for this task play
a more important role. Each resonator is like a colored bin
and the combinations of colored bins, and the combinations
of the combinations would make a memory scheme capable
of storing millions of concepts. Note that the color here is
the interval of a resonator and we have many of them. Also
note that unlike the colors the resonators actively excites
similar resonators once in action, providing the involuntary
abstraction and consolidation.

The situation is a bit like coding thoughts using alphabets
in languages. The combinatorial possibilities make language
infinitely rich with only some thirty alphabet symbols. The
sequential order of the alphabets in words, sentences and
texts are important and it seems the resonator scheme de-
scribed above does not have the sequential ordering mecha-
nism. However the neuroscience finding of STDP actually
provide a possibility here, in the sense that a group of
resonators can be in a position to excite other groups and
not be excite by them. Indeed STDP provides a mechanism
to remember motions.

When a set of many resonators are simultaneously excited
their output get aggregated due to hitting on synapses of
the dendrite branches of the same neuron. The axon of
this neuron then carry the sum of all the incoming signals
and form a time signal to go somewhere. This time signal
is capable to excite corresponding resonators elsewhere as
long as it has that resonator component. This way a content
addressable memory is working in multiple scales in space
and in time.

Finally we note that once the connection to the sum
neuron is formed we have a concept. Without this fixation
the incoming signal is still just keeping wiring together
the resonator components. Only when the sum neuron’s
touching points are fixed then the spatial representation of
the incoming signal gets settled. This point is important
in understanding the interactions of thinking and language.
Language provides labels for the active resonator groups
to settle in and narrow down to the stronger connections,
although we may loose good ideas in the process.

D. Code the relations into spatial representation

We use visual image as an example to illustrate the
coding process. An image sends photons to stimulate the
photon sensors in the retina which turns the stimulations into
electrical signals in the form of neuron spikes and send it
to the visual cortex. Some processing occurs at this stage
but our main concern is how the signals turn into spatial
structure for memory so that if we see a similar image in a
moment we can tell that this is similar to the one we just
saw, even though we can hardly reconstruct the image when
we close our eyes. This puzzling effect could be explained

if the spatial structure recording the image is recording the
relations among neighboring pixel groups. Because it is very
hard to inverse the relations for reconstruction, while it is
easy to test if the new image is similar to the one already
coded via similarity testing of the relations. In general the
more relations one codes the more accurate one can test the
similarity because relations are constraints that the raw image
signal has to satisfy. Relational coding also explains why
we can record so many images one after another and often
know which ones we have seen before. The same algorithm
applies to audio signal recording as well. In other words
we don’t record the raw waveforms of the audio signal.
Rather we record the relations of tiny blobs of the stimulating
waveforms. This explains how can we carry a conversation
with incomplete sentences and incomplete words. When
enough recorded relations are testing positive the connected
“meaning” is excited.

Relational coding is usually over complete in the sense
that there are more relational constraints than necessary to
uniquely determine the original signal. This is necessary for
the accuracy in similarity testing when noise is abundant.
In the case of visual image one generates relations among
pixel groups and also relations of relations. The relational
network generated for a single image is consisted of many
subnetworks representing the objects and the relations among
them. These subnetworks are connecting to other networks
representing the names, colors and other labels. It is these
connections that fix the network representations for objects.

III. ABSTRACTION AND ANALOGY

With the above coding scheme in mind we proceed to
discuss similarity testing for abstract concepts. Abstraction
is the process of sifting the similarities from the instances or
the differences among the instances. One of the impressive
examples of abstract similarity testing is the psychology phe-
nomena referred as analogical reminding [10], [17]. Analog-
ical reminding is featured by the quickness, the abstractness,
and the involuntariness of a memory recall carried out by the
relatively slow neurons. The quickness calls for large scale
content addressable memory. The abstractness needs the
ability to sift commons from instances. And the involuntari-
ness demands automatical recall. The spatial/temporal signal
conversion described above could help achieving these. It
emphasizes the use of the signal modes and spectral analysis.
We use a simple example to illustrate the importance of
the spectral information in the visually perceived similarity
of spatial structures. Consider the images of independently
generated white noises. These random graphs have similar
spectral information, and are visually similar despite that
they are constructed using independent random numbers and
therefore mathematically independent.

To explain the idea of abstract similarity testing we restrict
to the simpler case of of graph similarity testing scheme
in [9]. The temporal representation of a graph/matrix is a
vector that codes the spectral information of the matrix.
Now we consider simple analogies in which one tests the
similarity between the abstract relations that relate more
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concrete concepts. Consider two pairs of concepts (A,B)
and (X,Y ). Suppose it makes sense to say that “A to B is
like X to Y ”, for example “a square A to a rectangle X
is like a circle B to an ellipse Y ”. The following diagram
shows the relational networks between the shape pairs. The
link weights in the relational networks are determined by the
temporal representations of the concepts.

A X

B Y

RAX

RAB RXY

RBY

Now the relational similarity statement that “A to B is like X
to Y ” can be understood as the similarity of matrices RAX
and RBY , (and of RAB and RXY ,) which is mechanically
the same as the similarity testing of the two concrete shapes.

The above similarity testing for relations does not need
external triggers and leads to an involuntary experience,
not unlike to recognizing facial expressions. Recognizing
facial expressions such as a smile is crucial for human
interactions. Consider two faces A and X , and their smile
versions B and Y . The relational matrices RAB and RXY
are similar and the similarity defines the concept of “smile”.
Human babies perhaps sift this out from smile faces early
on. The relational network of smile could make connections
to relevant concepts and it is possible that the silly smiles
and sounds made by adults when holding a baby forms the
neurological base for the sense of humor, which would be
triggered by concrete or abstract silliness depends on the
storage of abstractions in the mind.

The relational networks RAB and RXY are generated
automatically (due to resonance among components of the
temporal representations A,B,X, Y ) and stored in the mem-
ory as part of the experiences. Such relational networks,
and the relational networks for these relational networks, are
all generated in subconscious and sitting there ready to be
excited. This may help explaining the analogical reminding
phenomena where a sequence of current events remind a
possibly remote experience that is only similar in a very
abstract manner.

IV. MOTIVATING THOUGHTS ON SPATIAL/TEMPORAL
CONVERSIONS

A. Conversion using diffusion in continuous domain

The idea of spatial/temporal signal conversion could be
traced back to the famous 1966 paper by Mark Kac [11]
where random walk analysis is used in the form of diffusion
in a continuous domain. This work is followed intensively,
see [18] and the references therein. For discrete domains like
networks and graphs, an analogous equation for diffusion
over a graph has been used in [3] for developing alternative
page ranking algorithms in the Internet. The heat diffusion
equation ∂ht/∂t = −Lnht is a linear dynamic system
in which the graph Laplacian Ln plays the role of the
system dynamics matrix A in ẋ = Ax + Bu. In [7], [8],
[9] we have been using ∂ht/∂t = −Lnht and collecting
the initial condition response for similarity testing. In these

works it is generally assumed that the graph adjacency
matrix is symmetrical. We highlight the intuitive ideas briefly
below as they motivated our thoughts. In fact a discrete
and asymmetric version with complex exponentials replacing
the conductance would be a good model for the resonator
networks discussed in this paper.

We consider an m-dimensional Riemannian manifold
(M, g) and the associated Dirichlet Laplace-Beltrami oper-
ator −∆M acting in L2(M,dx), where dx is the volume
measure on M induced by the metric g. Let u : M ×
[0,∞)→ R be the unique solution of

∂u

∂t
= ∆Mu, t > 0,

with the initial condition

u(x, 0) = 1

and the boundary condition

u(x, t) = 0, x ∈ ∂M, t > 0.

Using the spectral resolution {λk, φk} of ∆M , where φk
denotes the eigenfunction corresponding to the eigenvalue
λk with λ1 < λ2 < · · · , the Dirichlet heat kernel for M can
be written as

p(x, y, t) =

∞∑
k=1

e−λktφk(x)φk(y)

and the heat content in the domain is

h(t) =

∫
M

u(x, t)dx =

∫
M

∫
M

p(x, y, t)dydx

=

∞∑
k=1

e−tλk

(∫
M

φk(x)dx

)2

.

We emphasize that
∫
M
φk(x)dx =

∫
M
φk(x)u(x, 0)dx is the

Fourier coefficient of the initial condition u(x, 0) = 1 in the
coordinate system {φ1, φ2, · · · }. In other words the Fourier
coefficients of the uniform initial condition as the reflection
of the domain shape are carried by the exponential motion
modes in the heat content to represent the spatial shape
information. We also note that due to the unitary property of
the Fourier transform the heat content coefficients are robust
against small variations in the initial distribution.

In general if the operator involved in the diffusion
type equations has distinct real eigenvalues, the time func-
tion h(t) =

∫
M
u(x, t)dx is an exponential sum of the

form
∑∞
i=1 αie

−λit. Thus, in principle, one can extrac-
t the information about the non negligible parameters in
αi, λi, i = 1, · · · ,∞ from a small initial segment of h(t).
However it is worth noting that [6], [18] give examples
where “isoheat” (h(t) are the same) does not always imply
isospetral (the eigenvalues are the same). These examples
involve unusual constructions and should not concern us.
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B. Complex eigenvalue implications in spatial structure

In most work on diffusion over graphs the graphs are
assumed to be symmetric. A symmetric matrix has real
eigenvalues and the diffusion over the associated graph
behaves monotonically. However, an asymmetric graph is
associated with complex eigenvalues that generate damped
oscillatory behavior. To this end we list the following fa-
miliar mathematical facts that relates the spatial structural
properties to the spectral features that would appear in the
temporal representations. These facts have shed light on our
thinking and may imply more understanding of the signal
conversions discussed in this paper.

• The method of separation of variables is used to solve
a wide range of linear partial differential equations
with separable boundary conditions such as heat equa-
tion, wave equation, Laplace equation and Helmholtz
equation. PDE solution via the separation of variables
method shows that spatial and temporal expansion com-
ponents often share the same frequency parameters.
Thus, the time function obtained via integrating over
spatial variables still preserves certain spatial structure
information;

• The circle group is isomorphic to the special orthogonal
group SO(2). This has the geometric interpretation that
multiplication by a unit complex number is a proper
rotation in the complex plane, and every such rotation
is of this form. Since rotations generate sinusoidal
time functions, this implies that a temporally oscilla-
tory signal represents spatially circulating or spiraling
structures. In particular, the spatial structural features
of an asymmetric graph could be described by the
curling densities over different regions and reflect in
the temporal behavior of the dynamics of stuff moving
in the graph;

• The connection between the spatial motion and complex
eigen pairs (which can be easily turned into time
functions) has been addressed by Helmholtz. He pointed
out that the general motion of a sufficiently small non
rigid body can be represented as the sum of (1) a trans-
lation (2) a rotation and (3) an expansion in mutually
orthogonal directions. Note here that (2) corresponds to
a skew-symmetric matrix and (3) a symmetric matrix.
The same can be said about our eneryg/stuff, only that
our stuff can do these actions with fractional quantities;

• [5] has shown that if En denotes the expected number
of real eigenvalues of an n × n random matrix, then
limn→∞En/

√
n =

√
2/π. This means the majority of

the eigenvalues are complex. These complex eigenval-
ues are due to the fact that a randomly formed “graph”
(with both positive and negative connections) would
naturally have many small circular paths.

• A matrix A can always be decomposed as the sum of a
symmetric matrix S = 1

2 (A+ AT ), whose eigenvalues
are real, and a skew-symmetric matrix R = 1

2 (A −
AT ), whose eigenvalues are purely imaginary. The Lie
product formula gives a physical picture of how stuff

moves on the graph according to the linear dynamic
equation ẋ = Ax since

eAt = e(S+R)t = lim
n→∞

[
eSt/neRt/n

]n
shows that the stuff mixes the behavior of S and R,
diffusing a bit, then rotating a bit, then diffusing a bit,
then rotating a bit, and so on. This in turn provides
a picture of stuff spiraling out on the graph following
circularly expanding structures.

V. CONCLUDING REMARKS

Dynamic systems are ubiquitous in nature, mostly for
physical actions but also for signal conversions. In this paper
we suggest that networks of spaced linear resonators can be
used to perform conversions between the temporal and spatial
representations of signals. While time functions are good for
similarity testing, graph-like spatial structures are plausible
for memory. Combined, they offer possibilities to explain
certain functions in biological intelligence such as the quick
recall of similar contents, as well as for the development of
computer algorithms having similar functions.

REFERENCES

[1] G. Bi and M. Poo. Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsy-
naptic cell type. The Journal of Neuroscience, 18(24):10464–10472,
1998.

[2] D.G. Bobrow and D.A. Norman. Some principles of memory schema-
ta. In D. G. Bobrow and A. M. Collins(eds) Representation and
Understanding: Studies in Cognitive Science. N. Y.: Academic Press,
1975.

[3] F.R.K. Chung. The heat kernel as the pagerank of a graph. Proceedings
of the National Academy of Sciences, 2007.

[4] Y. Dan and M. Poo. Spike timing-dependent plasticity of neural
circuits. Neuron, 44:23–30, 2004.

[5] A. Edelman, E. Kostlan, and M. Shub. How many eigenvalues of a
random matrix are real?, 1993.

[6] P. Gilkey. Heat content, heat trace, and isospectrality. Contemporary
Math, 491:115–124, 2009.

[7] W. Gong. Are stochastic dynamics the foundation of intelli-
gence? In http://www.ieeecss-oll.org/lecture/are-stochastic-dynamics-
foundation-intelligence. 50th IEEE Conference on Decision and Con-
trol, 2011.

[8] W. Gong. Can one hear the shape of a concept? In Proceedings of
31st Chinese Control Conference, pages 22–26, 2012.

[9] W. Gong. Transient response functions for graph structure addressable
memory. In Proceedings of 51st IEEE Conference on Decision and
Control, 2013.

[10] D. Hofstadter and E. Sander. Surfaces and Essences: Analogy as the
Fuel and Fire of Thinking. Basic Books, 2013.

[11] M. Kac. Can one hear the shape of a drum? American Mathematical
Monthly, 73(4, part2):1–23, 1966.

[12] R. Landauer. The physical nature of information. Physics Letters A,
217:188 – 193, 1996.

[13] B.P. Lathi. Signal, systems and controls. Intext, Inc., 1974.
[14] H. Markram, J. Lbke, M. Frotscher M., and B. Sakmann. Regulation

of synaptic efficacy by coincidence of postsynaptic aps and epsps.
Science, 275(5297):213–215, 1997.

[15] J. Morton, R. H. Hammersley, and D.A. Bekerian. Headed records:
A model for memory and its failures. Cognition, 20(1):1 – 23, 1985.

[16] S. Pinker. How the Mind Works. Norton, 1997.
[17] S. Pinker. The Stuff of Thought. Viking Penguin, 2007.
[18] M. van den Berg, E.B. Dryden, and T. Kappeler. Isospectrality and

heat content. arXiv: 1304.403v1 [math.SP] 15 April 2013, 2013.

787


